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Problem Sheet 4
Section B

QUESTION 3. Strongly monotone operator Let = (—1,1) and X = H?(Q) N Hg () endowed

with the H2-norm.

(a) Let A: X — X* be defined via
(A(u),v) == / u'v"dx.
Q
Show that A is a strongly monotone operator, i.e. hemicontinuous and so that there exists some
co > 0 with
(A(u) — A(v),u —v) > collu —v||* for all u,v € M.
Hint: Use Poincaré’s inequality, as well as Poincaré’s inequality for functions with mean
value zero.
(b) Let now F,(u) := A(u) + pB(u) where B(u)(v) :=u(0) - v(0) + [, z - v(x)dx.
Show that F), : X — X* is well defined for any 1 € R and that there exists a number pg > 0

so that for each p with |u| < po there exists a unique solution of the equation

F(u) =0.

(c) Let now p > 0. Determine a functional I, : X — R so that the following holds: v € X is a

solution of F,(u) = 0 if and only if u is a minimiser of I, on X

Solution. (a) (i) Proof of hemi-continuity: Note that A is linear and
[(A(w), v)| < [lullllv]]

which implies that ||A(u)||« < |lu||, which in turns implies that A is bounded and so continuous. It follows
that A is hemi-continuous.
(Alternatively, one can argue directly: Let u,v,w € X and consider

1
ft) = (A(tu+ (1 —t)v),w) = / (tu + (1 — t)v)"w" dx, t€]0,1]

~1
Note that the integrand of f(t)
Schwarz, belongs to L'((—1,1))

implies that f is continuous in [0, 1]. Since u,v,w are arbitrary, we conclude that A is hemi-continuous.)

is bounded in absolute value by (Ju”| + |[v”])|w”]|, which, by Cauchy-

A simple application of Lebesgues’ dominated convergence theorem

(ii) Proof of strong monotonicity: Let u,v € X. We have

(A(u) — A(v),u —v) = / ((u —v)")?dx.
—1
Applying Wirtinger’s inequality for the function (v —v)" which has zero average (since fil(u —v)'dz =0
by Newton-Leibnitz), we have

1 1

(u—v)")?*de > m? / ((u —v)")?da.

-1

(A(u) — A(v),u —v) = /

-1
Applying Wirtinger’s inequality for the function w — v which vanishes at +1, we then have
1 4 1
(A(w) — A(v),u —v) > 72 / ((u—v))?dz > % / (u — v)? dz.
1 -1

Combining these estimates, we obtain

1
(14 %+ 20l = Au =)= [ (=) 4+ (= o)+ (=P do = fu = ol
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which proves the stated inequality with ¢o = (1 + # + %)’1.

(b)(i) Well-definition of F},: Note that X C H?*((—1,1)) — C*([-1,1]) = C°([-1,1]) = L*((-1,1)).
Hence, for every u € X, it makes sense to speak of u(0), and for every v € X, it makes sense to speak of
v(0) and fjl av(x) dz. Thus, for u,v € X, (B(u),v) is well-defined and

[(B(w), )] < [[ullz<lvllzee + [0l < C(lull + D)loll,

where here and below C' denote a universal constant depending only on the constants in the embedding
of X into C°([—1,1]) and L'((—1,1)). This shows that B(u) € X*, and so F}, : X — X* is well-defined
for every p € R.

(ii) Existence of zero of F,,: We first show that F), satisfies (H1) and (H3).
We saw above that ||A(u)|« < |lu|| and ||B(w)|« < C(JJu|| + 1) and so

(@)l < Jlull + pC((lu]l +1).

This implies that F), maps bounded sets into bounded sets, i.e. (H1) holds.

Before proving (H3), we note that A is a monotone operator (by (a)) and B is a compact operator.
To see that B is compact, suppose that (w,,) is bounded in X. By reflexivity of X and compactness of
the embedding H?((—1,1)) < C([—1,1]), there exists a subsequence (wy, ) which converges weakly in
X and uniformly to a limit w € X. Then

(B(wny,) = B(w),v) = |(wn, (0) = u(0))v(0)] < Cllwn, —wl|ze|[v]

which implies || B(wp, ) — B(w)||« < C|lwp, —w||L~ — 0, i.e. B(wy,) — B(w) in X*. Thus B is compact.
We can now prove (H3). Assume that u, — v in X and F,(u,) — £ in X*. By compactness, we
have that B(u,) — B(u) in X*. This, on one hand, implies that

(B(u), u) = lim(B(un), un),

and, on the other hand, implies that A(u,) — £ — pB(u) in X* and so (since monotone operator satisfies
(H3)),
(€ — pB(u),u) < liminf(A(uy), uy).
We thus have
(€, u) < liminf(F},(up), un).
Moreover, if equality holds, then by (H3) for A, it must hold that A(u) = { — uB(u) and so F,(u) = &.
We have thus shown that F), satisfies (H3).
[Note that, with a little bit of further effort, one can show that if w,, — w, then F),(u,) — F,(u).]
We next show that if |u| < po for some threshold g, then F), satisfies (H2), namely there exists
R > 0 such that
(Fu(u),u) > 0 for |lul| > R.

