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Some possible answers

Studying the history of mathematics

I humanises and contextualises mathematics

I makes mathematics more accessible (outreach)

I can promote diversity in mathematics

I promotes links between pure and applied mathematics

I promotes links with other disciplines

I can highlight different approaches to problem solving

I helps in understanding why we now do things in a certain way

I can aid in teaching/learning mathematics

I can spark new lines of mathematical research

I is interesting in its own right!
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Euclidean mathematics

T. L. Heath, The thirteen books of Euclid’s Elements, CUP, 1908



Cartesian mathematics

René Descartes, La géométrie, Leiden, 1637



Fermat’s tangent method

Worked out c. 1629, but only
published posthumously in Varia
opera mathematica, 1679



Fermat’s quadrature of higher hyperbolas

Worked out in the early
1640s, but only published
posthumously in Varia opera
mathematica, 1679



The birth of calculus



Newton’s method of fluxions

The method of fluxions and infinite series, London, 1736



Newton’s method of fluxions

We begin with a fluent quantity x , assumed implicitly to depend
upon some independent variable, and we seek the fluxion ẋ , i.e.,
the rate of change of x with respect to the independent variable

Newton employed the notion of a moment o, an ‘indefinitely small
Quantity’

When the independent variable changes by o, x changes by ẋo



Newton’s method of fluxions

We seek the fluxion of the equation x3 − ax2 + axy − y3 = 0

Substitute x + ẋo for x and y + ẏo for y , and expand:

x3 + 3ẋox2 + 3ẋ2oox + ẋ3o3

− ax2 − 2aẋox − aẋ2oo
+ axy + aẋoy + aẏox + aẋ ẏoo
− y3 − 3ẏoy2 − 3ẏ2ooy − ẏ3o3

 = 0
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Newton’s method of fluxions

We are left with 3ẋx2 + 3ẋ2ox + ẋ3oo − 2aẋx − aẋ2o + aẋy +
aẏx + aẋ ẏo − 3ẏ y2 − 3ẏ2oy − ẏ3oo = 0

’But whereas o is supposed to be infinitely little, [. . .] the Terms
that are multiply’d by it will be nothing in respect of the rest’

What remains is 3ẋx2 − 2aẋx + aẋy + aẏx − 3ẏ y2 = 0

(Recall that we started with x3 − ax2 + axy − y3 = 0)



Calculus systematised

Leonhard Euler, Introductio in
analysin infinitorum, Lausanne,
1748

—, Institutiones calculi
differentialis, St Petersburg, 1755

—, Institutiones calculi integralis,
3 vols, St Petersburg, 1768–1770



Cauchy’s Cours d’analyse (1821)



Cauchy sequences

Cours d’analyse, pp. 124–125:

In order for the series u0, u1, u2, . . . [that is,
∑

ui ] to be
convergent [. . .] it is necessary and sufficient that the
partial sums

sn = u0 + u1 + u2 + &c . . . .+ un−1

converge to a fixed limit s: in other words, it is necessary
and sufficient that for infinitely large values of the
number n, the sums

sn, sn+1, sn+2, &c . . . .

differ from the limit s, and consequently from each other,
by infinitely small quantities.



Continuity

In Cours d’analyse, p. 34, Cauchy defined a function f to be
continuous between certain limits if, for each x between those
limits, the value of f (x) is unique and finite, and |f (x +α)− f (α)|,
where α is indefinitely small, decreases indefinitely with α.

In other words (p. 35): for x between the given limits, an infinitely
small increase in x produces and infinitely small increase in f (x)

So Cauchy defined continuity on an interval, rather than at a point
(and similarly elsewhere, when defining convergence)

He went on to derive basic results concerning continuous functions:
that the composition of two continuous functions is continuous,
the Intermediate Value Theorem, etc.



A theorem of Cauchy

Cauchy, Cours d’analyse, pp. 131–132:

When the various terms of a series are functions of a
variable x , continuous with respect to this variable in the
neighbourhood of a particular value for which the series
is convergent, the sum s of the series is also, in the
neighbourhood of this value, a continuous function of x .

In other words: a convergent series of continuous functions
converges to a continuous function.

Not true!



