
C5.2 Elasticity & Plasticity Michaelmas Term 5–1

5 Elastic waves

by Peter Howell

5.1 P-waves and S -waves

Now we turn our attention to the unsteady Navier equation

ρ
∂2u

∂t2
= (λ+ µ) grad divu + µ∇2u, (5.1)

where we have neglected the body force for simplicity. We begin by seeking travelling-wave
solutions in the form

u = a exp
{

i (k · x− ωt)
}
. (5.2)

Here and henceforth, the real part is assumed: we solve for a complex-valued displacement
field u and then take the real part right at the end. This approach works because all the
usual linear operations, such as differentiation with respect to x or t or multiplication by a
real constant, commute with taking the real part. The complex amplitude a, the wave-vector
k and frequency ω are all taken to be constant. Equation (5.2) corresponds to a harmonic
wave of wavelength 2π/|k| with the wave-crests travelling at the phase velocity

c =
ωk

|k|2
. (5.3)

It is very helpful to decompose the amplitude a into its longitudinal and transverse com-
ponents as follows. Given any vector a and nonzero k, there is a unique vector B and a scalar
A satisfying

a = Ak + B×k, k ·B = 0. (5.4)

After writing a in this form, we find that (5.1) reduces to(
ρω2 − µ|k|2

)
(B×k) +

(
ρω2 − (λ+ 2µ)|k|2

)
Ak = 0, (5.5)

which we can only satisfy for nonzero k if either

B = 0 and ρω2 = (λ+ 2µ) |k|2 (5.6a)

or

A = 0 and ρω2 = µ |k|2 . (5.6b)

The vectorial nature of the Navier equation has thus led to the existence of two dispersion
relations, corresponding to two distinct types of waves.
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(i) P-waves, also known as Primary or Pressure waves, take the form

u = Ak exp
{

i (k · x− ωt)
}
, (5.7a)

where ω2 = (λ + 2µ)|k|2/ρ. We recall that µ and λ + 2µ/3 are both positive, so ω is
real. The phase speed is thus given by

cp =

√
λ+ 2µ

ρ
(5.7b)

and, since cp is independent of k, the waves are non-dispersive. The phase velocity is
parallel to the displacement u, so P -waves are said to be longitudinal. They are also
sometimes described as irrotational since they satisfy curlu = 0, as is readily verified
by direct differentiation of (5.7a).

(ii) S-waves, also known as Secondary or Shear waves, take the form

u = (B×k) exp
{

i (k · x− ωt)
}
, (5.8a)

where ω2 = µ|k|2/ρ. S -waves are also non-dispersive, with constant phase speed

cs =

√
µ

ρ
. (5.8b)

This time, though, the phase velocity is perpendicular to the displacement, so S -waves
are said to be transverse. Since (5.8a) satisfies divu = 0, we deduce that S -waves
conserve volume, and they may thus be referred to as equivoluminal.

Evidently cp > cs, so that P -waves always propagate faster than S -waves. This fact is familiar
to seismologists: following an earthquake, two distinct initial signals can usually be observed,
corresponding to the arrival of the P -waves followed by the S -waves.

The general solution of the dynamic Navier equation (5.1) may be expressed in the form

u(x, t) =

∫∫∫
R3

kA1(k) exp
{

i (k · x− |k|cpt)
}

+ kA2(k) exp
{

i (k · x + |k|cpt)
}

+ k×B1(k) exp
{

i (k · x− |k|cst)
}

+ k×B2(k) exp
{

i (k · x + |k|cst)
}

dk, (5.9)

which represents an arbitrary combination of P - and S -waves travelling in all possible direc-
tions. The amplitude functions Ai(k) and Bi(k) can in principle be determined from the
Fourier transform of the initial data, although carrying this out in practice when boundary
conditions are imposed is far from easy.
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Figure 5.1: Schematic of a P -wave reflecting from a rigid boundary.

5.2 Mode conversion

Next we consider the plane strain problem of reflection of a P -wave that is incident from x < 0
on a rigid barrier at x = 0, so that u = 0 there. We recall that P -waves are longitudinal
and so, by choosing the coordinate axes appropriately, we may write the incident wave in the
form of a plane strain displacement,

u = uinc =

(
cosα
sinα

)
exp
{

i
[
kp (x cosα+ y sinα)− ωt

]}
, (5.10)

where kp = ω/cp and α is the angle between the incoming wave and the x-axis.

Our task now is to find a reflected wave field uref such that the net displacement u =
uinc + uref is zero on the boundary x = 0. We soon realise that this is impossible unless we
allow for two reflected waves: one P -wave and one S -wave. Otherwise, there are not enough
degrees of freedom to make both displacement components zero on x = 0. We therefore seek
a reflected wave field of the form

uref = r1

(
− cos γ
sin γ

)
exp
{

i
[
kp (−x cos γ + y sin γ)− ωt

]}
+ r2

(
sinβ
cosβ

)
exp
{

i
[
ks (−x cosβ + y sinβ)− ωt

]}
, (5.11)

where ks = ω/cs. Recall that S -waves are transverse so the amplitude is orthogonal to the
wave-vector.

