A NOTE ON COMPACTNESS OF $(L^q)^* \hookrightarrow (W_0^{1,p})^*$

Theorem 1. Let $\Omega \subset \mathbb{R}^n$ be a bounded Lipschitz domain. Let $1 \leq p < \infty$ and

$$1 \le q < \begin{cases} \frac{np}{n-p} & \text{if } p < n, \\ \infty & \text{if } p \ge n, \end{cases}$$

so that the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ is compact. Then $(L^q(\Omega))^* = L^{q'}(\Omega)$ is compactly embedded into $(W_0^{1,p}(\Omega))^* = W^{-1,p'}(\Omega)$.

Proof. Let $f \in (L^q(\Omega))^* = L^{q'}(\Omega)$. Then for every $\varphi \in W_0^{1,p}(\Omega)$,

$$\left| \int_{\Omega} f\varphi \, dx \right| \le \|f\|_{L^{q'}} \|\varphi\|_{L^{q}} \le C \|f\|_{L^{q'}} \|\varphi\|_{W^{1,p}}$$

Hence f defines a bounded linear functional on $W_0^{1,p}(\Omega)$ (i.e. an element of $(W_0^{1,p}(\Omega))^* = W^{-1,p'}(\Omega)$) and

$$\|f\|_{W^{-1,p'}} \le C \|f\|_{L^{q'}}.$$

This means that $L^{q'}(\Omega)$ is continuously embedded into $W^{-1,p'}(\Omega)$.

Suppose next that $(f_m) \subset L^{q'}(\Omega)$ is bounded. We need to show that there is a subsequence (f_{m_k}) which converges strongly in $W^{-1,p'}(\Omega)$. First, as q' > 1 and by Banach-Alaoglu's theorem, we can extract a subsequence (f_{m_k}) which converges weak^{*} in $L^{q'}(\Omega)$ to some $f \in L^{q'}(\Omega)$, that is

$$\int_{\Omega} f_{m_k} \psi \, dx = \int_{\Omega} f \psi \, dx \text{ for all } \psi \in L^q(\Omega).$$
(1)

We claim that $||f_{m_k} - f||_{W^{-1,p'}} \to 0$. Recall that

$$||f_{m_k} - f||_{W^{-1,p'}} = \sup_{\varphi \in W^{1,p}_0(\Omega), ||\varphi||_{W^{1,p}} \le 1} \Big| \int_{\Omega} (f_{m_k} - f)\varphi \, dx \Big|.$$

Let

$$K = \text{ closure of } \left\{ \varphi \in W_0^{1,p}(\Omega), \|\varphi\|_{W^{1,p}} \le 1 \right\} \subset L^q(\Omega) \text{ in } L^q(\Omega).$$

By hypothesis, K is a compact subset of $L^q(\Omega)$, and clearly,

$$||f_{m_k} - f||_{W^{-1,p'}} \le \sup_K \left| \int_{\Omega} (f_{m_k} - f)\varphi \, dx \right|.$$
 (2)

Fix some $\delta > 0$. By compactness of K, we can find a finite number of balls $B_{\delta}(\psi_1), \ldots, B_{\delta}(\psi_N) \subset L^q(\Omega)$ which cover K. By (1), there is some k_0 such that

$$\left|\int_{\Omega} (f_{m_k} - f)\psi_i \, dx\right| \le \delta \text{ for all } i = 1, \dots, N, k \ge k_0.$$

Now, if $\varphi \in K$, then $\varphi \in B_{\delta}(\psi_i)$ for some *i* and so, for $k \ge k_0$,

$$\left| \int_{\Omega} (f_{m_k} - f)\varphi \, dx \right| \leq \left| \int_{\Omega} (f_{m_k} - f)\psi_i \, dx \right| + \int_{\Omega} |f_{m_k} - f||\varphi - \psi_i| \, dx$$
$$\leq \delta + \|f_{m_k} - f\|_{L^{q'}} \|\varphi - \psi_i\|_{L^q}$$
$$\leq \delta + 2\delta \sup_m \|f_m\|_{L^{q'}}.$$

Returning to (2), we obtain

$$\|f_{m_k} - f\|_{W^{-1,p'}} \le \delta + 2\delta \sup_m \|f_m\|_{L^{q'}}.$$

Since $\delta > 0$ is arbitrary and $\sup_m \|f_m\|_{L^{q'}} < \infty$, this implies that $\|f_{m_k} - f\|_{W^{-1,p'}} \to 0$.