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Word and conjugacy problems

Proposition

If the word problem is solvable for G = 〈S |R〉 then it is solvable for any
finite 〈X |Q〉 = G.

Proof.

Given w ∈ F (X ) we run simultaneously 2 procedures:

1 List all elements in 〈〈Q〉〉 (i.e. multiply conjugates
qwi
i ,wi ∈ F (X ), qi ∈ Q and transform into reduced word); check if w

is among them. If yes, stop and conclude w = 1.
2 a List all homomorphisms φ : F (X )/〈〈Q〉〉 → F (S)/〈〈R〉〉 (i.e.

enumerate all |X |-tuples of words in F (S), then check if each q ∈ Q,
rewritten by changing x 7→ wx , becomes ≡ 1 in F (S)/〈〈R〉〉). This can
be done since the WP for 〈S |R〉 is solvable.

b For each φ, check if φ(w) 6= 1 in F (S)/〈〈R〉〉. If yes, stop and
conclude w 6= 1.
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Residually finite groups

Theorem

A finitely presented residually finite group has a solvable word problem.

Remark

Note that every finite group has a solvable word problem.

Proof.

Suppose G = 〈S |R〉. Take w ∈ F (S). Run simultaneously two procedures:

1 List all the elements in 〈〈R〉〉 and check if w is among them.

2 List all homomorphisms φ : F (S)/〈〈R〉〉 → Sn, n ∈ N, and check if
φ(w) 6= 1.
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Residually finite groups

Definition

G is Hopf if every onto homomorphism f : G → G is an isomorphism.

Example

Every finite group is Hopf.

Theorem

A finitely generated residually finite group is Hopf.
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Residually finite groups

Theorem

A finitely generated residually finite group is Hopf.

Proof.

Assume there exists an onto homomorphism f : G → G that is not 1-to-1.

Take g ∈ ker f \ {1}. There exists φ : G → F with φ(g) 6= 1. Construct a
sequence

g = g0, g1 ∈ f −1(g0), g2 ∈ f −1(g1), ... , gn ∈ f −1(gn−1)

∀n, f n(gn) = g and f k(gn) = 1 for all k > n. Hence, for all n > `,
φ ◦ f n(g`) = 1 and φ ◦ f n(gn) 6= 1. So the homomorphisms φ ◦ f n are

pairwise distinct. But this contradicts Hom(G ,F ) ≤ |F ||S|.
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Residually finite groups

Theorem

A finitely generated residually finite group is Hopf.

Corollary

If F (X ) = 〈A〉 and |A| = |X | = n <∞, then F (X ) ' F (A). (i.e. A freely
generates F(X) i.e. A is a free basis for F (X )).

Proof.

A bijection X → A extends to X → F (A) which extends to an onto
homomorphism F (X )→ F (A). By Universal Property, we have a second
onto homomorphism, hence an onto hom. F (X )→ F (A)→ F (X ). Since
F (X ) is Hopf, the latter hom. is an isomorphism, hence all are.
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Residually finite groups. Simple groups

Theorem

A finitely generated residually finite group is Hopf.

The assumption finitely generated cannot be dropped from the theorem.

Example

Consider X ,Y countable.

There exists f : X → Y onto and not injective.

f extends uniquely to an onto group homomorphism F (X )→ F (Y ).

At the other extreme, we have simple groups.

Definition

G is simple if the only normal subgroups are {1} and G .
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Simple groups

Example

Z/pZ, An, A∞, PSL(n,Q), infinite f.g. due to Higman, Thompson,
Olshanskii, Burger-Mozes.

Theorem

A finitely presented simple group has solvable word problem.

Proof.

Let w ∈ F (S). Since G is simple, if w 6= 1 in G then G = 〈〈w〉〉 and
hence 〈〈{w} ∪ R〉〉 = F (S).

Two procedures:

1 Enumerate 〈〈R〉〉. Check if w appears.

2 Enumerate 〈〈{w} ∪ R〉〉. Check if every s ∈ S appears.

Cornelia Druţu (University of Oxford) Geometric Group Theory Part C course HT 2025 8 / 16



Graphs and Cayley graphs

A main method of investigation is to endow an infinite group with a
geometry compatible with its algebraic structure, i.e. invariant by
multiplication. This can easily be done for finitely generated groups via
Cayley graphs.

Given a countable group G and a subset S such that S−1 = S , the Cayley
graph of G with respect to S , denoted Γ(S ,G ), is a directed/oriented
graph with

set of vertices G ;

set of oriented edges {(g , gs) : g ∈ G , s ∈ S};
We denote an edge [g , gs]. The underlying non-oriented graph is denoted
Γ̂(S ,G ).
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Examples of Cayley graphs

1 Z2 with S = {(±1, 0), (0,±1)}
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Examples of Cayley graphs

2 Z2 with S = {(±1, 0),±(1, 1)}

Cornelia Druţu (University of Oxford) Geometric Group Theory Part C course HT 2025 11 / 16



Examples of Cayley graphs

3 F2 = F ({a, b}) with S = {a±1, b±1}
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Examples of Cayley graphs: the integer Heisenberg group

The Integer Heisenberg group:

H2n+1(Z) := 〈x1, . . . , xn, y1, . . . , yn, z ;

[xi , z ] = 1, [yj , z ] = 1, [xi , xj ] = 1, [yi , yj ] = 1, [xi , yj ] = zδij , 1 6 i , j 6 n〉.

H2n+1(Z) =





1 x1 x2 . . . . . . xn z
0 1 0 . . . . . . 0 yn
0 0 1 . . . . . . 0 yn−1
...

...
. . .

. . .
...

...
0 0 . . . . . . 1 0 y2

0 0 . . . . . . 0 1 y1

0 0 . . . . . . . . . 0 1


; xi , yj , z ∈ Z


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Examples of Cayley graphs: the Integer Heisenberg group

5 H3(Z) := 〈x , y , z | [x , z ] = 1, [y , z ] = 1, [x , y ] = z〉.
2/9/23, 4:25 PM HeisenbergCayleyGraph.png (533×423)

https://upload.wikimedia.org/wikipedia/commons/c/c7/HeisenbergCayleyGraph.png 1/1
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Particular features of Cayley graphs

1 No monogons (edges of the form [g , g ]) if 1 6∈ S .

2 No digons if, when s = s−1, we do not list both s and s−1 in S (i.e.
no repetitions in S).

In other words, this is a simplicial graph.
3 Γ(S ,G ) is connected (i.e. any two vertices can be connected by an

edge path) if and only if G = 〈S〉.
4 a Γ(S ,G ) is regular: the valency/degree of every vertex is |S |.

b Γ(S ,G ) is moreover locally finite if and only if |S | <∞.

Cornelia Druţu (University of Oxford) Geometric Group Theory Part C course HT 2025 15 / 16



Particular features of Cayley graphs

5 If Γ(S ,G ) is infinite then it always contains a bi-infinite geodesic.

6 Γ(S ,G ) always contains a cycle (in fact plenty) with one exception:
Γ(S ,G ) does not contain a cycle (i.e. it is a simplicial tree) ⇐⇒
S = X t X−1 and G = F (X ).
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