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Some possible answers

Studying the history of mathematics
» humanises and contextualises mathematics
» makes mathematics more accessible (outreach)
» can promote diversity in mathematics
» promotes links between pure and applied mathematics
» promotes links with other disciplines
» can highlight different approaches to problem solving
> helps in understanding why we now do things in a certain way
» can aid in teaching/learning mathematics
» can spark new lines of mathematical research

> is interesting in its own right!
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Euclidean mathematics

PRroPOSITION 47.

I'n right-angled triangles the square on the side subtending
the right angle is equal to the squares on the sides containing
the right angle.

Let ABC be a right-angled triangle having the angle

s BAC right; 5
I say that the square on BC is equal to the squares on
A

For let there be described
on BC the square BDEC, H
wand on BA, AC the squares
GB, HC; [1. 46)
through 4 let AL be drawn .
parallel to either BD or CE, .
and let 4D, FC be joined.

15 Then, since each of the
angles BAC, BAG is right. B
it g)llows that with a straight
line BA, and at the point 4
on it, the two straight lines

0 AC, AG not lying on the
same side make the adj

J

angles equal to two right .
angles;
therefore CA is in a straight line with 4G. [r14)

25 For the same reason
BA is also in a straight line with 4/,
And, since the angle DBC is equal to the angle FBA: for
each is right :
let the angle 4BC be added to each;
3  therefore the whole angle DBA is equal to the whole
angle FBC. [C.N.2)

T. L. Heath, The thirteen books of Euclid’s Elements, CUP, 1908



Cartesian mathematics

02 LA GEOMETRIE
tirer decete{cience. - Aufly que ie n'y remarque fien de-
fi difficile, que ceux quiferont vo peu verfds en la- Geo-

tri &enl'Algebre, & qui prendront gar-

deatoutce quieft ence traitd,ne puiffent trouver. ¢

C’eft poutquoy ic me contenteray icy de vous aver-
tir; que’pourvit qien demeflant ces Equations on ne
manque point a fe ferair de toutesles diuifions, qui fe-
ront pnﬁibles, i alir mfallnblcmcut Ies p}ns fimples:
termes;aufquelsla queftion puil
Quis Erque fiellepeuteftrerefolue par la Geomemc ordi-
problef- naire, C'eft a dire, en ne fe feruant que de lignes droites
mesphs o Circulaires tracées fnrvnefuperﬁcxcphxe Im’fqua la

dermcre i

efgal a ce qm
fe prodmﬁ de lAddmon > ou fouftraction de faracine
par quelq , & d: quelgue
autre quanmé auﬂ'yv connue.
Com-  Etlors cete racine, ouligne inconnue fe trouue ayfe-.

ment ils.

feseiol. ment. Carfifayparexemple
nene.

304y +bb

gle N LM, dont le co-
“ReLMeft ofgal 2 bra-
cine quarrée de Ja quan-
tité connue b b, 8 lau-

+ treLNeft 3, lamoi-
ti¢ de l'autre quantité
connue, qui e&oxtmulqphn’e par 3queie fuppofeeftrela
ligneinconnue, puis prolcngcanr MN labaze de ce tri-.

angle,

defais le triangle rectan-
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angle, infquesa O, en fortequ’N O foltcfg:lc aNL,
latoute OMeft &hhguc cherchée. Et elle s'exprime
en ceteforte

oya+1V5aa+bbh
?nayyym --ay -+ bb, &cquy foit laquanu:é
L qu Alfaur trouuer , ie-fais le mefine triangle rectangle
NL M, &defabaze MNi'ofte NPefgalea NL, &le
refte P Mieft y la racine cherchée. De fagon que iay
y® = ya -1 faa-+b0. Ettout de mefine fi i'a~

Wois ¥ 2 - ax 4 b, DM feroit ¥. & i'aurois

xo V Wm?&ﬁuﬁ des autres.