Cauchy’s argument

Cauchy considered a sequence of continuous functions
u0(x), u1(x), u2(x), . . . on a given interval. He supposed that the
corresponding series converges to a function s(x). Partial sums are
denoted by sn(x) =

∑n−1
j=0 un(x). The nth remainder term rn(x) is

defined by s(x) = sn(x) + rn(x).

Cauchy noted that each sn is evidently continuous for values of x
in the given interval. Suppose that we increase x by an infinitely
small quantity α. For all values of n, the corresponding increase in
sn(x) will also be infinitely small. For n very large
(‘très-considérable’), the increase in rn(x) becomes ‘insensible’.
Therefore, the increase in s(x) can only be an infinitely small
quantity.



Cauchy’s argument



A modern counterexample

For each n ∈ N, define continuous functions fn by

fn(x) =


−1 if x ≤ − 1

n

nx if − 1
n ≤ x ≤ 1

n

+1 if x ≥ 1
n

Now set u1(x) = f1(x), and define new functions un recursively by

un(x) = fn(x)− fn−1(x)

Notice then that sn(x) =
∑n

j=1 uj(x) = fn(x)

But we see that sn → s as n→∞, where

s(x) =


−1 if x < 0

0 if x = 0

+1 if x > 0

which is discontinuous at x = 0



A modern counterexample

What happens to the remainders rn(x) = s(x)− sn(x)?

Outside the range − 1
n ≤ x ≤ 1

n , rn(x) = 0, but inside:

rn(x) =


−1− nx if − 1

n ≤ x < 0

0 if x = 0

1− nx if 0 < x ≤ 1
n

For each x , rn(x)→ 0 as n→∞, but this does not happen
simultaneously for all values of x



Cauchy’s remainders

Cauchy: For n very large, the increase in rn(x) becomes
‘insensible’. But what does this mean?

One of the following modern statements? (Denoting Cauchy’s
interval by I )

∀ε > 0 : ∃N : ∀x ∈ I : n > N ⇒ |rn(x)| < ε

∀ε > 0 : ∀x ∈ I : ∃N : n > N ⇒ |rn(x)| < ε

The second is true for our modern counterexample, but the first is
not — so there really is a distinction between the two

Cauchy clearly didn’t make this distinction



εs and δs

Karl Weierstrass (1815–1897)



Euclid’s Elements

Euclid’s Elements, in 13 books, compiled c. 250 BC

Books I–V: definitions, postulates, plane geometry of
lines and circles

Book VI: similarity, proportion
Books VII–IX: number theory

Book X: commensurability, irrational numbers, surds
Books XI–XIII: solid geometry ending with the classification

of the regular polyhedra



Euclid on prime numbers



Euclid on prime numbers (Proposition IX.20)



Number theory after Euclid

Very little for many centuries...

Diophantus’ Arithmetica (13 books, c. AD 250) featured number
problems; for example:

Problem I.27: Find two numbers such that their sum and
product are given numbers

Problem III.19: To find four numbers such that the
square of their sum plus or minus any one singly gives a
square

Problem V.9: To divide unity into two parts such that, if
a given number is added to either part, the result will be
a square

Restrictions on the permitted form of solutions to problems
eventually gave rise to the notion of Diophantine equations



Number theory outside Europe

Sūnžı Suànj̄ıng (The Mathematical Classic of Master Sun)
(3rd–5th century BC) contains a statement, but no proof, of the
Chinese Remainder Theorem for the solution of simultaneous
congruences

An algorithm for the solution was provided by Aryabhata in
6th-century India

In 7th-century India, Brahmagupta studied Diophantine equations
(including Pell’s equation x2 − Dy2 = 1)

These works were unknown in Europe until the 19th century



17th-century number theory

Bachet’s Latin edition of
Diophantus’ Arithmetica (1621)

Pierre de Fermat owned a 1637
edition, which he studied and
annotated



Fermat on number theory

Fermat’s Little Theorem: if a is any integer and p is prime then p
divides ap − a

Conjectures on perfect numbers, and the search for Mersenne
primes

Studies of Diophantine problems (more in a moment)

Published nothing — had to be exhorted to write his ideas down



The ‘Last Theorem’

Arithmetica Problem II.8 concerns the splitting of a given square
number into two other squares

Fermat’s marginal note:

It is impossible to separate a cube into two cubes, or a
fourth power into two fourth powers, or in general, any
power higher than the second, into two like powers. I
have discovered a truly marvellous proof of this, which
this margin is too narrow to contain.



