B7.2 Electromagnetism: Sheet 3 (Tutors Only) — HT25

Section B

3. Assume r = |r| # 0 throughout this question. For k € R? constant, define a vector field

kAT
r3

(a) Show that A = V¢ Ak for ¢ = 1/r, and therefore V- A = 0.

Ar) =

Solution: Since V (1/r) = —t/r? = —r/r3 we have
1
Eﬁk/\r:—k/\V(l/r) = V(l/r)ANk = Vo Ak. (12)
Now using identity (A.12) from lecture notes, and that curl of a gradient is zero,

V-A =V (VoAk) = k- (VA(Ve)—Vé-(VAk) = 0. (13)

(b) Defining the magnetic field B = V A A, show that B = V(k - V(1/r)). Deduce
that V.-B =0and VAB = 0.

Solution: Using identity (A.11) in the lecture notes,
B=VAA=VA(VoAk) = Vo(V-k)+ (k- V)Vo —k(V?¢) — (Vo V)k (14)

The first and last terms are zero, as k is constant. We also saw V2¢ = V?(1/r) =0

for r # 0 many times before. Thus we are left with only the second term
B=(k -V)Vyp =V(k-V(1/r)) , (15)

where we commute the directional derivative k - V through the gradient. It then
follows that VA B = 0 as B is a gradient, and V- B = V?(k - V(1/r)) =
k - V(V?(1/r)) = 0, again passing the directional derivative back through the

Laplacian.

(c) Show that this describes the field of a magnetic dipole,

3k-r k

r

B = =
7"5 7~3’

where k = (f10/47)m in terms of the magnetic dipole moment m. Hence show that

lim [ B-dS =0,

r—00 5,

where Y. is a sphere of radius r centred at the origin. Explain why therefore the
magnetic flux through any closed surface ¥ is zero. | This shows that the magnetic

dipole field has zero magnetic charge, even at the origin where it is singular. |
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Solution: Next we compute B explicitly:
r
B =k -V(V(l/r) = -k-V (r3> . (16)

Note k - V (x;) = k;, so using also Vr = r/r this is

k 3k-r 1 o\ n
B:_r3+ 5 rzrg(?)(k-r)r—k). (17)
We recognize this as the magnetic dipole defined in lectures, with
Ho
k = 18
Mo (13)
with m the magnetic dipole moment.
For X, a sphere of radius r centred on the origin we have dS = t72sinfdf dyp,

and
1
/B-dS:/ 3(3k-f—k‘f)r2sin9d9d<p—>0, asr — oo . (19)
pI 9,<plr

Finally consider the flux of B through any closed surface . If this does not contain
the origin, we may use the divergence theorem together with V - B = 0 to show
the integral is zero. On the other hand if > encloses the origin, consider the region

R bounded by > and a very large sphere X, centred on the origin. Then

oz/v.BdV:/ B-dS—/B-dS. (20)
R o P

Here the left hand side is zero, as the region R does not contain the origin, while
the first term is also zero by the above computation. We deduce that fz B-dS=0

for any closed surface 3.

Mathematical Institute, University of Oxford Page 4 of 14

Please post questions or corrections in the Discussion Forum or by email: mezeiQmaths.ox.ac.uk.


https://courses.maths.ox.ac.uk/mod/forum/view.php?id=52193
mailto:mezei@maths.ox.ac.uk

B7.2 Electromagnetism: Sheet 3 (Tutors Only) — HT25

6. Consider two different homogeneous linear dielectric materials, with permittivities et

and ¢, filling the half-spaces {z > 0} C R3 and {z < 0} C R?, respectively. A point

charge ¢ is placed at ro = (0,0,d) with d > 0.

(a) What are the boundary conditions for the electric field E and the displacement
field D? Show that there is a potential ¢ such that E = —V¢ everywhere.

Solution: We have V x E = 0 everywhere, so E has a potential. At the bound-
ary, the normal component of D = ¢E and the tangential components of E are

continuous:
Ef = E, Ef = E;, c"Ef =¢ E;. (43)
(b) Use the method of images to determine ¢ and E in both regions.

Solution: Without the boundary, the divergence V-D* = ¢tV - E* = ¢d(r — r¢)

would simply dampen the field of a point charge in vacuum by a factor €,/e*, and

Mathematical Institute, University of Oxford Page 9 of 14

Please post questions or corrections in the Discussion Forum or by email: mezeiQmaths.ox.ac.uk.


https://courses.maths.ox.ac.uk/mod/forum/view.php?id=52193
mailto:mezei@maths.ox.ac.uk

B7.2 Electromagnetism: Sheet 3 (Tutors Only) — HT25

give the potential
q 1
4ret |r —ro|

(44)

To fulfil the boundary conditions, we need to superimpose a field with zero diver-

gence in the region, like that of a mirror charge ¢~ at —ry:

4 1 q 1 ‘
= > 0. 45
¢ (r) Amet |r — 1y N d7eq [T + 10| oz (45)
In the region {z < 0}, the divergence of E is zero, hence the field could be that of

a modified charge ¢ at r:
+ 1

¢ (r) = -2

"~ 47 Ir — 1y

for z<0. (46)

