
C5.2 Elasticity & Plasticity Michaelmas Term 4–1

4 Plane strain

by Peter Howell

4.1 Definition

A more common configuration than that of antiplane strain is plane strain, in which a solid
is displaced in the (x, y)-plane only, with the displacement being independent of z. Writing

u =

u (x, y)
v (x, y)

0

 , (4.1)

we find that the stress tensor takes the form

T =

τxx τxy 0
τxy τyy 0
0 0 τzz

 , (4.2)

where

τxx = λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂u

∂x
, τxy = µ

(
∂u

∂y
+
∂v

∂x

)
, τyy = λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂v

∂y
, (4.3)

and

τzz = λ

(
∂u

∂x
+
∂v

∂y

)
. (4.4)

This configuration arises, for example, when a z-independent traction just in the (x, y)-plane
is applied to the curved boundary of a cylindrical bar aligned with the z-axis. The easily-
forgotten stress component τzz represents the normal traction that would need to be applied
to the ends of such a bar to prevent it expanding or contracting in the z-direction.

4.2 Compatibility

In steady plane strain, the momentum equation takes the form

∂τxx
∂x

+
∂τxy
∂y

= −ρgx,
∂τxy
∂x

+
∂τyy
∂y

= −ρgy, (4.5)

where the gravitational acceleration is g = (gx, gy, 0)T. Viewed as a system of equations
for the stress components, (4.5) is under-determined, comprising just two equations for three
unknowns. It is only by using the constitutive relations (4.3) that we are able to obtain a
closed system of two equations for the two components (u, v) of displacement.
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It follows that, given τij , (4.3) is itself an over-determined system for the displacements.
If we were in the very fortunate position of knowing the stress components τxx, τxy and τyy,
which of course must satisfy (4.5), then we could view (4.3) as a system of three equations for
the two displacement components (u, v). Whenever u is a twice continuously differentiable
single-valued function, we must have ∂2u/∂x∂y ≡ ∂2u/∂y∂x and similarly for v. It then
follows from cross-differentiation that

∂2τyy
∂x2

− 2
∂2τxy
∂x∂y

+
∂2τxx
∂y2

= ν∇2 (τxx + τyy) . (4.6)

This is the compatibility condition which ensures that (4.3) can be solved for single-valued
functions u and v.

If τij does not satisfy (4.6), then there is no two-dimensional displacement field that gives
rise to such a stress and it is, therefore, incompatible with plane strain. Hence, if we are
presented with an elastic material in a state of plane strain under the action of, say, some
nonzero boundary tractions, then the necessary and sufficient condition for the material to
return to its pristine unstrained state when the tractions are removed is that the stress field
in it satisfies (4.6).

4.3 The Airy stress function

When there is no body force, we can guarantee that the stress components satisfy (4.5) by
introducing an Airy stress function A such that

τxx =
∂2A

∂y2
, τxy = − ∂2A

∂x∂y
, τyy =

∂2A

∂x2
. (4.7)

In the same way that the stress function φ in antiplane strain is only defined to within a
constant, A is only defined to within a linear function of x and y; in other words, any such
function may be added to A without contributing to the stress.

By substituting (4.7) into the compatibility condition (4.6), we find that A satisfies the
biharmonic equation

∇4A =0, (4.8)

where

∇4A = ∇2
(
∇2A

)
=
∂4A

∂x4
+ 2

∂4A

∂x2∂y2
+
∂4A

∂y4
(4.9)

is the two-dimensional biharmonic operator.
Recall that the general solution of Laplace’s equation in two dimensions may be written

in the form
φ = Re

{
f (z)

}
, (4.10)

where f is an arbitrary analytic function of z = x+ iy. Similarly, the general solution of (4.8)
has the Goursat representation

A = Re
{
z̄f (z) + g (z)

}
, (4.11)

where z̄ = x− iy, and f , g are analytic. Many of the other solution techniques that work well
on Laplace’s equation, for example separation of variables, can be adapted to the biharmonic



C5.2 Elasticity & Plasticity Michaelmas Term 4–3

y

x

n

t

(x, y) =
(
X(s), Y (s)

)

D

∂D

Figure 4.1: Definition sketch showing the unit normal n and tangent t to the boundary ∂D
of a plane region D.

equation. However, fitting the boundary conditions may be significantly more difficult; we
will discuss the boundary conditions to be applied to (4.8) below.

Once we have calculated A, we obtain the following expressions for the displacement
gradients from (4.3):

2µ
∂u

∂x
= −ν ∂

2A

∂x2
+ (1− ν)

∂2A

∂y2
, (4.12a)

2µ
∂v

∂y
= (1− ν)

∂2A

∂x2
− ν ∂

2A

∂y2
, (4.12b)

µ

(
∂u

∂y
+
∂v

∂x

)
= − ∂2A

∂x∂y
. (4.12c)

Given A satisfying (4.8), (4.12) forms a compatible system of three equations that determine
u and v to within a rigid body displacement in which u = u0 − ωy, v = v0 + ωx, with u0, v0
and ω constant.

