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An inspirational quotation

Henri Poincaré argued that the understanding of a structure means the
understanding of the group of transformations preserving it, and that the
concept of group is innate, and key to reasoning itself.

Henri Poincaré: “The object of geometry is the study of a particular
‘group’; but the general concept of group pre-exists in our minds, at least
potentially. It is imposed on us not as a form of our senses, but as a form
of our understanding.

Only, from among all the possible groups, that must be chosen which will
be, so to speak, the standard to which we shall refer natural phenomena.”
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Reduced paths of graphs of groups

Definition

Let (G ,Y ) be a graph of groups. A path
c = (g0, e1, g1, e2, ..., gn−1, en, gn) is reduced if

1 g0 6= 1 if n = 0;

2 If ei+1 = ēi then gi 6∈ αei (Gei ).

We say that g0e1...engn is a reduced word.

Recall that |c | is the element in F (G ,Y ) represented by a path c .

Theorem

If c is a reduced path then |c | 6= 1 in F (G ,Y ). In particular,
Gv ↪→ F (G ,Y ) is injective for every v ∈ V (Y ).
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Reduced paths of graphs of groups

Theorem

If c is a reduced path then |c | 6= 1 in F (G ,Y ). In particular,
Gv ↪→ F (G ,Y ) is injective for every v ∈ V (Y ).

Proof

First assume that Y is finite. We will argue by induction on the number of
edges in Y . If there are no edges, then the theorem holds. So assume the
theorem is true for graphs with n edges, and suppose that Y has n + 1
edges.
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Reduced paths of graphs of groups

Case 1: Y = Y ′ ∪ {e}, o(e) ∈ V (Y ′), v = t(e) 6∈ V (Y ′). Then

F (G ,Y ) = (F (G ,Y ′) ∗ Gv )∗αe(Ge)

with stable letter e. A reduced word containing e corresponds to a
reduced word in the HNN extension that is 6= 1.

Case 2: Y = Y ′ ∪ {e}, {o(e), t(e)} ⊆ V (Y ′). Then

F (G ,Y ) = F (G ,Y ′)∗αe(Ge)

and the comment above applies again.

Now suppose that Y is infinite. Any reduced path c involves finitely many
orbits of vertices and edges and so c lies within a finite subgraph Y1 of Y .

c is a reduced path in F (G ,Y1) and so c 6= 1 in F (G ,Y1).
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Reduced paths of graphs of groups

Theorem

If c is a reduced path then |c | 6= 1 in F (G ,Y ). In particular,
Gv ↪→ F (G ,Y ) is injective for every v ∈ V (Y ).

Corollary

For every v ∈ V (Y ), the homomorphism Gv → π1(G ,Y ,T ) is injective.

Proof.

Gv → F (G ,Y ) is injective and π : π1(G ,Y , v)→ π1(G ,Y ,T ) is an
isomorphism.
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Graphs of groups

One can easily see that
1 If Y has 2 vertices and one edge then

π1(G ,Y ,T ) = Gu ∗Ge Gv .

2 If Y has 1 vertex and 1 edge with stable letter ‘e’ then

π1(G ,Y ,T ) = Gv∗αe(Ge)

and θ : αe(Ge)→ αē(Ge) ∈ Gv , θ(g) = αē ◦ α−1
e .

3 If Y = Y ′ ∪ {e} and t(e) = v 6∈ Y ′ then

π1(G ,Y ,T ) = π1(G ,Y ′,T ′) ∗Ge Gv .

4 If Y = Y ′ ∪ {e} and v = t(e) ∈ Y ′ then

π1(G ,Y ,T ) = π1(G ,Y ′,T ) ∗αe(Ge) .
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Reduced words of graphs of groups

We will find a choice of representatives for elements in F (G ,Y ), where
(G ,Y ) is a graph of groups. For each edge e ∈ E (Y ), pick a set Se of left
coset representatives of αē(Ge) in Go(e), with 1 ∈ Se .

Definition

An S-reduced path is a path (s1, e1, ..., sn, en, g) with

si ∈ Sei ∀i ;
si 6= 1 if ei = ēi−1;

g ∈ Gt(en).

Lemma

Given a, b ∈ V (Y ), every element in π[a, b] is represented by a unique
S-reduced path.
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Reduced words of graphs of groups

Lemma

Given a, b ∈ V (Y ), every element in π[a, b] is represented by a unique
S-reduced path.

Proof

Existence: Let γ ∈ π[a, b] and consider the path
c = (g0, e1, g1, e2, ..., gn−1, en, gn) such that t(ei ) = o(ei+1),
gi ∈ Gt(ei ) = Go(ei+1) and γ = |c |.

We will prove by induction on n that γ can be represented by an
S-reduced path. For n = 0 it is obvious. For n = 1,

γ = g0e1g1 = s0αē1(h0)e1g1 = s0e1αe1(h0)g1 = s0e1g
′
1

A similar argument holds for the inductive step.
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Reduced words of graphs of groups

Uniqueness: Consider two reduced paths

c = (s1, e1, ..., sn, en, g)

c ′ = (σ1, η1, ..., σk , ηk , γ)

such that |c | = |c ′|. Then

γ−1η−1
k σ−1

k ...η−1
1 σ−1

1 s1e1...sneng = 1

We will prove that c = c ′ by induction on the length. The above word
cannot be reduced hence η−1

1 = e−1
1 and σ−1

1 s1 ∈ αē1(Ge1). So σ1 = s1.
And so we can apply the inductive assumption.
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Graphs of groups and actions on trees

Theorem

H = π1(G ,Y , a0) acts on a tree T without inversions and such that

1 The quotient graph H\T can be identified with Y ;
2 Let q : T → Y be the quotient map:

a For all v ∈ V (T ), StabH(v) is a conjugate in H of Gq(v);
b For all e ∈ E (T ), StabH(e) is a conjugate in H of Gq(e).