From the condition u = 0 on x = 0, we find that the P -wave reflection is specular,
meaning that the angle of reflection γ is equal to the angle of incidence α. However, the
S -wave reflection angle satisfies

sinβ =
cs
cp

sinα (5.12)
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Figure 5.2: Schematic of a layered elastic medium.

and, since cp > cs, it follows that β < α, as illustrated in Figure 5.1. The reflection coefficients
are given by

r1 =
cos(α+ β)

cos(α− β)
, r2 = − sin(2α)

cos(α− β)
. (5.13)

This is our first encounter with the phenomenon of mode conversion: a boundary will
usually turn a pure P -wave (or a pure S -wave) into a combination of P - and S -waves.

5.3 Love waves

In the dynamic version of antiplane strain, the displacement field takes the form u = w(x, y, t)ez,
and then w satisfies

µ∇2w = µ

(
∂2w

∂x2
+
∂2w

∂y2

)
= ρ

∂2w

∂t2
, (5.14)

which is just the familiar two-dimensional scalar wave equation, with wave speed cs. This is
to be expected, since antiplane strain is volume-preserving, with the displacement depending
only on the transverse variables.

We will focus on the example of Love waves, which are antiplane strain waves guided
through a particular type of layered medium. As illustrated in Figure 5.2, the geometry is
that of a uniform layer of one material, with constant thickness 2h, encased inside an infinite
expanse of a second material. This set-up might model, for example, a coal seam in a rock
stratum, with the displacement in the z-direction. The transverse displacement wi(x, y, t) in
either medium satisfies

c2si

(
∂2wi

∂x2
+
∂2wi

∂y2

)
=
∂2wi

∂t2
(i = 1, 2), (5.15)

where csi =
√
µi/ρi (i = 1, 2) are the S -wave speeds. On the boundaries of the seam, the

displacements and tractions must be continuous, so that

w1 = w2, µ1
∂w1

∂y
= µ2

∂w2

∂y
, on y = ±h. (5.16)
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We seek travelling-wave solutions propagating in the x-direction in which the displace-
ments take the form

wi = fi (y) exp
{

i (kx− ωt)
}
. (5.17)

Substituting (5.17) into (5.15), we find that the functions fi(y) satisfy

f ′′i +

(
ω2

c2si
− k2

)
fi = 0 (5.18)

and, hence, are either exponential or sinusoidal. We suppose that the amplitude of the waves
decays at infinity so that

f2 = A2e
−`y in y > h, f2 = B2e

`y in y < −h, (5.19)

where ` is real and positive. In such modes, the seam acts as a waveguide, propagating waves
in the x-direction without any energy radiating or “leaking out” to y → ±∞. Substitution of
(5.19) into (5.18) reveals that k and ω must be such that

c2s2k
2 − ω2 = c2s2`

2 > 0. (5.20)

In the coal seam, we try a solution

f1 = A1 cos(my) +B1 sin(my) (5.21)

which may be sinusoidal if m is real or exponential if m is pure imaginary. Now (5.18) leads
to

ω2 = c2s1k
2 + c2s1m

2, (5.22)

so the Love waves propagate at a speed cL given by

c2L =
ω2

k2
= c2s1

(
1 +

m2

k2

)
. (5.23)

Let us first consider symmetric modes in which B1 = 0 and B2 = A2, so the boundary
conditions (5.16) reduce to

A2e
−`h = A1 cos(mh), µ2lA2e

−`h = µ1mA1 sin(mh). (5.24)

We can view this as a system of simultaneous equations for A1 and A2, whose solution is in
general A1 = A2 = 0. A nonzero solution can only exist if the determinant of the system is
zero, and this gives us the condition

µ1m tanmh = µ2`. (5.25)

For antisymmetric waves, with A1 = 0 and B2 = −A2, the analogous calculation leads to

µ1m cotmh = −µ2`. (5.26)

It remains to determine m from either of the transcendental equations (5.25) or (5.26).
These are easiest to analyse in the extreme case where the rock is rigid so that µ2/µ1 →∞,
and we will focus on this limit henceforth. We then see that there are two infinite families of
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solutions, with mh = (2n+ 1)π/2 for symmetric waves or mh = nπ for antisymmetric waves,
where n is an integer. From (5.20) and (5.23), we deduce the inequalities

c2s1 <
(ω
k

)2
< c2s2, (5.27)

which show that the waves can only exist if cs1 < cs2, that is if the wave speed in the coal
is slower than that in the rock, which is typically true in practice. The phase speed of the
waves is then bounded between cs1 and cs2 and the resulting wave-fields in the rock decay
exponentially as we move away from the seam.

For each fixed allowable value ofm, (5.23) shows that the wave-speed varies with wavenum-
ber, with long waves travelling faster than short ones. Hence Love waves are dispersive, which
seems to be at odds with our knowledge that S -waves are non-dispersive. However, the dis-
persion relations (5.6) were obtained only for plane P - or S -waves in an infinite medium, and
(5.23) illustrates how the presence of boundaries can often give rise to dispersion.

We see that the lowest-frequency mode is a symmetric wave with mh = π/2 and therefore

ω2 = c2s1

(
π2

4h2
+ k2

)
. (5.28)

Hence, real values of k can only exist if ω exceeds a critical cut-off frequency πcs1/2h. The
existence of a cut-off frequency below which waves cannot propagate without attenuation is
a characteristic of all waveguides.