17th-century attitudes to number theory

Fermat failed to spark an interest in number theory in his
contemporaries

Pascal to Fermat (1655):

. . . seek elsewhere those who can follow you in your
numerical discoveries . . . I confess to you that this goes
far beyond me . . .

Number-theoretic investigations were widely regarded as trivial and
uninteresting

Huygens to Wallis:

There is no lack of better topics for us to spend our time
on . . .



The ‘rebirth’ of number theory

1670 edition of Bachet, published
by Samuel Fermat, including his
father’s notes

The ‘Last Theorem’ was not the
only result for which Fermat
failed to provide a proof

Number theory was ‘reborn’ from
the attempts of Euler (and later
Lagrange and Legendre) to fill
the gaps left by Fermat



Euler on number theory

Euler (1747):

Nor is the author disturbed by the authority of the
greatest mathematicians when they sometimes pronounce
that number theory is altogether useless and does not
deserve investigation. In the first place, knowledge is
always good in itself, even when it seems to be far
removed from common use. Secondly, all the aspects of
the truth which are accessible to our mind are so closely
related to one another that we dare not reject any of
them as being altogether useless. [. . .] Moreover, even if
the proof of some proposition does not appear to have
any present use, it usually turns out that the method by
which this problem has been solved opens the way to the
discovery of more useful results.



Euler on number theory

Euler (1747):

Consequently, the present author considers that he has by
no means wasted his time and effort in attempting to
prove various theorems concerning integers and their
divisors. [. . .] Actually, far from being useless, this theory
is of no little use even in analysis. Moreover, there is
little doubt that the method used here by the author will
turn out to be of no small value in other investigations of
greater import.



19th-century number theory

Gauss’s Disquisitiones arithmeticae (1801) became a key text for
many years to come: modular arithmetic, quadratic forms,
cyclotomy, . . .

Number-theoretic problems (especially attempts to prove Fermat’s
Last Theorem) led to the linking of number theory and abstract
algebra in algebraic number theory

By the end of the 19th century, a new branch, analytic number
theory, had also emerged (e.g., Riemann hypothesis, Prime
Number Theory π(x) ∼ x

log x , . . .)



Fermat’s Last Theorem in the 19th century

Many special cases have been proved by Euler and others in the
18th century . . .

Sophie Germain proved the theorem for certain classes of primes

Gabriel Lamé claimed to have proved the theorem by factorising
xn + yn = zn in a cyclotomic field Q(ωn) — but he assumed that
the cyclotomic integers Z(ωn) factorise uniquely (which they
don’t)

Ernst Eduard Kummer tried to fix this by introducing ideal prime
numbers — new elements adjoined to the number field which
facilitate unique factorisation



Fermat’s Last Theorem in the 19th century

For Kummer, an ‘ideal’ was an extra element adjoined to a number
field, assumed to have the same divisibility properties as the
original elements

If an ideal element divides original elements a and b, then it also
divides a± b and all multiples of a and b. So Kummer’s ‘ideal’
gives rise to a subset of original elements which it divides

Richard Dedekind, on the other hand, simply took this subset (in
fact, a submodule) as his notion of ‘ideal’

For a general algebraic number field, Dedekind showed that every
ideal may be decomposed uniquely as a product of (suitably
defined) ‘prime’ ideals

The result was the development of ideal theory by Dedekind,
Wolfgang Krull, Emmy Noether, and others



The nature of the History of Mathematics

. . . mathematics [rarely] progresses only by means of
‘great and significant works’ and ‘substantial changes’.
[. . .] the truth is far more subtle and far more interesting:
mathematics is the result of a cumulative endeavour to
which many people have contributed, and not only
through their successes but through half-formed
thoughts, tentative proposals, partially worked solutions,
and even outright failure. No part of mathematics came
to birth in the form that it now appears in a modern
textbook: mathematical creativity can be slow,
sometimes messy, often frustrating.

Jacqueline A. Stedall, From Cardano’s great art to Lagrange’s
reflections: filling a gap in the history of algebra, European
Mathematical Society, 2011, p. ix


