
HT25

HT25

C4.6 Fixed Points Methods for PDEs

C4.6 Fixed Points Methods for PDEs

HT25

p. 1/6

Problem Sheet 4

Section B

Question 3. Strongly monotone operator Let Ω = (−1, 1) and X = H2(Ω) ∩H1
0 (Ω) endowed

with the H2-norm.

(a) Let A : X → X∗ be defined via

⟨A(u), v⟩ :=
∫
Ω

u′′v′′dx.

Show that A is a strongly monotone operator, i.e. hemicontinuous and so that there exists some

c0 > 0 with

⟨A(u)−A(v), u− v⟩ ≥ c0∥u− v∥2 for all u, v ∈ M.

Hint: Use Poincaré’s inequality, as well as Poincaré’s inequality for functions with mean

value zero.

(b) Let now Fµ(u) := A(u) + µB(u) where B(u)(v) := u(0) · v(0) +
∫
Ω
x · v(x)dx.

Show that Fµ : X → X∗ is well defined for any µ ∈ R and that there exists a number µ0 > 0

so that for each µ with |µ| ≤ µ0 there exists a unique solution of the equation

Fµ(u) = 0.

(c) Let now µ ≥ 0. Determine a functional Iµ : X → R so that the following holds: u ∈ X is a

solution of Fµ(u) = 0 if and only if u is a minimiser of Iµ on X

Solution. (a) (i) Proof of hemi-continuity: Note that A is linear and

|⟨A(u), v⟩| ≤ ∥u∥∥v∥

which implies that ∥A(u)∥∗ ≤ ∥u∥, which in turns implies that A is bounded and so continuous. It follows

that A is hemi-continuous.

(Alternatively, one can argue directly: Let u, v, w ∈ X and consider

f(t) = ⟨A(tu+ (1− t)v), w⟩ =
∫ 1

−1

(tu+ (1− t)v)′′w′′ dx, t ∈ [0, 1]

Note that the integrand of f(t) is bounded in absolute value by (|u′′| + |v′′|)|w′′|, which, by Cauchy-

Schwarz, belongs to L1((−1, 1)). A simple application of Lebesgues’ dominated convergence theorem

implies that f is continuous in [0, 1]. Since u, v, w are arbitrary, we conclude that A is hemi-continuous.)

(ii) Proof of strong monotonicity: Let u, v ∈ X. We have

⟨A(u)−A(v), u− v⟩ =
∫ 1

−1

((u− v)′′)2 dx.

Applying Wirtinger’s inequality for the function (u−v)′ which has zero average (since
∫ 1

−1
(u−v)′ dx = 0

by Newton-Leibnitz), we have

⟨A(u)−A(v), u− v⟩ =
∫ 1

−1

((u− v)′′)2 dx ≥ π2

∫ 1

−1

((u− v)′)2 dx.

Applying Wirtinger’s inequality for the function u− v which vanishes at ±1, we then have

⟨A(u)−A(v), u− v⟩ ≥ π2

∫ 1

−1

((u− v)′)2 dx ≥ π4

4

∫ 1

−1

(u− v)2 dx.

Combining these estimates, we obtain

(1 +
1

π2
+

4

π4
)⟨A(u)−A(v), u− v⟩ ≥

∫ 1

−1

[((u− v)′′)2 + ((u− v)′)2 + (u− v)2] dx = ∥u− v∥2,



HT25

HT25

C4.6 Fixed Points Methods for PDEs

C4.6 Fixed Points Methods for PDEs

HT25

p. 2/6

which proves the stated inequality with c0 = (1 + 1
π2 + 4

π4 )
−1.

(b)(i) Well-definition of Fµ: Note that X ⊂ H2((−1, 1)) ↪→ C1([−1, 1]) ↪→ C0([−1, 1]) ↪→ L1((−1, 1)).

Hence, for every u ∈ X, it makes sense to speak of u(0), and for every v ∈ X, it makes sense to speak of

v(0) and
∫ 1

−1
xv(x) dx. Thus, for u, v ∈ X, ⟨B(u), v⟩ is well-defined and

|⟨B(u), v⟩| ≤ ∥u∥L∞∥v∥L∞ + ∥v∥L1 ≤ C(∥u∥+ 1)∥v∥,

where here and below C denote a universal constant depending only on the constants in the embedding

of X into C0([−1, 1]) and L1((−1, 1)). This shows that B(u) ∈ X∗, and so Fµ : X → X∗ is well-defined

for every µ ∈ R.