Proof: For all a ∈ V (Y ), we define an equivalence relation on π[a0, a] by

|c1| ∼ |c2| ⇐⇒ |c1| = |c2|g for some g ∈ Ga

Vertices of the tree:

V (T ) =
⊔

a∈V (Y )

π[a0, a]/ ∼
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Graphs of groups and actions on trees

V (T ) =
⊔

a∈V (Y )

π[a0, a]/ ∼

Every element of π[a0, a]/ ∼ has a unique representative corresponding to
an S-reduced path of the form (s1, e1, ..., sn, en), o(e1) = a0, t(en) = a.
Thus V (T ) can also be identified with S-reduced paths as above.

Edges of the tree: {(s1, e1, ..., sn, en), (s1, e1, ..., sn, en, sn+1, en+1)}.
Connectedness is obvious.

By our definition of edges, a cycle/circuit gives an S-reduced path with
corresponding element 1 ∈ π[a0, a] contradicting the uniqueness of the
representation of a reduced path.
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Graphs of groups and actions on trees

Action of H = π1(G ,Y , a0) = π[a0, a0] on T : For all h ∈ π[a0, a0] and for
all [g ] ∈ V (T ) (equivalence classes of π[a0, a]/ ∼) define the action

h · [g ] = [hg ]

g1 ∼ g2 ⇒ hg1 ∼ hg2 and {[g1], [g2]} edge ⇒ {[hg1], [hg2]} edge.

If [g1], [g2] are such that h · [g1] = [g2] then a1 = a2 where
gi ∈ π[a0, ai ].

Conversely, if [g1], [g2] ∈ π[a0, a] then h = g2g
−1
1 ∈ π[a0, a0] and

h[g1] = [g2].

Thus H\V (T ) can be identified with V (Y ). And likewise H\E (T ) can be
identified with E (Y ).
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Graphs of groups and actions on trees

Stabilisers of vertices: For all [v ] ∈ V (T ) with v ∈ π[a0, b], where
b ∈ V (Y ),

h ∈ Stab([v ]) ⇐⇒ hv ∼ v ⇐⇒ hv = vgb for some gb ∈ Gb

⇐⇒ h = vgbv
−1 for some gb ∈ Gb

Thus Stab([v ]) = vGbv
−1. This relation is in F (G ,Y ).

Recall that each Gb was embedded in H = π1(G ,Y , a0) as follows:

for a maximal subtree TY ⊂ Y , set gb = e1 . . . en the unique geodesic
path in TY from a0 to b.

∀g ∈ Gb, identify it with ĝ = gbgg
−1
b . Let Ĝb be the image of Gb.

The equality Stab([v ]) = vGbv
−1 becomes

Stab([v ]) = vg−1
b Ĝbgbg = hĜbh

−1, where h = vg−1
b ∈ H = π1(G ,Y , a0).
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Graphs of groups and actions on trees

Stabilisers of edges: Every edge in E (T ) is of the form δ = [[v ], [vge]],
v ∈ π[a0, a], g ∈ Ga, δ = [a, b]. Then

Stab(δ) = Stab(v) ∩ Stab(vge) = vGav
−1 ∩ (vge)Gb(vge)−1

= vg(Ga ∩ eGbe
−1)g−1v−1 = vg(αē(Ge))g−1v−1

As before, the equality above is in F (G ,Y ).

The subgroup αē(Ge) of Ga appears as a subgroup Ĝe of H via the map
g 7→ ĝ = gagg

−1
a . Thus

Stab(δ) = vgg−1
a Ĝegag

−1v−1 = hĜeh
−1, with h = vgg−1

a ∈ H.

We denote the tree thus obtained T (G ,Y , a0) and we call it the universal
covering tree or the Bass–Serre tree of the graph of groups (G ,Y ).
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Graphs of groups and actions on trees

Conversely, if a group Γ acts on a tree T with quotient Y then there exists
a graph of groups (G ,Y ) such that Γ ' π1(G ,Y , a0).

Indeed, suppose Γ y T , Y = T/Γ and p : T → Y .

Let X ⊂ S ⊂ T be such that p(X ) is a maximal tree of Y , p(S) = Y and
p
∣∣
edges of S

is 1-to-1.

Notation: If v is a vertex of Y and e is an edge of Y , let

vX be the vertex of X such that p(vX ) = v ;

eS be the edge of S such that p(eS) = e.

A graph of groups with graph Y :

1 The map G :

Let Gv = StabΓ(vX );
Let Ge = StabΓ(eS).
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Graphs of groups and actions on trees

1 The map G :

Let Gv = StabΓ(vX );
Let Ge = StabΓ(eS).

2 For each edge e, we define αe : Ge → Gt(e): For all x ∈ V (S), define

gx =

{
1 if x ∈ V (X )

some gx such that gxx ∈ V (X ) otherwise.

Define αe : Ge → Gt(e), αe(g) = gt(e)gg
−1
t(e).
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