Now imposing the boundary conditions to glue these two solutions together along
{z = 0}. In cylindrical coordinates r = (pcos ¢, psin ¢, z), the continuity of the
tangential components of E amounts to

oo 9t _9¢”
dp |._o ap

p q q q"
__ _ 47
¥0 (p% + d?)3/2 (47re+ * ATe 47r60> (47)

and therefore geg = (¢7 — ¢7)et. The normal components of D give

0 — Det o™ Oe ¢~ B 1 (—d)q N dg et (—d)qte
0z 0 0z |,_o T (p? o+ 22)3/2 4 4req dmegy
(48)
and therefore geg = ¢~ €™ + ¢ e~. In conclusion, we find that with the values
2¢€ 3 coet —e7)
t= d =q——= 49
¢ =0 e 1 q€+(€++€_) (49)

the image ansatz does indeed solve the boundary conditions. We conclude that

q 1 et —e™ 1 :
dmet (|r—r0| + ette~ \r—i—ro\) if 2> 0 and

o(r) = (50)

2q 1 :
(e 1) e-rl ifz<0.

Note that ¢ is continuous on all of R®*. We can obtain E(r) = —V¢(r) from ¢:

r—r et—e~ r4r .
E(I‘) = q |1'—1f‘00|3 + et+e— \r+r00\3 if 2 Z 0 and (51>
et 2¢t  r-rg if z <0.

et+e= |r—rp|?

(c) Consider a surface ¥ = OR that bounds a dielectric region R C R3 with electric

polarization density P(r). Let n denote the outward normal vector field on .
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Show that the bound surface charge density on r € ¥ is equal to
o(r) =P(r) - n. (52)

Thus compute the bound surface charge densities o and o~ of both materials

(permittivities ¢ in half-spaces {#2 > 0}) on the boundary surface {z = 0}.

Solution: Consider a small cylinder C' with axis n and height h, top and bottom
area A, with the top outside R and the bottom inside. By the divergence theorem,
the bound charge in the cylinder is

sigma :/pbounddV:/(—V~P)dV:—/ P - dS. (53)
C C

oC

In the limit A~ — 0 only the top and bottom discs of dC' contribute; in fact the
top gives zero because it is outside the medium R, hence its polarization there is
P = 0. At the remaining base of the cylinder, dS = —dAn, and the claim follows.

For the positive region {z > 0}, the outward normal is —es, and the polarization

is PT = (et — ¢o)E™. Therefore,

+ + + 06"
o"=P7(r) (—e3) = (" —€) — (54)
0z z=0

_q(et =€) z—d N q(em —eg)(et —€7) z+d (55)

 4met lr—rol? /., et (et +€7) lr+10l®/) .,
_ ad () (56)

2m(z? + y2 4+ d?)32 et (et +€7)

Similarly, in the negative region, P~ = (¢~ — ¢y)E~ and the outward normal is

n = +es, so

R el e ) (57)

0z |,_, 47 et+e \|r—ryf
qd €p — €

= . o8
2 (22 + 2 + d?2)3/2 et + e (58)

Note that 0% = 0 if € = ¢y. This must be the case, since when say €™ = ¢, then

the medium in {z > 0} is not polarizable, hence there are no bound charges.

(d) Determine the force on the point charge g.

Solution: The electric field generated by the image charges (which is the field that

is actually generated by the bound surface charges) at ry is

+ _ + _
q € —¢€ r+rg q € —€ e3
E = = . 59

(xo) Amet et + e (]r+ro|3)r_r0 dret et + e (2d)? (59)

Note that the sign depends on the permittivities. If e~ > e*, then ¢ is attracted

Mathematical Institute, University of Oxford Page 11 of 14

Please post questions or corrections in the Discussion Forum or by email: mezeiQmaths.ox.ac.uk.


https://courses.maths.ox.ac.uk/mod/forum/view.php?id=52193
mailto:mezei@maths.ox.ac.uk
Mark Mezei

Mark Mezei

Mark Mezei

Mark Mezei
sigma


B7.2 Electromagnetism: Sheet 3 (Tutors Only) — HT25

towards the boundary {z = 0}; but if e~ < €', then ¢ is pushed away from the

boundary.

(e) What happens in the limits e~ — oo and €~ — €*? Interpret these configurations.

Solution: In the limit €~ = €', we obtain

O —

" dmet Ir — ro| (60)

in all of R®. This makes sense, because the distinction between the two half-spaces
has disappeared, so it’s just a point charge in a homogenous medium. Note also
that the total bound surface charge computed in part (¢) becomes ot + 0~ = 0 as

expected.

In the limit e~ — oo, we obtain

q 1 o 1 :
Inet <|r7r0\ |r+rg|> if 2> 0 and

0 if z <0.

¢(r) = (61)

This is exactly the situation as for a conducting material in the region {z < 0}.
Also note that the surface charge ¢ in part (c¢) agrees with the one derived in the

lecture notes for this conducting case.

In an infinitely polarizable medium (¢~ — o0), an electric field will be cancelled
completely by the dipoles and E~ = 1/e”"D~ goes to zero. The high polarizability
allows for an arbitrarily large bound surface charge, which completely cancels the
field in {z < 0}.
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