(ii) Existence of zero of Fµ: We first show that Fµ satisfies (H1) and (H3).

We saw above that ∥A(u)∥∗ ≤ ∥u∥ and ∥B(u)∥∗ ≤ C(∥u∥+ 1) and so

∥Fµ(u)∥∗ ≤ ∥u∥+ µC(∥u∥+ 1).

This implies that Fµ maps bounded sets into bounded sets, i.e. (H1) holds.

Before proving (H3), we note that A is a monotone operator (by (a)) and B is a compact operator.

To see that B is compact, suppose that (wn) is bounded in X. By reflexivity of X and compactness of

the embedding H2((−1, 1)) ↪→ C1([−1, 1]), there exists a subsequence (wnk
) which converges weakly in

X and uniformly to a limit w ∈ X. Then

⟨B(wnk
)−B(w), v⟩ = |(wnk

(0)− u(0))v(0)| ≤ C∥wnk
− w∥L∞∥v∥

which implies ∥B(wnk
)−B(w)∥∗ ≤ C∥wnk

−w∥L∞ → 0, i.e. B(wnk
) → B(w) in X∗. Thus B is compact.

We can now prove (H3). Assume that un ⇀ u in X and Fµ(un) ⇀ ξ in X∗. By compactness, we

have that B(un) → B(u) in X∗. This, on one hand, implies that

⟨B(u), u⟩ = lim⟨B(un), un⟩,

and, on the other hand, implies that A(un) ⇀ ξ−µB(u) in X∗ and so (since monotone operator satisfies

(H3)),

⟨ξ − µB(u), u⟩ ≤ lim inf⟨A(un), un⟩.

We thus have

⟨ξ, u⟩ ≤ lim inf⟨Fµ(un), un⟩.

Moreover, if equality holds, then by (H3) for A, it must hold that A(u) = ξ − µB(u) and so Fµ(u) = ξ.

We have thus shown that Fµ satisfies (H3).

[Note that, with a little bit of further effort, one can show that if un ⇀ u, then Fµ(un) ⇀ Fµ(u).]

We next show that if |µ| ≤ µ0 for some threshold µ0, then Fµ satisfies (H2), namely there exists

R > 0 such that

⟨Fµ(u), u⟩ > 0 for ∥u∥ > R.

Indeed we have

⟨Fµ(u), u⟩ =
∫ 1

−1

(u′′)2 dx+ µu(0)2 + µ

∫ 1

−1

xu(x) dx

≥ c0∥u∥2 − |µ|∥u∥2L∞ − |µ|∥u∥L1

≥ c0∥u∥2 − C|µ|∥u∥2 − C|µ|.

Thus, if |µ∥ ≤ µ0 := c0
2C , then ⟨Fµ(u), u⟩ > 0 when ∥u∥ > Cµ0

c0−Cµ0
. (H2) is established.

We may now apply the theorem in the lectures to conclude that Fµ has a zero for |µ| ≤ µ0.
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(iii) Uniqueness of zero of Fµ: If u1 and u2 are two zeros of Fµ, then with v = u1 − u2,

0 = ⟨Fµ(u1)− u2, v⟩ =
∫ 1

−1

(u′′)2 dx+ µu(0)2 ≥ (c0 − Cµ)∥v∥2,

Since c0 − Cµ > 0 (by the very definition of µ0), we deduce that v = 0, i.e. u1 = u2.

[In fact, the above prove the existence and uniqueness of zero of Fµ for µ ≥ −µ0.]

(c) The desired functional is

Iµ[u] =

∫ 1

−1

1

2
(u′′)2 dx+

µ

2
(u(0))2 +

∫ 1

−1

µxu(x) dx.

When µ > 0, it is routine to check that Iµ is strictly convex (using (a)) and Frechet differentiable

with derivative

⟨DIµ[u], v⟩ =
∫ 1

−1

u′′v′′ dx+ u(0)v(0) +

∫ 1

−1

µxv(x) dx = ⟨Fµ(u), v⟩.

Thus u is a zero of Fµ if and only if it is a critical point of Iµ, which must be unique because of the

convexity of Iµ.