4.4 Boundary conditions

Suppose we wish to solve (4.8) in some region D, on whose boundary a prescribed traction
σ is imposed, that is

T n = σ on ∂D. (4.13)

As illustrated in Figure 4.1, we parametrise ∂D using (x, y) =
(
X(s), Y (s)

)
, where s is arc-

length, so the unit tangent and outward normal vectors are given by

t =

(
X ′

Y ′

)
, n =

(
Y ′

−X ′
)
, (4.14)
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where ′ is shorthand for d/ds. Using (4.7) to write the stress components in terms of A, we
thus find that (4.13) can be written in the form

d

ds

(
∂A/∂y
−∂A/∂x

)
= σ. (4.15)

If no surface traction is applied, that is σ = 0, then it follows from (4.15) that ∇A is
constant on ∂D. Since, as noted above, an arbitrary linear function of x and y may be added
to A without affecting the stresses, we can, in a simply-connected region, take this constant
to be zero without loss of generality. Then, by taking the dot product of ∇A with t and n
respectively, we deduce that

dA

ds
=
∂A

∂n
= 0 (4.16)

on ∂D. The former of these tells us that A is constant on ∂D and, again, this constant may,
without loss of generality, be set to zero. Finally, we arrive at the boundary conditions

A = 0,
∂A

∂n
= 0 (4.17)

to be imposed on a stress-free boundary.

We note that the divergence theorem on any closed region D yields∫
∂D

(
A
∂

∂n

(
∇2A

)
− ∂A

∂n
∇2A

)
ds

=

∫∫
D

{
div
(
A grad(∇2A)

)
− div

(
∇2A gradA

)}
dxdy

=

∫∫
D

{
A∇4A−

(
∇2A

)2}
dxdy. (4.18)

Hence, if A satisfies the biharmonic equation in D and the boundary conditions (4.17) on ∂D,
then ∇2A = 0 and a second use of (4.17) reveals that A ≡ 0. This result confirms that the
stresses inside a closed body in plane strain are uniquely determined by the tractions applied
to the boundary.

4.5 Plane strain in a disc

As a first illustrative example, let us consider plane strain in a circular region r < a on
whose boundary r = a a prescribed traction is applied. The equivalent of (4.7) in plane polar
coordinates (r, θ) is

τrr =
1

r2
∂2A

∂θ2
+

1

r

∂A

∂r
. τrθ =− ∂

∂r

(
1

r

∂A

∂θ

)
, τθθ =

∂2A

∂r2
, (4.19)

and the biharmonic equation for A reads

∇4A =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)2

A = 0. (4.20)
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We will only consider here cases where a purely normal pressure P is applied, so the boundary
conditions on r = a are

1

r2
∂2A

∂θ2
+

1

r

∂A

∂r
= −P, ∂

∂r

(
A

r

)
= 0 on r = a; (4.21)

we obtain the latter equation by integrating the condition τrθ = 0 with respect to θ.

The simplest case occurs if P is constant, so we expect the displacement to be purely
radial and A to be a function of r alone. The problem thus reduces to(

d2

dr2
+

1

r

d

dr

)2

A = 0, (4.22)

subject to the boundary conditions

A = r
dA

dr
= −Pa2 on r = a. (4.23)

It is straightforward to solve (4.22) in the form

A = c1r
2 + c2 + c3r2 log r + c4 log r. (4.24)

For the stresses to exist throughout the circle, we require A to be twice differentiable as r → 0
and hence c3 = c4 = 0. Then, by using the boundary conditions (4.23), we obtain

A = −P
2

(
r2 + a2

)
. (4.25)

If P is not assumed to be constant, then we can solve the problem by separating the
variables in polar coordinates, using the fact that A must be a 2π-periodic function of θ.
Seeking a solution of (4.20) in the form

A(r, θ) = f(r) sin(nθ), (4.26)

where n is a positive integer, we find that(
d2

dr2
+

1

r

d

dr
− n2

r2

)2

f = 0. (4.27)

This Euler differential equation admits the solution f(r) = rk, where k satisfies(
k2 − n2

) [
(k − 2)2 − n2

]
= 0. (4.28)

We must again ensure that the stress components (4.19) are well defined as r → 0, and now
this restricts us to the solutions k = n, n+ 2, that is

f(r) = c1r
n+2 + c2r

n, (4.29)

where the ci are again arbitrary constants. For the special case n = 1, the only physically
acceptable solution is

f(r) = c1r
3. (4.30)



4–6 Mathematical Institute University of Oxford

(The c2r must vanish because of the condition that τrr = [f ′(r)/r − n2f(r)/r] sinnθ be well-
defined as r → 0.)

We can take a linear combination of separable solutions that satisfy (4.23) and the radially-
symmetric solution (4.25) to obtain

A = −
(
r2 + a2

4

)
A0

+
1

2

∞∑
n=2

(
rn

(n− 1)an−2
− rn+2

(n+ 1)an

){
An cos(nθ) +Bn sin(nθ)

}
, (4.31)

where An and Bn are the Fourier coefficients of P , that is

An =
1

π

∫ 2π

0
P (θ) cos(nθ) dθ, Bn =

1

π

∫ 2π

0
P (θ) sin(nθ) dθ. (4.32)

Notice that the n = 1 term does not appear in the series in (4.31) because of the condition
that ∂(A/r)/∂r = 0 at r = a. We therefore have that it is possible to satisfy the boundary
condition (4.21) only if ∫ 2π

0
P (θ)

(
cos θ
sin θ

)
dθ = 0. (4.33)

This condition simply states that the net force on the disc must be zero.


