
Further Partial Differential Equations

Problem Sheet 2

Questions 2 and 3 will be marked.

1. Similarity solutions in higher dimensions

Consider the equation for the thickness of liquid on a vertical substrate derived in question
1 of Sheet 1 with the addition of surface tension smoothing in the transverse direction:
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where γ is the coefficient of surface tension.

(a) Non-dimensionalize the system using

ĥ = Hh, ẑ = Lz, x̂ = Lx, t̂ = Tt,

to obtain the dimensionless version of (1),
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for suitably chosen H, L and T , which you should find.

(b) Assume first that the thickness is independent of transverse direction, x. Seek a sim-
ilarity solution of the form h = f(η) where η = z/tα and find the equation that is
satisfied by f and the required value of the parameter α.

(c) By solving the differential equation found in (b), show that f = (z/t)1/2.

(d) Now assume that the thickness depends on x, z and t. Seek a solution of the form
h = f(η)g(ν) where f is the function given in (c) and ν = xtβzδ. By substituting this
ansatz into (2) show that g satisfies the equation

−12g + 12g3 + 3νg′ − 9νg2g′ + 24g2g′g′′′ + 8g3g′′′′ = 0

where primes denote differentiation, for suitably chosen β and δ that you should find.
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Solution

(a) Choosing

L =

(
γH

ρg

)1/3

, T =
µγ1/3

(ρg)4/3H5/3
,

yields the required dimensionless equation. Note that H remains arbitrary.

(b) This is identical to in the lecture notes and very similar to question 2 of Sheet 1 but
this provides a stepping stone to the more complicated solution. Choosing α = 1 leads
to the differential equation (

f2 − η
)
f ′ = 0. (3)

(c) Again, this part is identical to in the lecture notes and the solution follows straightfor-
wardly by dividing (3) by f ′ and integrating.

(d) This is the trickier part and requires some careful algebra. Substituting the ansatz
h = f(η)g(ν) where f =

√
η, η = z/t and ν = xtβzδ gives

g − 2βνg′ − 2g2g′
(
δν + t4β−1/2z4δ+3/2g′′′

)
− 1

3
g3
(

3 + 2t4β−1/2z4δ+3/2g′′′′
)

= 0. (4)

From here, we immediately see that we must choose β = 1/8 and δ = −3/8. In doing
so, the differential equation (4) becomes

−12g + 12g3 + 3νg′ − 9νg2g′ + 24g2g′g′′′ + 8g3g′′′′ = 0,

as required.
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2. Possible similarity solutions
Consider the partial differential equation

∂f

∂t
=

∂

∂x

(
∂f

∂x
+ xαfβ

)
, (5)

subject to the boundary conditions

f → 0 as x→ ±∞. (6)

Suppose that β > α ≥ 0 and that f is suitably well behaved so that xf → 0 as x→ ±∞.

(a) Using (5)–(??), show that a similarity solution of the form f = tag(η) with η = x/tb

exists for this system provided

α = β − 2 (7)

and given values of a and b.

(b) Show that g satisfies the ordinary differential equation

1

2
ηg + g′ + ηβ−2gβ = 0. (8)

(c) In the case when β = 2, show that we can write (8) in the form(
η

2g
+
g′

g2

)
e−η

2/4 = −e−η
2/4 (9)

and so by recognizing an exact differential on the left-hand side, show that the solution
is

g =
e−η

2/4

√
π (coth(G/2) + erf(η/2))

, (10)

where

G =

∫ ∞
−∞

g(η) dη (11)

is a constant.
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Solution

(a) First we notice that if we integrate (5) and use (6) we get

d

dt

∫ ∞
−∞

f(x, t) dx = 0

and so ∫ ∞
−∞

f(x, t) dx

is a constant.

Try f(x, t) = tag(η) with η = x/tb. Equation (??) indicates that we must choose
a = −b. Substituting the ansatz f(x, t) = tag(η) with η = x/tb into (5) we obtain the
ordinary differential equation

−bg − bηg′ = t1−2bg′′ + αxα−1tb+1−βb (gβ + βηgβ−1g′
)

(12)

and so we must choose

b =
1

2
, α = β − 2 (13)

for the equation to be in similarity variables.