Enfinfii'ay
N AT

ie fais NLefgale 3 t o, & LM
efgale 24 come deuat, puis,au lien
N deioindreles poinsM N, ie tire
MQRparalleleaL N, &ducen-
tre Npar L ayanc deflrit vn cer-
cle qui lacouppe aux poins Q &
. . R, la ligne cherchée 7 et MQ:
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Au:

René Descartes, La géométrie, Leiden, 1637




Fermat's tangent method

Worked out ¢. 1629, but only
published posthumously in Varia
opera mathematica, 1679




Fermat's quadrature of higher hyperbolas

Worked out in the early
1640s, but only published
posthumously in Varia opera
mathematica, 1679




The birth of calculus




Newton's method of fluxions

oot Hmaliis it

T intd

24 The Metbod of Fruxioxs,

12. Ex. 5. As if the Equation 23 - axz —yt == 0 were pro-
pos'd to exprefs the Relation between x and y, as alfo v/ax—x
= BD, for determining a Curve, which theréfore will be a Circle.
The Equation 3z avz— yt==0, as before, will give 22+
a4t 4 a%z — 470 =o, for the Rglauon ot' d\e oamm 5
and z. And therefore fince it is 5 —x

itate this Value inftead of it, and polg e Equnnon
2%z + axx v/ ax. ~+ a¥z — 43y* = o, which determines the
Relation of the Celerities & and j.

DEMONSTRATION of the Solution,

The Moments of flowing Quanities, (that s, their indefi-
nm:ly fimall Parts, by the acceffion of which, in indefinitcly fnal
portions of Time, they are continually incréafed,) are as the V.
locies o dher Fiowing ot Incrafing.

14. Whercfore if the Moment of any one, as x, be reprefented
by the Produ& of its Celerity x into an indcfinitely fimall Quantity
o (that is, by o) the Moments of the others =, 5, =, will be
reprefented by 5, 3o, 505 becaule v, s, o, and 23, are to cach
other as 4, %, J, and &.

15. Now fince the Moments, as # and jo, are the indefinitel
little acceffions of the flowing zmnum xand y, by which thof
Quantitis are increaed vl indeinitely fitle -
tervals of Time; it follows, that d.oﬁ Quantities ¥ and y,
any indefncly nal igerval of Time, become & + o and ,.,_ %

‘And thercfore the Equation, which at all times indifferently exprefies
(B (R omNGE the flowing Quantitics, will as well exprefs the
Relation h:lwnen %% and y+jyo, as between x and y: So
that o and o may 1% l‘nhﬂnmcd in the fime Equation
fnr :hok Illnunes inftead

Therefore let any Bqnznon x‘—ﬂx‘+uxy—y‘=u be
pven, and fubltitute -0 for %, and y+yo for y, and there
will arife

2o g o 380 g
— ax — zavox — axian
+axyaxy +ayx  +ago(
G RaT VT m A eAE

and INFINITE SERIES.

ow by Suppofition xi— ax*+- axy — yi==

rarzﬁﬂgv:przngc‘ép pprpns e

,hm will remain gt - 3%°0x - X200 — 2a%%— aX*0 4 axy -+

axyo— —yior==o. But whereas s is fuppofed

15 be Infaiely Hle, thee & may reprefent the Moments of Quan-

tities; the Terms that are multiply'd by it will be nothing in refpect

of the reft. 'lhtrefm: T reject them, and there remains jvxt —
2akx 4 aiy+ gr=o, 3ssbore in Exanp. 1

15, Fler"we sty oblbive thit the Terhs that s pot iulliply

Yy o iTilways ARt 20 alfs thble Feme that s wolily By

of more than one Di Aad that the 1eit of the Terms

ve by the fore : was the thing to be proved.
 1or And thia being pow ﬂ1ewn, il isiehiiend
Rule il eatly Follogr A that i e proposd Equation feveral
flowing Quantities may be involved ; and that the Terms may be
0y 56t only By the Number oF the Dimcalians of the fowe
ing %n(l(lcs, but alfd by any other Arithmetical Progreflions; fo
that in the Operation there may be the fame difference of the Terms
according to any of the flowing Quantities, and the Progreffion be
difposd according to the fame order of the Dimenfions of cach of
them.  And thefe things being allow'd, what is taught befides in
Examp. 3, 4, and 5, will be plin cnough of itklf,

PR OB IL
An Equation being propyfed, including the Fluxions of
Ruantitics, o find the Relations of thofe Quantities to

ane another.

