
Further Partial Differential Equations (2024)

Problem Sheet 4

1. Linear stability of a two-dimensional Stefan problem
Consider the linear stability of the free boundary problem depicted in Figure 2.2 in the limit
St → 0. Assume that the free boundary is moving at constant speed V under a constant
temperature gradient −λ1,2 in each phase before being perturbed, so the solutions take the
form

u1(x, y, t) = −λ1(x− V t) + ũ1(x, y, t), u2(x, y, t) = −λ2(x− V t) + ũ2(x, y, t)

and the position of the free boundary is given by

x = V t+ ξ(y, t).

By linearising the problem with respect to ũ1, ũ2 and ξ, show that perturbations with
wavenumber k > 0 and growth rate σ are possible provided

σ

V k
= −λ1 +Kλ2

λ1 −Kλ2
.
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Solution

We consider the following problem with St→ 0:
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We set

u1 = −λ1(x− V t) + ũ1,

u2 = −λ2(x− V t) + ũ2,

x = V t+ ξ(y, t).

If the free boundary is x = f(y, t) then the unit normal is

n =

(
1,−∂f

∂y

)
√

1 +

(
∂f

∂y

)2
,

the normal derivative is

∂u

∂n
=

1√
1 +

(
∂f

∂y

)2

(
∂u

∂x
− ∂f

∂y

∂u

∂y

)
,

and the normal velocity is

Vn =

∂f

∂t√
1 +

(
∂f

∂y

)2
.
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Now in our case, f = V t+ ξ(y, t), so the free boundary conditions are

K

(
−λ2 +

∂ũ2
∂x
− ∂ξ

∂y

∂ũ2
∂y

)
−
(
−λ1 +

∂ũ1
∂x
− ∂ξ

∂y

∂u1
∂y

)
= V +

∂ξ

∂t

on x = V t+ ξ(y, t). Considering this at O(1) gives

−Kλ2 + λ1 = V on x = V t

and at next order,

K
∂ũ2
∂x
− ∂ũ1

∂x
=
∂ξ

∂t
on x = V t.

Since u1 = u2 − 0 on the interface, this gives

−λ1ξ + ũ1 = −λ2ξ + ũ2 = 0 on x = V t.

The leading-order equations for St→ 0 are

∇2ũ1 = 0, x < V t,

∇2ũ2 = 0, x > V t,

We no longer need to consider the conditions on x = 0 and x = 1 since we are now just
performing a local analysis. Our only requirement is that the perturbations decay away so
we seek solutions of the form

ũ1 = Aexp(σt+ iky + k(x− V t)),
ũ2 = Bexp(σt+ iky − k(x− V t)),
ξ = Cexp(σt+ iky).

These satisfy Laplace’s equation and decay away from the interface. The interface conditions
give

−kA−KkB = σC

and  k Kk σ
1 0 −λ1
0 1 −λ2

 A
B
C

 =

 0
0
0

 .

Non-trivial solutions require the determinant of this matrix to be zero, which gives

σ

kV
= − 1

V
(Kλ1 + λ2) = −λ1 +Kλ2

λ1 −Kλ2

as required.
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Figure 1: Normalised temperature u and liquid fraction θ versus enthalpy h.

2. Enthalpy for mushy layers

Show that the free boundary problem (2.31) may be posed as

∂h

∂t
=
∂2u

∂x2
+ q,

where h = Stu+θ is the (dimensionless) enthalpy. Deduce that u is a piecewise linear function
of h, as indicated in Figure 1.

Solution

This is obtained straightforwardly by substituting in.
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3. Unsteady electropainting

Consider the unsteady version of the model problem depicted in Figure 2.9, i.e., with the
conditions on y = 0 replaced by

∂φ

∂y
=
φ

h
,

∂h

∂t
=
∂φ

∂y
− δ y = 0, |x| < c, (1)

φ = 0 y = 0, |x| > c, (2)

where now c = c(t).

(a) By considering the set-up at t = 0, show how the boundary conditions (1) simplify and
hence find the solution for φ at t = 0 using the method of images or otherwise.

(b) By substituting this solution into (1) find the early time behaviour for h and thus show
that painting commences provided δ < 1/π, in which case the layer initially grows over
a half-width c0 =

√
1/(δπ)− 1.

