
Additional Lecture Notes for W7
Theorem 1. Let X be a reflexive separable Banach space, X∗ its dual, and M a
non-empty, convex closed subset of X. Let F : M → X∗ satisfies

(H1) F maps bounded sets in X into bounded sets in X∗.

(H2) (Coercivity) There exists u0 ∈ M such that

lim
∥u∥→∞

⟨F (u), u− u0⟩
∥u∥

= ∞.

(H3) Weak (sequential) lower semi-continuity relative to M : If un ⇀ u and F (un) ⇀
ξ, then

⟨ξ, u⟩ ≤ lim inf
n→∞

⟨F (un), un⟩,

and if equality holds then

⟨F (u)− ξ, u− v⟩ ≤ 0 for all v ∈ M.

Then there exists u ∈ M such that

⟨F (u), u− v⟩ ≤ 0 for all v ∈ M.

We will only present the proof in the case M is a subspace of X. See the lecture
notes for the proof in the full generality.

Theorem 2. Let X be a reflexive separable Banach space, X∗ its dual, and M ⊂ X
a closed subspace of X. Let F : M → X∗ satisfies

(H1) F maps bounded sets into bounded set.

(H2) (Star-like at infinity): There exists u0 ∈ M and K > 0 such that

⟨F (u), u− u0⟩ > 0 if ∥u∥ ≥ K.

(H3) Weak (sequential) lower semi-continuity relative to M : If un ⇀ u and F (un) ⇀
ξ, then

⟨ξ, u⟩ ≤ lim inf
n→∞

⟨F (un), un⟩,

and if equality holds then
F (u)− ξ ∈ M◦.
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Then there exists u ∈ M such that

F (u) ∈ M◦ and ∥u∥ ≤ K.

Proof. Step 1: Finite dimensional reduction. Suppose that the theorem is established
when dimX < ∞. We show that the theorem remains true in the general case.

Since X is separable, there exist linearly independent vectors e1, e2, . . . such that
X is the closed linear span of {e1, e2, . . .}. Let Xn = Span({e1, . . . , en}) and Mn =
M ∩Xn.

For technical reason (see below), we assume that the vector u0 in (H2) belongs to
Span(e1) = X1.

Noting that, for every u ∈ M , F (u) is a bounded linear functional on X and so is
also a bounded linear function on Xn. Hence Fn := F |Mn : Mn → X∗

n. It’s easy to see
that Fn satisfies (H1) and (H3). As u0 ∈ X1 ⊂ Xn, Fn satisfies (H2). We may thus
apply the theorem in the finite dimensional case to obtain un ∈ Mn with ∥un∥ ≤ K
such that

F (un) ∈ (Mn)
◦ that is ⟨F (un), v⟩ = 0 for all v ∈ Mn. (*)

Since (un) is bounded, so is F (un) by (H1). Thus, by reflexivity and after passing to
a subsequence, we have un ⇀ u (with ∥u∥ ≤ K) and A(un) ⇀ ξ. We would like to
show that F (u) ∈ M◦.

By (*), we have that

⟨ξ, v⟩ = 0 for all v ∈ ∪nMn and so all v ∈ ∪nMn = M,

that is ξ ∈ M◦. In particular, we have ⟨ξ, u⟩ = 0. On the other hand, we have
⟨F (un), un⟩ = 0 by (*), and so by (H3),

⟨ξ, u⟩ ≤ lim inf⟨F (un), un⟩ = 0.

Hence
⟨ξ, u⟩ = lim inf⟨F (un), un⟩ = 0,

which together with (H3) implies F (u)−ξ ∈ M◦. Hence F (u) = ξ+(F (u)−ξ) ∈ M◦.

Step 2: Reduction to Hilbert setting when dimX < ∞.
Note that F : M → X∗ ↪→ M∗. Thus, we may replace X by M , i.e. we may

assume M = X.
Note that when dimX is finite, weak and strong convergence are equivalent. Hence

(H3) reads as follows: If un → u and F (un) → ξ, then F (u) = ξ. Note also that,
by (H1), for any bounded sequence un, F (un) is bounded and hence every subse-
quence of (F (un)) has a subsequence which converges to F (u). This implies that F
is continuous.
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Since dimX is finite dimensional, we can equip X with an inner product denoted
by a dot, whose norm is denoted | · |. By Riesz representation theorem, every linear
function T ∈ X∗ can be identify with an element t = J(T ) ∈ X such that

⟨T, x⟩ = t · x.

Let F̃ = J ◦ F : X → X. Then

(H1) F̃ maps bounded sets into bounded set.

(H2) (Star-like at infinity): There exists u0 ∈ X and K > 0 such that

F̃ (u) · (u− u0) > 0 if ∥u∥ ≥ K.

(H3) Continuity: F is continuous.

We aim to show that there exists u ∈ X such that

F̃ (u) = 0 and ∥u∥ ≤ K.

Note that if F̃ (u) = 0, then by (H2), ∥u∥ ≤ K. Thus, we only need to find u ∈ X
such that F̃ (u) = 0.

Step 3: Proof of the theorem when X is a finite dimensional Hilbert space.

Consider T = Id − F̃ and we aim to show that T has a fixed point. Fix some
R > 0 for the moment and let PR denote the closest point projection onto B̄R(0),
that is

PR(x) =
Rx

|x|
.

Then PR◦T is a continuous maps from B̄R into B̄R. By Brouwer’s fixed point theorem,
there exists xR ∈ B̄R which is fixed by PR ◦ T . We claim that, with R ≥ |u0|, then
|xR| < R, which implies that xR is also a fixed point of T and we are done. Suppose
for a contradiction that |xR| = R for some R ≥ |u0|. Then

xR = PR(xR − F̃ (xR))

which implies that, for any v ∈ B̄R,

0 ≥ [(xR − F̃ (xR))− xR] · (v − xR) = −F̃ (xR) · (v − xR) = F̃ (xR) · (xR − v).

As R ≥ |u0|, we may take v = u0 in the above inequality and obtain a contradiction
to (H2).

3