A Parrrcurar SoLuTiow.

1. As this Problem is the Converfe of the focegoing, it mutt be
folved by proceeding in a contrary manner. That is, the Terms
multiply'd by % being difpofed according to the Dimentions of x;
they muft be divided by 3, and then by the number of their Di-
menfions, or perhaps by fome other Arithmetical Progreffion. Then
the fame work muft be repeated v]j:irh the Terms multiply'd by v, 7,

o

The method of fluxions and infinite series, London, 1736



Newton's method of fluxions

We begin with a fluent quantity x, assumed implicitly to depend
upon some independent variable, and we seek the fluxion x, i.e.,
the rate of change of x with respect to the independent variable

Newton employed the notion of a moment o, an ‘indefinitely small
Quantity’

When the independent variable changes by o, x changes by xo



Newton's method of fluxions

3

We seek the fluxion of the equation x3 — ax® + axy — y3 =0

Substitute x + xo for x and y + yo for y, and expand:

x3 4+ 3xox* + 3x%00x + X303
— ax? — 2axox — ax%o00
+ axy + axoy + ayox + axyoo

— y* = 3yoy? 3y200y — y30°



Newton's method of fluxions

3

We seek the fluxion of the equation x3 — ax® + axy — y3 =0

Substitute x + xo for x and y + yo for y, and expand:

+ 3%ox? + 3x%00x + x303
— 2axox — ax%o00
+ axoy + ayox + axyoo

— 3yoy? 3y?o0y — y303



Newton's method of fluxions

We are left with 3xx? 4 3x%0x + x300 — 2axx — ax®0 + axy +
ayx + axyo — 3yy? — 3y2oy — y300 = 0

'But whereas o is supposed to be infinitely little, [...] the Terms
that are multiply'd by it will be nothing in respect of the rest’

What remains is 3xx2 — 2axx + axy + ayx — 3yy? =0

(Recall that we started with x> — ax? + axy — y* = 0)



Calculus systematised

INSTITUTIONES
CALCULI
DIFFERENTIALIS Leonhard Euler, Introductio in
cuk £1us v analysin infinitorum, Lausanne,
IN ANALYSI FINITORUM 1748

Ac

DOCTRINA SERIERUM
: —, Institutiones calculi
L EIOMIARIDIO JE U LERD differentialis, St Petersburg, 1755

>
ACAD. REG: SCIENT. BT ELEG LITT. BORUSS BDIRECTORE
.

—, Institutiones calculi integralis,
3 vols, St Petersburg, 1768-1770

TMYENSLS
ACADEMIAE IMPERIALIS SCIENTIARUM
PETROPOLITANAE




Cauchy's Cours d’analyse (1821)

==
COURS D'ANALYSE"

L’ECOLE ROYALE POLYTECHNIQUE;

Par M. Auvcustin-Louis CAUCHY,

Ingéniear des, ' Analyse & I'Ecole poly
Membre de TAcadémic des scionces, Chevalier de a Légion d'honneur.

L PARTIE. ANALYSE ALGEBRIQUE.

DE LIMPRIMERIE ROYALE.

Chez Destne fréxes, Libraires du Roi et de fa Bibliothéque du Roi,
ruc Serpente, n° 7.