(b) These choices can be imposed to equation (12) and then we may integrate this equation
once. The constant of integration is determined to be zero by applying the conditions
as η → ±∞ and the regularity conditions given in the question assumptions that imply
that ηg and ηβ−2gβ both tend to 0 as η → ±∞. This leads to the required (8).

(c) Simple rearrangement and multiplication of both sides by e−η
2/4 gives (9). This can be

written as

∂

∂η

(
e−η

2/4

g

)
= e−η

2/4. (14)

Integration gives

g =
e−η

2/4

A+
√
πerf(η/2)

; (15)

A is determined by the integral constraint:∫ ∞
−∞

g dη = G, say, (16)

which may be evaluated and rearranged to give

A =
√
π coth (G/2) . (17)

The result then follows.
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3. Outwardly radial spreading in a porous medium

Consider the radial spreading of a fixed volume of liquid in a porous medium. The height ĥ
of the liquid is governed by the equation

φ
∂ĥ

∂t̂
+

1

r̂

∂

∂r̂

(
r̂ĥQ̂

)
= 0, Q̂ = −ρgk

µ

∂ĥ

∂r̂
(18)

where r̂ and t̂ denote respectively the radial coordinate and time and Q̂ is the flux; ρ denotes
the density of the fluid, g acceleration due to gravity, k the permeability, φ the porosity and
µ the fluid viscosity.

(a) Write down the equation that expresses conservation of mass.

(b) By choosing suitable non-dimensionalization show that the system may be reduced to
one that contains no physical parameters.

(c) By finding the appropriate form of the similarity solution, show that the problem can
be reduced to solving the following ordinary differential equation system,

(ηff ′)
′
+

1

4
η2f ′ +

1

2
ηf = 0, (19)∫ ηf

0

ηf(η) dη = 1, (20)

f ′(0) = 0, (21)

f(ηf ) = 0, (22)

where you should define the functions η = η(r, t), ηf = ηf (r, t) and f = f(η, t).

(d) By rescaling s = η/ηf and g = f/η2f find the ordinary differential equation that is
satisfied by g and a condition for ηf in terms of g.

(e) By performing a local analysis show that the conditions at the front are

g(1) = 0, g′(1) = −1

4
. (23)

(f) Hence show that the solution is given by g(s) = (1− s2)/8, ηf ≈ 25/4.

(g) Based on the results of this analysis, is this a similarity solution of the first or second
kind? What physical feature of the problem indicates that it is a similarity solution of
this kind?
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(a) Conservation of mass is expressed via the equation

2π

∫ r̂f

0

r̂ĥ(r̂, t̂) dr̂ = V̂ , (24)

where V̂ is the volume of liquid.

(b) We non-dimensionalize via the following scalings

r̂ = r̂0r, r̂f = r̂0rf , t̂ =

(
2πr40µφ

ρgkV̂

)
t, ĥ =

(
V̂

2πr̂20

)
h, Q̂ =

(
ρgkV̂

2πµr̂30

)
Q. (25)

Here, the radial scale r̂0 is arbitrary. The governing equations and mass conservation
become

∂h

∂t
+

1

r

∂

∂r
(rhQ) = 0, (26)

Q = −∂h
∂r
, (27)∫ rf

0

rhdr = 1. (28)

(c) Try h = tαf(η) with η = r/tβ . Substituting into the governing equations and volume
constraint show that we require α = −1/2 and β = 1/4. This leads to the required
system (19) and (20) while the conditions (21) and (22) represent respectively symmetry
at the centre at the behaviour at the front.

(d) Applying the scalings given leads to the new system

(sgg′)′ +
1

4
s2g′ +

1

2
sg = 0, (29)

ηf =

(∫ 1

0

sg(s) ds

)−1/4
. (30)

(e) We perform a local analysis by scaling s = 1 + δξ, g = δG to obtain

(G(ξ)G′(ξ))′ +
1

4
G′(ξ) = 0 (31)

⇒ G′(ξ) = −1

4
, (32)

which in terms of the original variables gives the required result g′(1) = −1/4.

(f) It is straightforward to substitute the given form for g and show that this is a solution.
Alternatively, one could try g(s) = a + bs2 and find the required values for a and b.
The value of ηf is obtained by substituting the solution g(s) = (1− s2)/8 into (30).

(g) This is a similarity solution of the first kind as the form of the similarity solution was
determined by substituting into the governing equation. The problem has no natural
lengthscale, which is an indicator that a similarity solution exists.
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