Gödel Incompleteness Theorems: Problem sheet 2

Α.

- **1.** Show that the set $\{n: \text{PAE} \vdash E_n[\overline{n}]\}$ is expressible in complexity Σ_1 .
- **2.** Show that for any two formulae $F(v_1)$ and $G(v_1)$ in \mathcal{L}_E with one free variable, there exist sentences X and Y such that the sentences $(X \leftrightarrow G(\lceil Y \rceil))$ and $(Y \leftrightarrow F(\lceil X \rceil))$ are both true.

В.

3. Show that if S is a definable set of sentences in \mathcal{L}_E , and \Pr_S is an associated proof predicate, and X and Y are any formulae, then

$$\mathrm{PAE} \vdash (\mathrm{Pr}_S(\overline{\ulcorner X \to Y \urcorner}) \to (\mathrm{Pr}_S(\overline{\ulcorner X \urcorner}) \to \mathrm{Pr}_S(\overline{\ulcorner Y \urcorner}))).$$

- **4.** Show that the following functions are primitive recursive.
 - (i) P(n), which is n-1 if n>0 and 0 if n=0.
 - (ii) S(m, n), which is m n if $m \ge n$, and 0 if m < n.
 - (iii) M(m, n) = m.n.
 - (iv) $E(m, n) = m^n$.
 - (v) $L(m, n) = \min(m, n)$, and $U(m, n) = \max(m, n)$.
 - (vi) $G(n) = \min_{m \le n} F(m)$ and $H(n) = \max_{m \le n} F(m)$, where F is primitive recursive.
- 5. (i) Show that every true, quantifier-free sentence is provable from PAE.
- (ii) Prove that if ϕ is quantifier-free, and $\exists v_i \leq \overline{n} \phi$ is a sentence, then there is a quantifier-free sentence ϕ' which is true if and only if ϕ is true. [Note that n here is a fixed natural number, and the choice of ϕ' will depend on the choice of n.]
 - (iii) Prove that every true Σ_0 sentence is provable from PAE.
 - (iv) Deduce that every true Σ_1 sentence is provable from PAE.
- **6.** Let $F(\overline{n})$ be the statement "there exists a Σ_1 formula ϕ such that $n = \lceil \phi \rceil$ ". [Assume that this is expressible in complexity Σ_0 .]

If ϕ is any formula, and n and k are natural numbers, write $\phi(\overline{n}, \overline{k}, \mathbf{0})$ for the result of substituting \overline{n} for all free occurrences of v_1 in ϕ , \overline{k} for all free occurrences of v_2 , and $\overline{0}$ for all other free variables. [Assume that the statement $G(\overline{m}, \overline{m'}, \overline{n}, \overline{k})$ which we define as "If ϕ is such that $m = \lceil \phi \rceil$, then $m' = \lceil \phi(\overline{n}, \overline{k}, \mathbf{0}) \rceil$ " can be expressed in Σ_0 .]

- (i) Show that the statement $H(\overline{m}, \overline{n}, \overline{k})$, which we define as " $F(\overline{m})$ is true, and if ϕ satisfies $m = \lceil \phi \rceil$, then $\phi(\overline{n}, \overline{k}, \mathbf{0})$ " is expressible in complexity Σ_1 .
- (ii) Prove that the statement $K(\overline{m}, \overline{n})$ which we define as " $F(\overline{m})$ is true, and if ϕ is such that $m = \lceil \phi \rceil$, then there exists k such that $\phi(\overline{n}, k, \mathbf{0})$ " is expressible in complexity Σ_1 .

C.

- 7. We use the same notation as in the previous question.
 - (i) Show that $\neg K(\overline{n}, \overline{n})$ is not expressible in complexity Σ_1 .
- (ii) (Optional: hard) Let Γ be the smallest set of partial functions with the following properties.
 - (α) Every recursive partial function belongs to Γ .
 - (β) The characteristic function of the set $\{(m,n): K(\overline{m},\overline{n}) \text{ is false}\}$ belongs to Γ.
 - (γ) Γ is closed under substitution, primitive recursion, and minimalisation.

Here the minimalisation operator, as applied to partial functions f, is defined as follows. g is defined from minimalisation from f iff, for all n, $g(n_1, \ldots, n_k, n)$ is the least m such that for all $l \leq m$, $f(n_1, \ldots, n_k, l)$ is defined, and such that $f(n_1, \ldots, n_k, m) = 0$, if such an m exists; otherwise $g(n_1, \ldots, n_k, n)$ is undefined.

Sketch an argument that the elements of Γ are precisely the partial functions that can be defined in complexity Σ_2 .