1821,




Cauchy sequences

Cours d’analyse, pp.124-125:

In order for the series ug, ui, up,... [thatis, > u;] to be
convergent [...] it is necessary and sufficient that the
partial sums

Sh=ug+ui+u+&c....+u,1

converge to a fixed limit s: in other words, it is necessary
and sufficient that for infinitely large values of the
number n, the sums

Sny Sn+1, Sn+2, &c. ...

differ from the limit s, and consequently from each other,
by infinitely small quantities.



Continuity

In Cours d’analyse, p.34, Cauchy defined a function f to be
continuous between certain limits if, for each x between those
limits, the value of f(x) is unique and finite, and |f(x 4+ a) — f(a)],
where « is indefinitely small, decreases indefinitely with a.

In other words (p.35): for x between the given limits, an infinitely
small increase in x produces and infinitely small increase in f(x)

So Cauchy defined continuity on an interval, rather than at a point
(and similarly elsewhere, when defining convergence)

He went on to derive basic results concerning continuous functions:
that the composition of two continuous functions is continuous,
the Intermediate Value Theorem, etc.



A theorem of Cauchy

Cauchy, Cours d’analyse, pp. 131-132:
When the various terms of a series are functions of a
variable x, continuous with respect to this variable in the
neighbourhood of a particular value for which the series
is convergent, the sum s of the series is also, in the
neighbourhood of this value, a continuous function of x.

In other words: a convergent series of continuous functions
converges to a continuous function.

Not true!



Cauchy's argument

Cauchy considered a sequence of continuous functions

up(x), u1(x), uz2(x),... on a given interval. He supposed that the
corresponding series converges to a function s(x). Partial sums are
denoted by s,(x) = Zf;ol un(x). The nth remainder term r,(x) is

defined by s(x) = sp(x) + rn(x).

Cauchy noted that each s, is evidently continuous for values of x
in the given interval. Suppose that we increase x by an infinitely
small quantity «. For all values of n, the corresponding increase in
sn(x) will also be infinitely small. For n very large
(‘tres-considérable’), the increase in r,(x) becomes ‘insensible’.
Therefore, the increase in s(x) can only be an infinitely small
quantity.



Cauchy's argument

130 £OURS D ANALYSE
est convergente, la somme de cette série est repreé=
senlee par
o, A, +a,+&c..“.
Fn veriu de cette convention , ln v?lewdu nombre ¢
se trouvera déterminée par [équation
. - L K

() et * it Ty e

.

ide ia L i o L)

et, si lon
T, &, &y 20 BEeuusy
on aura, pour des valeurs numériques de infé-

vieures a [unité,

(5] R

La série
My

étant supposée convergente, si fon désignesu somne
par &, et par &, ln somme de ses u premiers termes,

w, m, u, &e...

on {ronvera
s:n+n,4-|l,4-...1—!(.,.-#",4-",,}—#&!:....

PR .

et par su
=, =, Uy, 8O

De celte derniére équation il résulte que Euqn-n-

tiles

1™ PARTIE. CHAP. VI 131
oy L, e ke

formeront une nouvelle série convergente dont la
somme sera équivalente i s —g,. Si Ton représente
cette méme somme par r,, on aura

d=248,+r,;

et r, sera ce qu'on appelle e reste de la série (1)
i partic du 2. terme,

Laorsque, les termes de I série (1) renfermant une
méme variahle .=, cette serie est convergente , et ses
différens termes fonctions continues de «, dans le
voisinage d'une valeur particuliére aitribuée i cette
variable ;

8, r, et s

sont encore trois fonctions de I variable .r, dont la
preuiiére est évidemment continue par rapport a
duns le voisinage de b valeur particuliere dont il
sugit. Cela posé , considérons les accroissemens que
recoivent ces trois fonetions lorsqu'on fait eroitre
& dune quantité infiniment petite @, Laceroisse-
ment de s, sera, pour toutes les valeurs possibles
de m, une quantité infiniment petite; et celui de r,

i insensible en méme temps que 7., si Fon
atiribue & n une valeor trés-considérable, Par suite,
Taceroissement de la fonetion « ne pourrs étre quune
quantité infiniment petite. De cette remarque on
déduit immédiatement la proposition suivante.