5



Solution

The unsteady problem is described by

∇2φ = 0 (3)

with

∂φ

∂y
=
φ

h
,

∂h

∂t
=
∂φ

∂y
− δ, y = 0, |x| < c, (4)

φ = 0 y = 0 |x| > c, (5)

φ ∼ − 1

4π
log
(
x2 + (y − 1)2

)
as (x, y)→ (0, 1). (6)

(a) At t = 0, h = 0 so (4) gives φ = 0 and so we have

∇2φ = 0 (7)

with

φ = 0 y = 0, (8)

φ ∼ − 1

4π
log
(
x2 + (y − 1)2

)
as (x, y)→ (0, 1). (9)

The solution to this problem is

φ =
1

4π
log

(
x2 + (y + 1)2

x2 + (y − 1)2

)
, (10)

using the method of images.

(b) So the growth is initially given by

∂h

∂t
=
∂φ

∂y
− δ (11)

=
1

π(1 + x2)
− δ, (12)

and so

h(x, t) ∼
(

1

π(1 + x2)
− δ
)
t. (13)

This is valid provided h ≥ 0 so

1

π(1 + x2)
≥ δ ⇒ |x| ≤

√
1

δπ
− 1 (14)

as required.
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4. One-dimensional welding

(a) Derive the dimensionless one-dimensional welding problem (2.31).

(b) Show that the normalised heating coefficient is given by

q =
a2J2

σk(Tm − T0)
=

σV 2

k(Tm − T0)
,

where V is the applied voltage. Assuming that we require q = O(1) to melt the plate,
roughly how high must the voltage be to achieve melting?
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Solution

(a) The dimensional problem is

ρc
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+
J2

σ
0 ≤ x ≤ a,

∂T

∂x
= 0 on x = 0, t > 0,

T = T0(< Tm) on x = a, t > 0,

T = T0(< Tm) 0 < x < a, t = 0.

Non-dimensionalize via

T = Tm + (Tm − T0)u,
x = ax′,

t =

(
ρLa2

k(Tm − T0)

)
t′.

This gives the dimensionless problem (2.31) with

q =
J2a2

kσ(Tm − T0)
.

J = current per unit area = I/A.
V = IR.
R = a/σA where a is the length of the material.
So J = V σ/a. So

q =
V 2σ

k(Tm − T0)
.

We need q = O(1) for a chance to melt the plate, so we need

V &

√
k(Tm − T0)

σ
.
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Additional questions for practice (will not be marked)

5. One-dimensional welding

(a) Derive the dimensionless one-dimensional welding problem (2.31).

(b) Show that the normalised heating coefficient is given by

q =
a2J2

σk(Tm − T0)
=

σV 2

k(Tm − T0)
,

where V is the applied voltage. Assuming that we require q = O(1) to melt the plate,
roughly how high must the voltage be to achieve melting?

(c) Consider the dimensionless one-dimensional welding problem (2.31). Show that, before
melting occurs, the solution is given by

u(x, t) = −1 +
q

2

(
1− x2

)
+
∞∑
n=0

cn cos
[(
n+ 1

2

)
πx
]

e−(n+ 1
2)

2
π2t/St (15)

and use Fourier series to evaluate the constants cn.

(d) Deduce that the sample will eventually melt provided q > 2, at a time tm that satisfies

q =

(
1

2
− 2

∞∑
n=0

(−1)ne−(n+ 1
2)

2
π2tm/St(

n+ 1
2

)3
π3

)−1
. (16)

(e) Show that the leading-order asymptotic dependence of equation (16) between tm/St and
q is

tm
St
∼ 1

q
as tm/St→ 0,

tm
St
∼ 4

π2
log

(
64

π3(q − 2)

)
as tm/St→∞.

(Hint: for the second limit, split up the summation (16) into 0 ≤ n ≤ m and m ≤ n <∞
where m2tm/St� 1 and m� 1.)

(f) For t > tm, consider the free boundary problem (2.31). Explain why s2(t) = 0 until
t = tm + 1/q.

(g) Now consider the limit St→ 0. Show that the plate will have melted entirely to a depth
x = 1−

√
2/q (so the mush has disappeared) after a time tc ∼ tm + 1/q +O(St).
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(h) Show that the subsequent leading-order behaviour of the solid–liquid free boundary
x = s(t) is governed by

ds

dt
=
q

2
(1 + s)− 1

1− s
, s(tc) = 1−

√
2

q
.

(i) Deduce that the solid ahead of the free boundary is not superheated, and that the system
approaches a steady state with the plate melted to a depth x =

√
1− 2/q.
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Solution

(a) The dimensional problem is

ρc
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+
J2

σ
0 ≤ x ≤ a,

∂T

∂x
= 0 on x = 0, t > 0,

T = T0(< Tm) on x = a, t > 0,

T = T0(< Tm) 0 < x < a, t = 0.

