Additional Lecture Notes for W7

Theorem 1. Let X be a reflexive separable Banach space, X* its dual, and M a
non-empty, convex closed subset of X. Let F': M — X* satisfies

(H1) F maps bounded sets in X into bounded sets in X*.

(H2) (Coercivity) There exists ug € M such that

(H3) Weak (sequential) lower semi-continuity relative to M: If u, — u and F(u,) —
&, then
(€, u) < liminf(F(up), un),

n—0o0

and if equality holds then

(F(u) —&u—wv) <0 for allve M.

Then there exists u € M such that
(F(u),u —v) <0 forallv e M.

We will only present the proof in the case M is a subspace of X. See the lecture
notes for the proof in the full generality.

Theorem 2. Let X be a reflexive separable Banach space, X* its dual, and M C X
a closed subspace of X. Let F': M — X* satisfies

(H1) F maps bounded sets into bounded set.

(H2) (Star-like at infinity): There exists ug € M and K > 0 such that

(F(u),u —ug) >0 if ||ul| > K.

(H3) Weak (sequential) lower semi-continuity relative to M: If u, — u and F(u,) —

&, then
(& u) < Tminf(F(un), un),
n—oo
and if equality holds then
F(u)—§e M°.



Then there exists u € M such that
F(u) € M° and ||u|]| < K.

Proof. Step 1: Finite dimensional reduction. Suppose that the theorem is established
when dim X < co. We show that the theorem remains true in the general case.

Since X is separable, there exist linearly independent vectors ey, e, ... such that
X is the closed linear span of {ej,eq,...}. Let X,, = Span({ey,...,e,}) and M, =
MNX,.

For technical reason (see below), we assume that the vector ug in (H2) belongs to
Span(er) = X;.

Noting that, for every u € M, F(u) is a bounded linear functional on X and so is
also a bounded linear function on X,,. Hence F,, := F|y, : M,, — X:. It’s easy to see
that F), satisfies (H1) and (H3). As ug € X; C X,,, F, satisfies (H2). We may thus
apply the theorem in the finite dimensional case to obtain u,, € M, with ||lu,| < K
such that

F(uy,) € (M,)° thatis (F(uy,),v) =0 for all v € M, (*)

Since (uy) is bounded, so is F'(u,) by (H1). Thus, by reflexivity and after passing to
a subsequence, we have u, — u (with ||u|| < K) and A(u,) — £ We would like to
show that F(u) € M°.

By (*), we have that

(&,v) =0 for all v € U, M,, and so all v € U, M,, = M,

that is & € M°. In particular, we have ({,u) = 0. On the other hand, we have
(F(up),un) = 0 by (*), and so by (H3),

<57U> < lim inf(F(un)’un> —0.

Hence
(€,u) = iminf(F(u,), u,) =0,

which together with (H3) implies F'(u) —& € M°. Hence F(u) = {+ (F(u)—§) € M°.

Step 2: Reduction to Hilbert setting when dim X < oo.

Note that F': M — X* — M*. Thus, we may replace X by M, i.e. we may
assume M = X.

Note that when dim X is finite, weak and strong convergence are equivalent. Hence
(H3) reads as follows: If w, — u and F(u,) — &, then F(u) = £. Note also that,
by (H1), for any bounded sequence u,, F'(u,) is bounded and hence every subse-
quence of (F(u,)) has a subsequence which converges to F'(u). This implies that F
is continuous.




Since dim X is finite dimensional, we can equip X with an inner product denoted
by a dot, whose norm is denoted | - |. By Riesz representation theorem, every linear
function T € X* can be identify with an element ¢t = J(T) € X such that

(T,x)y =1t- .
Let = JoF:X — X. Then
(H1) F maps bounded sets into bounded set.

(H2) (Star-like at infinity): There exists ug € X and K > 0 such that

F(u) - (u—wup) > 0if ||u|| > K.

(H3) Continuity: F' is continuous.

We aim to show that there exists v € X such that
F(u) =0 and |Ju|| < K.

Note that if F(u) = 0, then by (H2), |ju|| < K. Thus, we only need to find u € X
such that F(u) = 0.

Step 3: Proof of the theorem when X is a finite dimensional Hilbert space.

Consider T = Id — F and we aim to show that 7" has a fixed point. Fix some
R > 0 for the moment and let Pg denote the closest point projection onto Bg(0),

that is
B Rz

el

PR<JZ)

Then ProT is a continuous maps from Bj into Bi. By Brouwer’s fixed point theorem,
there exists xr € Bp which is fixed by Pgr o T. We claim that, with R > |ug|, then
|zr| < R, which implies that xp is also a fixed point of T and we are done. Suppose
for a contradiction that |zg| = R for some R > |ug|. Then

TR = PR(JZR — F([ER))

which implies that, for any v € Bp,

02 [(xr— F(zr)) — gl (v—2p) = —F(zg) - (v — zr) = F(zg) - (xr —v).

As R > |ug|, we may take v = ug in the above inequality and obtain a contradiction
to (H2). O