L™ THEOREME. Lovsyue les diffirens tesmes de la
adrie (1) sont des fonctions d'wne méme variable «

-



A modern counterexample

For each n € N, define continuous functions f, by

-1 ifx<-1
fa(x)=qnx if —1<x<i
+1 ifx>1

Now set u1(x) = fi(x), and define new functions u, recursively by
up(x) = fo(x) = fa1(x)
Notice then that s,(x) = >_7 uj(x) = fo(x)

But we see that s, — s as n — 0o, where

-1 ifx<0
s(x)=¢0 ifx=0
+1 ifx>0

which is discontinuous at x =0



A modern counterexample

What happens to the remainders r,(x) = s(x) — sp(x)?
Outside the range —% <x< % ra(x) = 0, but inside:

—1— nx if—%§x<0
rn(X): 0 |fX:0
1—nx ifo<x<?i

For each x, rp(x) — 0 as n — oo, but this does not happen
simultaneously for all values of x



Cauchy's remainders

Cauchy: For n very large, the increase in rp(x) becomes
‘insensible’. But what does this mean?

One of the following modern statements? (Denoting Cauchy's
interval by /)

Ve>0:3aN:Vxel:n>N=|n(x)|<e

Ve>0:¥xel:3IN:n>N=|n(x)|<e

The second is true for our modern counterexample, but the first is
not — so there really is a distinction between the two

Cauchy clearly didn’t make this distinction



es and ds

Karl Weierstrass (1815-1897)



Euclid’'s Elements

Euclid's Elements, in 13 books, compiled c. 250 BC

Books I-V:

Book VI:
Books VII-IX:
Book X:
Books XI-XIII:

definitions, postulates, plane geometry of
lines and circles

similarity, proportion

number theory

commensurability, irrational numbers, surds
solid geometry ending with the classification
of the regular polyhedra



Euclid on prime numbers




Euclid on prime numbers (Proposition 1X.20)




Number theory after Euclid

Very little for many centuries...

Diophantus’ Arithmetica (13 books, c. AD 250) featured number
problems; for example:
Problem 1.27: Find two numbers such that their sum and
product are given numbers

Problem 111.19: To find four numbers such that the
square of their sum plus or minus any one singly gives a
square

Problem V.9: To divide unity into two parts such that, if
a given number is added to either part, the result will be
a square

Restrictions on the permitted form of solutions to problems
eventually gave rise to the notion of Diophantine equations



Number theory outside Europe

Sianzi Suanjing 754 (The Mathematical Classic of Master Sun)
(3rd-5th century BC) contains a statement, but no proof, of the
Chinese Remainder Theorem for the solution of simultaneous
congruences

An algorithm for the solution was provided by Aryabhata in
6th-century India

In 7th-century India, Brahmagupta studied Diophantine equations
(including Pell's equation x? — Dy? = 1)

These works were unknown in Europe until the 19th century



17th-century number theory

Bachet's Latin edition of
Diophantus’ Arithmetica (1621)

Pierre de Fermat owned a 1637
edition, which he studied and
annotated



Fermat on number theory

Fermat's Little Theorem: if a is any integer and p is prime then p
divides a — a

Conjectures on perfect numbers, and the search for Mersenne
primes

Studies of Diophantine problems (more in a moment)

Published nothing — had to be exhorted to write his ideas down



The ‘Last Theorem'’

Arithmetica Problem 11.8 concerns the splitting of a given square
number into two other squares

Fermat’'s marginal note:

It is impossible to separate a cube into two cubes, or a
fourth power into two fourth powers, or in general, any
power higher than the second, into two like powers. |
have discovered a truly marvellous proof of this, which
this margin is too narrow to contain.



