Infinite groups: Sheet 4

November 14, 2024

Ezercise 1. Let G be a polycyclic group. Suppose that every finite quotient
group of G is nilpotent. Prove that G is nilpotent. [Hint: use ‘Noetherian
induction’. If A = Z? is an abelian normal subgroup of G, think about the
lower central series of G/AP for a prime p.]

Solution.  Arguing by ‘Noetherian induction’ we may suppose that G is
not nilpotent, but G/K is nilpotent whenever 1 # K < G. Since G is not
nilpotent, it is infinite, hence it has an abelian normal subgroup A = Z¢ for
some d > 1. Also G/A is nilpotent, so C°(G) < A for some c.

Let p be a prime. We have that 1 < A? < G so G/AP is nilpotent. Since
AJAP & ]Fg, G acts as a unipotent linear group on A/AP and its image by this
representation is nilpotent of class d. Therefore G satisfies

cHiG) < [...[[A,G),G,],...,G] < AP
(d brackets). But (,A? =1 so Ct4(@) = 1, the desired contradiction.

Ezercise 2. Suppose that G < GL,,(K) is completely reducible and that g¢ =
1, Vg € G. Prove that |G| < €. [Hint: first consider the irreducible case.]

Solution.  Suppose first that G is irreducible. If g € G then each eigen-
value of ¢ is an eth root of unity, so ¢r(g) is the sum of n eth roots of unity.
There are at most e such roots of unity, so there are at most e” ?osible values
for tr(g). It follows by a result in lectures that |G| < (e")”2 =e".

NB: In lectures and in Lecture Notes, the convention has been that the field
K is always algebraically closed.

General case: G is isomorphic to a subgroup of 7 (G) X -+ x 7,.(G) where
each 7;(G) is an irreducible group of degree n; and ny + ---+n, = n, and 7; is
a homomorphism. Then 7;(G)® = 1 so |m;(G)| < ™’ for each i, and so

Gl <]]e™ = el < e’

since n® = (3_n;)® > Sond.

Ezercise 3. Let G be a linear group. Prove that G is solvable if one of the
following holds:



(i) every finitely generated subgroup of G is solvable;
(ii) G is finitely generated and every finite quotient group of G is solvable.

Solution. (i) Say G is linear of degree n. Then by the Zassenhaus The-
orem every solvable subgroup of G has derived length at most 8 = B(n). So
H) =1 for every finitely generated subgroup H of G. It follows that G(%) =1,
so G is solvable.

(ii) Now G is finitely generated. So G is residually finite. If N < G and
G/N is linear of degree n over a finite field then G//N is finite, also solvable by
hypothesis, so satisfies (G/N)(®) = 1. Hence G¥) < N, and as the subgroups
N intersect in {1} it follows that G(®) = 1.

Ezercise 4. Consider a semidirect product Z™ x,Z, defined by a homomorphism
¢ Z — Aut(Z™) = GL(n,Z), hence by the matrix ¢(1) = M € GL(n,Z). In
what follows we use the notation Z™ x s Z instead of Z™ x, Z.

1. Prove, by induction on n, that if M has all eigenvalues equal to 1 then

Z™ X zp 7 is nilpotent.

2. Deduce that, if M has all eigenvalues roots of unity, then Z™ x; Z is
virtually nilpotent.

Solution. (1) For n = 0 there is nothing to prove; we assume, therefore,
that the statement holds for n — 1. The matrix M has only eigenvalues equal
to 1. Lemma 7.16 in the Lecture Notes then implies that there exists a finite
ascending series

{1})=H,<H, 1<..<H <A=Hy=17"

such that H; ~ Z"~% each quotient H;/H; ; is cyclic, the automorphism 6
preserves each H; and induces the identity automorphism on H;/H;y;. Thus,
f acts via the identity on H,_1. In particular, the subgroup H,_1 is central in
G; the automorphism 6 projects to an automorphism 6 : A — A, A= A/H,,_;.
The automorphism 6 preserves the central series

{W=H, <...<H=7""
(where H; = H;/H,_1) and induces trivial automorphism of each quotient
H;/Hi11 = H;/Hi}1.
By the induction hypothesis, the group
G=Ax;Z=G/H,_,

is nilpotent. Since central coextensions of nilpotent groups are again nilpotent,
we conclude that the group G is nilpotent as well.

(2) There exists a power M* with all eigenvalues 1 and Z" x yx Z ~ Z" x5y
(kZ) is a finite index subgroup in Z™ x s Z.



Ezercise 5. Let G be a finitely generated nilpotent group and let ¢ € Aut(G).
Prove that the polycyclic group P = G %, Z is

1. either virtually nilpotent;

2. or has exponential growth.

Solution. = We note that replacing ¢ with a power will replace P with
a finite-index subgroup, and, hence, will not affect the virtual nilpotency of P
and its growth rate. The automorphism ¢ preserves the lower central series of
G; let 6; denote the restriction of ¢ to C'G, i > 1. Then 6; projects to an
automorphism ; of the finitely generated abelian group B; := C'G/C**H1G.
The automorphism ¢; induces an automorphism v; of Tor B; and an automor-
phism @; of B;/Tor B; ~ Z™i. Each choice of a basis for B;/Tor B; associates
to the automorphism @, a matrix M; in GL(m,,Z). All the conditions below
are independent of the choice of a basis, therefore in what follows we assume
that an arbitrary fixed basis is chosen in each B;/Tor B;.

