# Geometric Group Theory

Cornelia Druţu

University of Oxford

Part C course HT 2025

## Word and conjugacy problems

### Proposition

If the word problem is solvable for  $G = \langle S|R\rangle$  then it is solvable for any finite  $\langle X|Q\rangle = G$ .

#### Proof.

Given  $w \in F(X)$  we run simultaneously 2 procedures:

- **1** List all elements in  $\langle\langle Q\rangle\rangle$  (i.e. multiply conjugates  $q_i^{w_i}, w_i \in F(X), q_i \in Q$  and transform into reduced word); check if w is among them. If yes, stop and conclude w=1.
- ② List all homomorphisms  $\phi: F(X)/\langle\langle Q \rangle\rangle \to F(S)/\langle\langle R \rangle\rangle$  (i.e. enumerate all |X|-tuples of words in F(S), then check if each  $q \in Q$ , rewritten by changing  $x \mapsto w_x$ , becomes  $\equiv 1$  in  $F(S)/\langle\langle R \rangle\rangle$ ). This can be done since the WP for  $\langle S|R \rangle$  is solvable.
  - For each  $\phi$ , check if  $\phi(w) \neq 1$  in  $F(S)/\langle\langle R \rangle\rangle$ . If yes, stop and conclude  $w \neq 1$ .

#### **Theorem**

A finitely presented residually finite group has a solvable word problem.

#### Remark

Note that every finite group has a solvable word problem.

### Proof.

Suppose  $G = \langle S|R \rangle$ . Take  $w \in F(S)$ . Run simultaneously two procedures:

- **①** List all the elements in  $\langle\langle R \rangle\rangle$  and check if w is among them.
- ② List all homomorphisms  $\phi: F(S)/\langle\langle R \rangle\rangle \to S_n, n \in \mathbb{N}$ , and check if  $\phi(w) \neq 1$ .



#### Definition

G is Hopf if every onto homomorphism  $f: G \rightarrow G$  is an isomorphism.

### Example

Every finite group is Hopf.

#### **Theorem**

A finitely generated residually finite group is Hopf.

#### **Theorem**

A finitely generated residually finite group is Hopf.

#### Proof.

Assume there exists an onto homomorphism  $f: G \to G$  that is not 1-to-1.

Take  $g \in \ker f \setminus \{1\}$ . There exists  $\phi : G \to F$  with  $\phi(g) \neq 1$ . Construct a sequence

$$g=g_0,\ g_1\in f^{-1}(g_0),\ g_2\in f^{-1}(g_1),\ ...\ ,\ g_n\in f^{-1}(g_{n-1})$$

 $\forall n, \ f^n(g_n) = g \ \text{and} \ f^k(g_n) = 1 \ \text{for all} \ k > n.$  Hence, for all  $n > \ell$ ,  $\phi \circ f^n(g_\ell) = 1 \ \text{and} \ \phi \circ f^n(g_n) \neq 1.$  So the homomorphisms  $\phi \circ f^n$  are pairwise distinct. But this contradicts  $\operatorname{Hom}(G,F) \leq |F|^{|S|}$ .

#### **Theorem**

A finitely generated residually finite group is Hopf.

### Corollary

If  $F(X) = \langle A \rangle$  and  $|A| = |X| = n < \infty$ , then  $F(X) \simeq F(A)$ . (i.e. A freely generates F(X) i.e. A is a free basis for F(X)).

### Proof.

A bijection  $X \to A$  extends to  $X \to F(A)$  which extends to an onto homomorphism  $F(X) \to F(A)$ . By Universal Property, we have a second onto homomorphism, hence an onto hom.  $F(X) \to F(A) \to F(X)$ . Since F(X) is Hopf, the latter hom. is an isomorphism, hence all are.

## Residually finite groups. Simple groups

#### **Theorem**

A finitely generated residually finite group is Hopf.

The assumption finitely generated cannot be dropped from the theorem.

### Example

- Consider X, Y countable.
- There exists  $f: X \to Y$  onto and not injective.
- f extends uniquely to an onto group homomorphism  $F(X) \to F(Y)$ .

At the other extreme, we have simple groups.

#### **Definition**

G is simple if the only normal subgroups are  $\{1\}$  and G.

## Simple groups

### Example

 $\mathbb{Z}/p\mathbb{Z}$ ,  $A_n$ ,  $A_{\infty}$ ,  $PSL(n,\mathbb{Q})$ , infinite f.g. due to Higman, Thompson, Olshanskii, Burger-Mozes.