Non-dimensionalize via

T = Tm + (Tm − T0)u,
x = ax′,

t =

(
ρLa2

k(Tm − T0)

)
t′.

This gives the dimensionless problem (2.31) with

q =
J2a2

kσ(Tm − T0)
.

J = current per unit area = I/A.
V = IR.
R = a/σA where a is the length of the material.
So J = V σ/a.

(b) From (a) we have

q =
V 2σ

k(Tm − T0)
.

We need q = O(1) for a chance to melt the plate, so we need

V &

√
k(Tm − T0)

σ
.

(c) A particular solution to (2.31) is up = −1 + q/2(1 − x2). We then seek a solution
u = up + v where v satisfies

St
∂v

∂t
=
∂2v

∂x2
, 0 ≤ x ≤ 1, (17)

∂v

∂x
= 0 on x = 0, (18)

v = 0 on x = 1, (19)

v = −q
2

(
1− x2

)
at t = 0. (20)

Separation of variables gives the general homogeneous solution to this problem as

v(x, t) =

∞∑
n=0

cn cos((n+ 1/2)πx)exp
(
−(n+ 1/2)2π2t/St

)
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where

cn = −q
∫ 1

0
(1− x2) cos((n+ 1/2)πx) = − 2q(−1)n

(n+ 1/2)3π3
.

is obtained by multiplying v(x, t) by cos((m+ 1/2)πx) and integrating using the initial
condition (20).

(d) The sample will melt if u = 0. The first place that this happens will be at x = 0. Here,

u =
q

2
− 1−

∞∑
n=0

2q(−1)n

(n+ 1/2)3π3
exp(−(n+ 1/2)2π2t/St) (21)

As t→∞, u→ q/2−1 so we certainly need q > 2. Setting u = 0 in (21) and rearranging
gives (16).

(e) When tm/St� 1 we retain only the first term in the exponential, which gives

1

q
=

1

2
− 16

π2
exp

(
−π2tm/4St

)
, (22)

which may be rearranged to give

tm
St
∼ 4

π2
log

(
32q

π3(q − 2)

)
∼ 4

π2
log

(
64

π3(q − 2)

)
as tm/St→∞ (23)

since q ∼ 2 as tm/St→∞. When tm/St� 1 we split up the summation into 0 ≤ n ≤ m
and m ≤ n <∞ where m2tm/St� 1 and m� 1. Then in the first summation we can
expand the exponential while we can neglect the second summation since it is O(1/m3).
This gives

1

q
=

1

2
− 2

m∑
n=0

(−1)n

(n+ 1/2)3π3
+ 2

m∑
n=0

(−1)n(n+ 1/2)2π2

(n+ 1/2)3π3
tm
St
. (24)

Taking the limit as m→∞ gives

1

q
=

1

2
− 2× 1

4
+ 2× 1

2

tm
St
, (25)

and so

tm
St
∼ 1

q
as tm/St→ 0. (26)

(f) In the mushy region, ∂θ/∂t = q so θ takes a time 1/q to go from θ = 0 to θ = 1 when a
purely liquid region exists.

(g) When all melting is done the mushy layer disappears and we are left with just solid and
liquid and an interface x = s. In the solid we have

∂2u

∂x2
= −q, in s(t) ≤ x ≤ 1,

u = −1, on x = 1,

u = 0, on x = s(t),

∂u

∂x
= 0, on x = s(t),

which gives u = −q(x− s)2/2 and s = 1−
√

2/q as required.
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(h) When all melting is done the mushy layer disappears and we are left with just solid and
liquid and we have reached the previous state we are reduced to solving a regular Stefan
problem again:

∂2u

∂x2
= −q 0 ≤ x ≤ s(t), (27)

∂2u

∂x2
= −q s(t) ≤ x ≤ 1, (28)

∂u

∂x
= 0 x = 0, (29)

ds

dt
=
∂u+

∂x
− ∂u−

∂x
, x = s(t) (30)

u+ = u− = 0 x = s(t), (31)

u = −1, x = 1. (32)

This gives

u =
q

2
(s2 − x2) 0 ≤ x ≤ s(t), (33)

u = (s− x)

[
1

1− s
+
q

2
(x− 1)

]
, s(t) ≤ x ≤ 1 (34)

and so

ds

dt
=
q

2
(1 + s)− 1

1− s
, (35)

which finally gives

s = 1−
√

2

q
at t = 0 (36)

as required.