We have two cases to consider:

(1) All matrices M; only have eigenvalues of absolute value 1; hence, all the
eigenvalues are roots of unity (Lecture Notes). Then there exists N such that
the matrices of the automorphisms @V have only eigenvalues equal to 1 and the
induced automorphisms of finite abelian groups

1; : Tor B; — Tor B;

are all equal to the identity. Without loss of generality we may therefore assume
that the matrices M; of all the ;’s have all eigenvalues equal to 1, and that all
the ; are the identity automorphisms.

Lemma 7.16 from Lecture Notes applied to each i, and to each ¢; = idro, 5;,
imply that the lower central series of G is a sub-series of a cyclic series

{1}y=H,<H, . <...<H <Hy=G,

where each H;/H;1 is cyclic, ¢ preserves each H; and induces the identity map
on H;/H;y1. We denote by t the generator of the semidirect factor Z in the
decomposition P = G xZ. By the definition of the semidirect product, for every
g € G, tgt™! = p(g). The fact that ¢ acts as the identity on each H;/H;1
implies that t*(hH;,1)t™% = hH;,, for every h in H;; equivalently

[t&h} S Hi+1 (1)

for every such h.

Since G contains the kernel C2P = [P, P] of the abelanization map G — Z,
it follows that C?P < G. We claim that for every i > 0, [P, H;] C H; 1. Indeed,
consider an arbitrary commutator [h,s], h € H;,s € P. Since s has the form
s = gt*, with ¢ € G and k € Z, we obtain:

[h, 5] = [h, gt*] = [h, gllg, [h, t*]][h, t"] .



According to (1), [h,t*] € H;41. Also, since the lower central series of G is
a subseries of (H;), there exists 7 > 1 such that C"G > H; > H; 4, > C"M1G.
Then, h € H; < C"G and

[h,g] € C"™H'G < Hipa.
Likewise, as [h,t*] € H;11 < C"G, the commutator
(g, [h,t"]] € C"H1G < Hyy.

By putting it all together, we conclude that [h, s] € H;+1 and, hence, [P, H;] C
Hz'+1~ ‘

An easy induction now shows that C*+2P < H; for every i > 1; in particular,
C"2P < H,, = {1}. Therefore, P is virtually nilpotent.

(2) Assume that at least one matrix M; has an eigenvalue with absolute
value strictly greater than 1, in particular, m; > 2. The group P contains the
subgroup

P;:= C'G %, 7.

Furthermore, the subgroup C**'G is normal in P; and
PiJC G ~ B; %, Z,
where B; = C'G/C*T'G. Lastly,
(B; %, Z)/Tor B; 2 Z™ xy, Z.

According to Proposition 7.19 from the Lecture Notes, the group Z"™ Xy, Z
has exponential growth. Therefore, in view of Proposition 7.9, parts (a) and
(c), the groups B; X, Z, P;/C*"'G, P;, and, hence, P, all have exponential
growth. Thus, in the case (2), S has exponential growth.

Ezercise 6. Let G be a finitely generated group G of sub-exponential growth.
The goal of this exercise is to prove that for all 51,..., Bm, g € G, the set of
conjugates
{¢"Big™* |kez,i=1,...,m}

generates a finitely generated subgroup N < G.

1. Prove that the statement for m = 1 implies the statement for every integer
m > 1.

2. In what follows we therefore assume m = 1, we set « := (1 and let ay
denote gFag™" for k € Z. The goal is to prove that finitely many elements
in the set {ay | k € Z} generate the subgroup N.

Verify that

S0 S1 Sm 0 .51 s m—+1
galgat .- gat™ = oy a2o~oan’;3rlg .



3. Prove that if for every integer m > 1 the map

u:pm:HZQAG
i=0

p(si) = ga*oga® - gam.

is injective then G must have exponential growth.

4. Deduce from the fact that u,,, m > 1, cannot be all injective the fact that
N is finitely generated.

Solution. (1) Tt suffices to prove the lemma for m = 1, since N is
generated by the subgroups

N;=(¢"Big™* |keZ), i=1,...,m.

(2) Easy calculation.

(3) If for every m € N the map p is injective then for each sequence (s;) we
have 2™*+! products as above, and if ¢, go are in the set of generators of G, all
these products are in Bg(1,m + 1). This contradicts the hypothesis that G has
sub-exponential growth.

(4) We found that there exists some m and two distinct sequences (s;), (¢;)
. m
in [[:", Z2 such that
gasogasl . gasm — gatogatl . ,gatm . (2)
Assume that m is minimal with this property. This, in particular, implies
that sg # to and s, # t,,. In view of the exercise, the equality (2) becomes

Sm . ~to,t1 tm
Qg = Qp Qg Qg

Since Sy, # ty and Sy, ty € {0, 1}, it follows that s,, — t,, = £1. Then

+1 Q=Sm—1 ..

aerl = &y

—s1 . to—so0 ,t1 tm—1
cag a0 gt (3)

If in (3) we conjugate by g, we obtain that

+1 . —Sm-1 —s1 . to—sp .t tm—1
Qo = Q1 oo tay’ Pagt gty
This and (3) imply that a;,42 is a product of powers of aq, ..., a,,. Then,
by induction, every «, with n € N is a product of powers of a,...,a,,, and

the same is true for a,, with n € Z by replacing g with g~!. Therefore, every

generator «,, of N belongs to the subgroup of N generated by the elements
ai, ..., 0, and the elements aq, ..., a,, generate N.