To conclude, we show that Iµ has a minimizer. By convexity, we know that Iµ is weakly sequentially

lower semi-continuous. Thus, we only need to show that Iµ is coercive. Indeed, by (a) and noting that

µ ≥ 0,

Iµ[u] ≥
π4

4
∥u∥2L2 − µ

√
2∥u∥L2 ≥ π4

8
∥u∥2L2 −

4µ2

π4
.

We are done.

Question 4. Consider a domain Ω ⊂ Rn which is smooth and bounded, and g ∈ C2(Rn) such that

g ≤ 0 on ∂Ω. Consider the energy I given by

I(v) =

∫
Ω

|∆v|2 + fvdx, v ∈ H2(Ω) ∩H1
0 (Ω)

for some f ∈ L2(Ω).

(1) Find the Euler-Lagrange equation satisfied by the critical points of I(v) and prove that every

critical point of I is a minimiser.

(2) Consider the set M given by

M :=
{
v ∈ H2(Ω) ∩H1

0 (Ω) | v ≥ g a.e. on Ω
}
.

Show that there exists a unique minimizer of I on M —check carefully that the assumptions of

the Theorem(s) you use are satisfied. You may use without proof that for all u ∈ H1
0 (Ω)∩H2(Ω)

∥u∥H1
0 (Ω) ≤ C∥∆u∥L2(Ω),

where the constant C is independent of u.

Solution. (1) Let X = H2(Ω) ∩ H1
0 (Ω). It is routine to check that I is strictly convex and Frechet

differentiable on X with derivative

⟨DI(u), v⟩ =
∫
Ω

(2∆u∆v + fv) dx

The Euler-Lagrange equation is thus

2∆2u+ f = 0.

The assertion that every criticial point is a minimizer of I follows from the same argument as in Q3(c).

(2) Since g ≤ 0 on ∂Ω, 0 ∈ M and so M is non-empty. M is clearly convex.

We have that I is convex and so is weakly sequentially lower semi-continuous.
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I is coercive because

I(u) ≥ c0∥u∥2 − ∥f∥L2∥u∥ ≥ c0
2
∥u∥2 −

∥f∥2L2

2c0
.

To obtain a minimiser of I in M , we only need to show that M is closed (hence weakly closed by

convexity of M). Indeed, if (un) ⊂ M and un → u in X, then along a subsequence unk
→ u a.e. which

implies u ≥ g a.e. and so u ∈ M .

The uniqueness of the minimiser follows from the strict convexity of I.

Question 5. Three approaches to the same problem. Consider a domain Ω = {(x, y) ∈
R2 s.t. x2 + y2 ≤ 1} and the equation

−∆u+ u5 = 1 in Ω, u = 0 on ∂Ω.

• Show that this equation makes sense in H1
0 (Ω), that is, it has a legitimate weak variational

formulation.

• Using the first part of the course, show that you can formulate it as a fixed point problem of

the form u = T (u) where T is a continuous compact map.

• Find a simple subsolution u and a simple supersolution ū. Show that the problem can be

transformed into

−∆u+ λu = fλ(u)

for a constant λ > 0 chosen so that fλ(u) is increasing when u ≤ u ≤ ū, and use the method

of sub and super solutions to show that a solution u can be found by a constructive (iterative)

method.

• Using Schauder’s FPT and the above show that there exists a solution.

• Use the variational inequality approach to find a solution in H1
0 (Ω).

• What can you say about uniqueness?

Solution. (a) Note that if u ∈ H1
0 (Ω), then u ∈ Lp(Ω) for any p < ∞ by the Gagliardo-Nirenberg-

Sobolev theorem. Thus, we can define a weak solution to the given problem as a function u ∈ H1
0 (Ω)

such that

(WF)

∫
Ω

[∇u · ∇v + u5v − v] dx = 0 for all v ∈ H1
0 (Ω).

(b) We may recast this as a fixed point problem of the form u = T (u) with T defined by

T (u) = (−∆)−1N(u)

where (−∆)−1 : H−1(Ω) → H1
0 (Ω) denotes the inverse of the operator −∆ : H1

0 (Ω) → H−1(Ω) and

N : H1
0 (Ω) → H−1(Ω) is defined by N(u) = −u5 + 1.

By the result on the continuity of the Nemytsky map, N is continuous as a map from e.g. L10(Ω) into

L2(Ω). Since H1
0 (Ω) embeds compactly into L10(Ω) by Rellich-Kondrachov’s theorem, and L2(Ω) embeds

continuously (in fact compactly, but this isn’t needed) intoH−1(Ω), we have that N is a compact operator

from H1
0 (Ω) into H−1(Ω). Since (−∆)−1 is continuous, we deduce that T = (−∆)−1N is compact.