#### **Theorem**

A finitely presented simple group has solvable word problem.

#### Proof.

Let  $w \in F(S)$ . Since G is simple, if  $w \neq 1$  in G then  $G = \langle \langle w \rangle \rangle$  and hence  $\langle \langle \{w\} \cup R \rangle \rangle = F(S)$ .

### Two procedures:

- **1** Enumerate  $\langle \langle R \rangle \rangle$ . Check if w appears.
- **2** Enumerate  $\langle \langle \{w\} \cup R \rangle \rangle$ . Check if every  $s \in S$  appears.



## Graphs and Cayley graphs

A main method of investigation is to endow an infinite group with a geometry compatible with its algebraic structure, i.e. invariant by multiplication. This can easily be done for finitely generated groups via Cayley graphs.

Given a countable group G and a subset S such that  $S^{-1} = S$ , the Cayley graph of G with respect to S, denoted  $\Gamma(S,G)$ , is a directed/oriented graph with

- set of vertices *G*:
- set of oriented edges  $\{(g,gs):g\in G,s\in S\}$ ;

We denote an edge [g,gs]. The underlying non-oriented graph is denoted  $\hat{\Gamma}(S,G)$ .

# Examples of Cayley graphs

**1** 
$$\mathbb{Z}^2$$
 with  $S = \{(\pm 1, 0), (0, \pm 1)\}$ 



## Examples of Cayley graphs

② 
$$\mathbb{Z}^2$$
 with  $S = \{(\pm 1, 0), \pm (1, 1)\}$ 

## Examples of Cayley graphs

**3** 
$$F_2 = F(\{a, b\})$$
 with  $S = \{a^{\pm 1}, b^{\pm 1}\}$ 

|   |          |          | <br>b    |        |  |
|---|----------|----------|----------|--------|--|
|   |          |          |          |        |  |
|   |          |          |          | <br>ab |  |
|   | $a^{-2}$ | $a^{-1}$ | 1        | a      |  |
|   |          |          |          |        |  |
|   |          |          |          | <br>   |  |
|   |          |          | $b^{-1}$ |        |  |
| · |          |          |          |        |  |

## Examples of Cayley graphs: the integer Heisenberg group

The Integer Heisenberg group:

$$H_{2n+1}(\mathbb{Z}):=\langle x_1,\ldots,x_n,y_1,\ldots,y_n,z;$$

$$[x_i, z] = 1, [y_j, z] = 1, [x_i, x_j] = 1, [y_i, y_j] = 1, [x_i, y_j] = z^{\delta_{ij}}, 1 \leqslant i, j \leqslant n \rangle.$$

$$H_{2n+1}(\mathbb{Z}) = \left\{ \begin{pmatrix} 1 & x_1 & x_2 & \dots & x_n & z \\ 0 & 1 & 0 & \dots & 0 & y_n \\ 0 & 0 & 1 & \dots & 0 & y_{n-1} \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & y_2 \\ 0 & 0 & \dots & 0 & 1 & y_1 \\ 0 & 0 & \dots & \dots & 0 & 1 \end{pmatrix} ; x_i, y_j, z \in \mathbb{Z} \right\}$$

# Examples of Cayley graphs: the Integer Heisenberg group

**5** 
$$H_3(\mathbb{Z}) := \langle x, y, z \mid [x, z] = 1, [y, z] = 1, [x, y] = z \rangle.$$

2/9/23, 4:25 PM

HeisenbergCayleyGraph.png (533×423)



14 / 16

## Particular features of Cayley graphs

**1** No monogons (edges of the form [g,g]) if  $1 \notin S$ .



② No digons if, when  $s = s^{-1}$ , we do not list both s and  $s^{-1}$  in S (i.e. no repetitions in S).



In other words, this is a simplicial graph.

- **3**  $\Gamma(S,G)$  is connected (i.e. any two vertices can be connected by an edge path) if and only if  $G = \langle S \rangle$ .
- **a**  $\Gamma(S,G)$  is regular: the valency/degree of every vertex is |S|.
  - **o**  $\Gamma(S,G)$  is moreover locally finite if and only if  $|S| < \infty$ .

## Particular features of Cayley graphs

**1** If  $\Gamma(S,G)$  is infinite then it always contains a bi-infinite geodesic.



•  $\Gamma(S,G)$  always contains a cycle (in fact plenty) with one exception:  $\Gamma(S,G)$  does not contain a cycle (i.e. it is a simplicial tree)  $\iff$   $S=X\sqcup X^{-1}$  and G=F(X).