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October 10, 2024

Exercise 1. 1. Prove that if S and S̄ are two finite generating sets of G, then
the word metrics distS and distS̄ on G are bi-Lipschitz equivalent, i.e.
there exists L > 0 such that

1

L
distS(g, g′) 6 distS̄(g, g′) 6 LdistS(g, g′) ,∀g, g′ ∈ G . (1)

2. Prove that an isomorphism between two finitely generated groups is a
bi-Lipschitz map when the two groups are endowed with word metrics.

Solution.
(1) It suffices to prove the inequality for g′ = e, by left-invariance of the

word metrics. Take L to be the maximum of |s̄|S , where s̄ ∈ S̄ and of |s|S̄ ,
where s ∈ S. Then every element in G that can be written as a word in S of
length n can be written as a word of length at most Ln in S̄; likewise every
element in G that can be written as a word in S̄ of length m can be written as
a word of length at most Lm in S.

(2) An isomorphism ϕ : G → G′ is even an isometry if we consider word
metrics with respect to a finite generating set S for G and ϕ(S) for G′. For
different choices of generating sets it can be shown to be bi-Lipschitz, with an
argument similar to that in (1).

Exercise 2. Consider the integer Heisenberg group

H2n+1(Z) =





1 x1 x2 . . . . . . xn z
0 1 0 . . . . . . 0 yn
0 0 1 . . . . . . 0 yn−1

...
...

. . .
. . .

...
...

0 0 . . . . . . 1 0 y2

0 0 . . . . . . 0 1 y1

0 0 . . . . . . . . . 0 1


; x1, . . . , xn, y1, . . . , yn, z ∈ Z


.

Prove that H2n+1(Z) is nilpotent of class 2.
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Solution. The multiplication of two matrices as above means the addition
of the respective x coordinates and y coordinates and, in the upper right corner
z + z′ +

∑
i xiy

′
n−i. This immediately implies that a commutator has the co-

ordinates x and y zero, hence C2H2n+1(Z) is composed of such matrices. The
above description of the multiplication also implies that C2H2n+1(Z) is in the
centre of H2n+1(Z), hence C3H2n+1(Z) = {1}.

Exercise 3. The goal of this exercise is to prove that, given an arbitrary field
K, the group Un(K) is nilpotent of class n− 1.

Let Un,k(K) be the subset of Un(K) formed by matrices (aij) such that
aij = δij for j < i+ k. Note that Un,1(K) = Un(K) .

1. Prove that for every k > 1 the map

ϕk : Un,k(K) →
(
Kn−k , +

)
A = (ai,j) 7→ (a1,k+1, a2,k+2, . . . , an−k,n)

is a homomorphism. Deduce that (Un,k(K))
′ ⊂ Un,k+1(K) and that Un,k+1(K) C

Un,k(K) for every k > 1.

2. Let Eij be the matrix with all entries 0 except the (i, j)–entry, which is
equal to 1. Consider the triangular matrix Tij(a) = I + aEij .

Deduce from (1), using induction, that Un,k is generated by the set

{Tij(a) | j > i+ k, a ∈ R} .

3. Prove that for every three distinct numbers i, j, k in {1, 2, . . . , n}

[Tij(a), Tjk(b)] = Tik(ab) , [Tij(a), Tki(b)] = Tkj(−ab) ,

and that for all quadruples of distinct numbers i, j, k, `,

[Tij(a), Tk`(b)] = I .

4. Prove that CkUn(K) 6 Un,k(K) for every k > 0. Deduce that Un(K) is
nilpotent.

Solution. All these are straightforward calculations with matrices.

Exercise 4. Which of the permutation groups Sn, for n ≥ 2, are nilpotent?
Which of these groups are solvable?
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Solution. The group of even permutations An is simple for n ≥ 5, so
An = (An)′ = C2An, as the latter two are normal (even characteristic) non-
trivial subgroups. Therefore An is neither nilpotent nor solvable, hence Sn is
neither nilpotent nor solvable for n ≥ 5.

The group S2 is abelian.
The group S3 ' D6, the group of isometries of the equilateral triangle, has

S′3 ' C3, so it is solvable, but [S3, C3] = C3, so S3 is not nilpotent.
For S4, S3 ≤ S4, therefore S4 is not nilpotent. The derived subgroup S′4 is

contained in A4.
The group A4 contains the normal subgroup

V4 = {id, (12)(34), (13)(24).(14)(23)} ' Z2 × Z2.

If we take C3 = 〈(123)〉, the subgroup V4C3 ' V4 o C3 has order 12 = |A4|,
therefore it is equal to A4. It follows that A4 is solvable, hence so is S′4, hence
S4 is solvable as well.

Exercise 5. Let D∞ be the infinite dihedral group. Recall that this group
can be realized as the group of isometries of Z, generated by the symmetry
s : R→ R, s(x) = −x, and the translation t : R→ R, t(x) = x+ 1, and as noted
before D∞ = 〈t〉o 〈s〉.

1. Give an example of two elements a, b of finite order in D∞ such that their
product ab is of infinite order.

2. Find TorD∞.

3. Is D∞ a nilpotent group ? Is D∞ polycyclic ?

4. Are any of the finite dihedral groups D2n nilpotent?

Solution.
(1) For every k ∈ Z, the isometry stk is the symmetry with respect to

−k
2 . Examples are a = s and b = stk.

(2) We have the splitting into left cosets D∞ = 〈t〉ts〈t〉. The set TorD∞
equals the coset s〈t〉.

(3) As TorD∞ is not a subgroup, D∞ is not nilpotent. It is polycyclic,
since D∞ ' Z o Z2.

(4) C2D2n = 〈t2〉. Inductively, CkD2n = 〈t2k〉. Therefore, the group is
nilpotent if and only if n = 2m for some positive integer m.

Exercise 6. Let Tn(K) be the group of invertible upper-triangular n×n matrices
with entries in a field K.
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1. Prove that Tn(K) is a semidirect product of its nilpotent subgroup Un(K)
introduced in Exercise 3, and the subgroup of diagonal matrices.

2. Prove that, if K has zero characteristic, the subgroup of Tn(K) generated
by I +E12 and by the diagonal matrix with (−1, 1, . . . , 1) on the diagonal
is isomorphic to the infinite dihedral group D∞. Deduce that Tn(K) is
not nilpotent.

Solution. 1. The two subgroups intersect in {I}, Un(K) is a normal sub-
group, and the product between it and the subgroup of diagonal matrices is
Tn(K).

2. Let H be this subgroup, t = I + E12 and s the diagonal matrix with
(−1, 1, . . . , 1) on the diagonal. We have that sts = t−1 and we deduce that
H = 〈t〉 o 〈s〉 ' Z o Z2 ' D∞. Since D∞ is not nilpotent, Tn(K) is not
nilpotent.
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