(c) One can simply takes u = 0 and ū = 1.

Let f(t) = −t5 + 1. Note that f ′(t) = −5t4 ≥ −5 in [0, 1]. Hence f(t) + 5t is increasing in [0, 1].

Define

g(t) =


f(t) + 5t if t ∈ [0, 1],

f(0) if t < 0,

f(1) + 5 if t > 1.
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Then g is increasing and the problem

−∆u+ 5u = g(u) in Ω, u = 0 on ∂Ω

admits u as a subsolution and ū as a super-solution. Hence it has a solution u ∈ H1
0 (Ω) satisfying

0 = u ≤ u ≤ ū = 1 a.e. In particular g(u) = f(u) + 5u and so −∆u = f(u) as required.

[In fact, one can show that all solutions must satisfy 0 ≤ u ≤ 1:

(i) Proof that u ≥ 0: Suppose u solves (WF). Using v = u− in (WF), we get

0 =

∫
Ω

[∇u · ∇u− + u5u− − u−] dx =

∫
{u<0}

[−|∇u|2 − u6 + u] dx ≤ 0

which implies that u = 0 a.e. in {u < 0}, which means u ≥ 0 a.e.

(ii) Proof that u ≤ 1: Suppose u solves (WF). Using v = (u− 1)+ in (WF), we get

0 =

∫
Ω

[∇u · ∇(u− 1)+ + u5(u− 1)+ − (u− 1)+] dx =

∫
{u>1}

[|∇u|2 + (u5 − 1)(u− 1)] dx ≥ 0

which implies that u = 1 a.e. in {u > 1}, which means u ≥ 1 a.e.]

(d) Remark: If one follows the lecture notes, one will have a difficulty in finding R > 0 such that T maps

B̄R into B̄R because T have super-linear growth at infinity.

Here we use the intuition from (c). One recast the problem in the fixed point form u = T̃ (u) where

T̃ (u) = (−∆+ 5)−1Ñ(u)

with N(u) = f(u) + 5u =: h(u).

We knew from the discussion at the end of (c) that any solution if exists with be trapped between 0

and 1. We thus consider the non-empty closed convex set

M = {u ∈ H1
0 (Ω) : 0 ≤ u ≤ 1}.

Claim: T̃ maps M into itself. Once this is done we can apply Schauder’s fixed point theorem to get a

fixed point of T̃ in M , which will conclude this part.

Let u ∈ M . We would like to show that 0 ≤ v := T̃ (u) ≤ 1. Note v := T (u) satisfies

−∆v + 5v = h(u) in Ω, v = 0 on ∂Ω,

(i) Proof that v ≥ 0: As 0 ≥ u ≤ 1 and h is increasing in [0, 1],

−∆v + 5v ≥ h(0) = 0 in Ω, v = 0 on ∂Ω,

By the weak maximum principle, v ≥ 0 a.e.

(ii) Proof that v ≤ 1: Similarly, we have

−∆(v − 1) + 5(v − 1) = h(v)− h(1) ≤ 0 in Ω, v − 1 = −1 ≤ 0 on ∂Ω,

By the weak maximum principle, v − 1 ≤ 0 a.e., i.e. v ≤ 1 a.e.

We can now apply Schauder’s fixed point theorem to the compact map T̃ : M → M to obtain the

desired solution.

[Alternatively, one can work with T̂ = (−∆+ 5)−1N̂ where N̂(u) = g(u), and using the fact that g

is bounded to obtain a fixed point of T̂ . After this is achieved, use the weak maximum principle to show

that the obtained solution satisfies 0 ≤ u ≤ 1 and so satisfies the original equation.]

(e) The given equation is recognised as the Euler-Lagrange equation for critical points of the functional

J [u] =

∫
Ω

(
1

2
|∇u|2 + 1

6
u6 − u) dx.
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This is a convex functional, and we could use the argument in Q3, Q4 to deduce the existence of a

minimiser, which is the unique critical point of J .

Alternatively, one uses A(u) = −∆u + u5 − 1 as a map from H1
0 (Ω) into H−1(Ω) and verify the

condition (H1), (H2), (H3) as in Q1, noting that A is a monotone operator.

(f) As seen in (e), uniqueness of solution holds.