(i) The system is superheated if ∂u+/∂x > 0 at x = s+. Now

∂u+

∂x

∣∣∣∣
x=s+

= − 1

1− s
+

1

2
q(1− s) (37)

= (1− s)
[
q

2
− 1

(1− s)2

]
. (38)

Now s > 1 −
√

2/q for all time, so q/2 − 1/(1 − s)2 < 0 and 1 − s2 > 0 and therefore
∂u+/∂x < 0 and the system is not superheated.

As t→∞, ds/dt→ 0 so

q

2
(1 + s) =

1

1− s
⇒ s =

√
1− 2

q
(39)

as required.
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6. A solid–liquid interface with a density change

Consider the one-dimensional Stefan problem for melting of a solid considered in lectures.
The full system behaviour may be described by equations expressing conservation of mass,
momentum and total energy, which are given respectively by

∂ρ

∂t
+

∂

∂x
(ρv) = 0, (40)

∂

∂t
(ρv) +

∂

∂x

(
ρv2 + p

)
= 0, (41)

∂

∂t

(
ρh+

1

2
ρv2
)

+
∂

∂x

(
pv − k∂T

∂x
+ ρ

(
h+

1

2
v2
)
v

)
= 0, (42)

where ρ is the density, v the velocity, p the pressure, T the temperature and

h =

{
c(T − Tm) + L T > Tm
c(T − Tm) T < Tm.

is the enthalpy of the system, which is the total energy per unit mass, including heat. Here,
c is the specific heat and L the latent heat.

Suppose that liquid occupies a region 0 ≤ x ≤ s(t) and solid occupies a region x > s(t).

(a) Show that when the density of the fluid and the solid are the same then v = 0 and
the temperature in the liquid and the solid is described by the one-dimensional heat
equation

∂

∂t
(ρcT )− ∂

∂x

(
k
∂T

∂x

)
= 0. (43)

(b) Now suppose that the densities in the solid and the liquid phases are different. Integrate
(40) over a domain x1 < x < x2 that contains the interface (so x1 < s(t) and x2 > s(t)).
Divide the integral into x1 ≤ x ≤ s(t) and s(t) ≤ x ≤ x2 and take the limit as x1 → s(t)−

and x2 → s(t)+ to show that the following jump condition is satisfied by the density:

[ρ]+−
ds

dt
= [ρv]+− . (44)

(c) By performing an identical process for (41) and (42) obtain the jump conditions

[ρv]+−
ds

dt
=
[
ρv2 + p

]+
− , (45)[

ρh+
1

2
ρv2
]+
−

ds

dt
=

[
pv − k∂T

∂x
+ ρ

(
h+

1

2
v2
)
v

]+
−
. (46)

(d) Explain how these reduce to the Stefan condition presented in lectures when the solid
and liquid densities are equal.
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Solution

(a) Substitution of constant ρ into (40) gives v as an arbitrary function of time. Since the
liquid occupies the region 0 ≤ x ≤ s(t), the boundary x = 0 is fixed and so v = 0 here
and hence v = 0 everywhere. Substitution into (41) gives constant pressure gradient p.
Substitution into (42) gives the required heat equation.

(b) Equation (40) only applies provided the variables are continuous, and so does not hold
across jumps. We thus consider the integrated conservative version,

d

dt

∫ x2

x1

ρdx = [ρv]x2x1 ,

where x1 < s(t) < x2. We divide the integral into parts to the left and right of the jump,

d

dt

∫ s(t)

x1

ρ dx+

∫ x2

s(t)
ρdx = [ρv]x2x1

∫ s(t)

x1

∂ρ

∂t
dx+ ρ|x1

ds

dt
+

∫ x2

s(t)

∂ρ

∂t
dx− ρ|x2

ds

dt
= [ρv]x2x1

using Leibniz’ rule. Then, taking the limit x1 → s(t)− and x2 → s(t)+ and recognizing
that

lim
x1→s(t)−

∫ s(t)

x1

∂ρ

∂t
dx = 0, lim

x2→s(t)+

∫ x2

s(t)

∂ρ

∂t
dx = 0,

we obtain the required result,

[ρ]+−
ds

dt
= [ρv]+− .

(c) This may be found easily by following the same steps as above.

(d) When the solid and liquid densities are equal, (45) gives [p]+− = 0, so the pressure is
continuous across the interface, and

ρL
ds

dt
= −

[
k
∂T

∂x

]+
−

(47)

if we assume that the temperature is continuous across the interface. This is precisely
the Stefan condition from the lectures.
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