17th-century attitudes to number theory

Fermat failed to spark an interest in number theory in his
contemporaries

Pascal to Fermat (1655):

... seek elsewhere those who can follow you in your
numerical discoveries ... | confess to you that this goes
far beyond me . ..

Number-theoretic investigations were widely regarded as trivial and
uninteresting

Huygens to Wallis:

There is no lack of better topics for us to spend our time
on ...



The ‘rebirth’ of number theory
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1670 edition of Bachet, published
by Samuel Fermat, including his
father's notes

The ‘Last Theorem' was not the
only result for which Fermat
failed to provide a proof

Number theory was ‘reborn’ from
the attempts of Euler (and later
Lagrange and Legendre) to fill
the gaps left by Fermat



Euler on number theory

Euler (1747):

Nor is the author disturbed by the authority of the
greatest mathematicians when they sometimes pronounce
that number theory is altogether useless and does not
deserve investigation. In the first place, knowledge is
always good in itself, even when it seems to be far
removed from common use. Secondly, all the aspects of
the truth which are accessible to our mind are so closely
related to one another that we dare not reject any of
them as being altogether useless. [...] Moreover, even if
the proof of some proposition does not appear to have
any present use, it usually turns out that the method by
which this problem has been solved opens the way to the
discovery of more useful results.



Euler on number theory

Euler (1747):

Consequently, the present author considers that he has by
no means wasted his time and effort in attempting to
prove various theorems concerning integers and their
divisors. [...] Actually, far from being useless, this theory
is of no little use even in analysis. Moreover, there is
little doubt that the method used here by the author will
turn out to be of no small value in other investigations of
greater import.



19th-century number theory

Gauss's Disquisitiones arithmeticae (1801) became a key text for
many years to come: modular arithmetic, quadratic forms,
cyclotomy, ...

Number-theoretic problems (especially attempts to prove Fermat's
Last Theorem) led to the linking of number theory and abstract
algebra in algebraic number theory

By the end of the 19th century, a new branch, analytic number
theory, had also emerged (e.g., Riemann hypothesis, Prime

Number Theory m(x) ~ %, ...)



Fermat's Last Theorem in the 19th century

Many special cases have been proved by Euler and others in the
18th century ...

Sophie Germain proved the theorem for certain classes of primes

Gabriel Lamé claimed to have proved the theorem by factorising
x" + y" = z" in a cyclotomic field Q(w,) — but he assumed that
the cyclotomic integers Z(wy) factorise uniquely (which they
don't)

Ernst Eduard Kummer tried to fix this by introducing ideal prime
numbers — new elements adjoined to the number field which
facilitate unique factorisation



Fermat's Last Theorem in the 19th century
For Kummer, an ‘ideal’ was an extra element adjoined to a number
field, assumed to have the same divisibility properties as the
original elements

If an ideal element divides original elements a and b, then it also
divides a + b and all multiples of a and b. So Kummer's ‘ideal’
gives rise to a subset of original elements which it divides

Richard Dedekind, on the other hand, simply took this subset (in
fact, a submodule) as his notion of ‘ideal’

For a general algebraic number field, Dedekind showed that every
ideal may be decomposed uniquely as a product of (suitably
defined) ‘prime’ ideals

The result was the development of ideal theory by Dedekind,
Wolfgang Krull, Emmy Noether, and others



The nature of the History of Mathematics

. mathematics [rarely] progresses only by means of
‘great and significant works' and ‘substantial changes’.
[ . .] the truth is far more subtle and far more interesting:
mathematics is the result of a cumulative endeavour to
which many people have contributed, and not only
through their successes but through half-formed
thoughts, tentative proposals, partially worked solutions,
and even outright failure. No part of mathematics came
to birth in the form that it now appears in a modern
textbook: mathematical creativity can be slow,
sometimes messy, often frustrating.

Jacqueline A. Stedall, From Cardano’s great art to Lagrange’s
reflections: filling a gap in the history of algebra, European
Mathematical Society, 2011, p. ix