Indeed we have
1

(Fu(u),u) = / (u")? dx + pu(0)* + ,u/_1 zu(z) dx

> collull® = |ulllullZe = lplllullzs

> collull® = Clulllull* = Clpl.

Thus, if |p|| < po := 55, then (F),(u),u) > 0 when [|ul| > cﬁ% (H2) is established.

We may now apply the theorem in the lectures to conclude that F), has a zero for |u| < po.
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(iii) Uniqueness of zero of F),: If u; and uy are two zeros of F),, then with v = u; — ua,

1
0 = (F(u) — s, v) = / (W) de + pu(0)® = (co — Cpo)loll.

-1
Since ¢y — Cp > 0 (by the very definition of pp), we deduce that v =0, i.e. u; = us.

[In fact, the above prove the existence and uniqueness of zero of F), for g > —p.]

(c) The desired functional is
1

1
i = [ SR de s S + [ poue) do.

12 1

When g > 0, it is routine to check that I, is strictly convex (using (a)) and Frechet differentiable

with derivative

1 1

u"v" dz + u(0)v(0) + / pav(x) de = (F,(u),v).

-1

o1l = [

-1
Thus u is a zero of F), if and only if it is a critical point of I,,, which must be unique because of the
convexity of I,,.

To conclude, we show that I, has a minimizer. By convexity, we know that I, is weakly sequentially
lower semi-continuous. Thus, we only need to show that I, is coercive. Indeed, by (a) and noting that

p =0,
42

T, T
IM[U] > ZHUHLQ — ,U\/§||U||L2 > §||u”L2 _ ?

We are done.

QUESTION 4. Consider a domain  C R" which is smooth and bounded, and g € C?(R") such that
g <0 on 0. Consider the energy I given by

I(v) = /Q |Av)® + fudz, ve H*(Q)N H(Q)

for some f € L?(9).

(1) Find the Euler-Lagrange equation satisfied by the critical points of I(v) and prove that every
critical point of I is a minimiser.

(2) Consider the set M given by

M :={ve H*(Q)NH)Q)|v>g ae onQ}.
Show that there exists a unique minimizer of I on M —check carefully that the assumptions of
the Theorem(s) you use are satisfied. You may use without proof that for all u € H} ()N H?(Q2)
[ullz o) < CllAu|L2(0),

where the constant C' is independent of u.

Solution. (1) Let X = H?(Q) N H(Q). It is routine to check that I is strictly convex and Frechet
differentiable on X with derivative

(DI(u),v) = /Q(ZAUAU + fu)dx

The Euler-Lagrange equation is thus
2A%u + f = 0.

The assertion that every criticial point is a minimizer of I follows from the same argument as in Q3(c).

(2) Since g <0 on 99, 0 € M and so M is non-empty. M is clearly convex.

We have that I is convex and so is weakly sequentially lower semi-continuous.
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I is coercive because

I(w) > collull® — || fll2 ull > 2 u]® - I Vz:.
2 2co
To obtain a minimiser of I in M, we only need to show that M is closed (hence weakly closed by
convexity of M). Indeed, if (u,) C M and u, — u in X, then along a subsequence u,, — u a.e. which
implies u > g a.e. and so u € M.

The uniqueness of the minimiser follows from the strict convexity of I.

QUESTION 5. Three approaches to the same problem. Consider a domain Q = {(z,y) €
R? s.t. 22 + y? < 1} and the equation

—Au+u®=1inQ, wu=0ondQ.

e Show that this equation makes sense in H}(Q), that is, it has a legitimate weak variational
formulation.

e Using the first part of the course, show that you can formulate it as a fixed point problem of
the form « = T'(u) where T is a continuous compact map.

e Find a simple subsolution u and a simple supersolution #. Show that the problem can be
transformed into

—Au+ Au = fy(u)

for a constant A > 0 chosen so that fy(u) is increasing when u < u < @, and use the method
of sub and super solutions to show that a solution w can be found by a constructive (iterative)
method.

e Using Schauder’s FPT and the above show that there exists a solution.

e Use the variational inequality approach to find a solution in H}(€2).

e What can you say about uniqueness?

Solution. (a) Note that if u € Hi(Q), then u € LP(Q) for any p < oo by the Gagliardo-Nirenberg-
Sobolev theorem. Thus, we can define a weak solution to the given problem as a function u € HJ(£2)
such that

(WF) / [Vu - Vo +u’v — v]de =0 for all v € Hy ().
Q

(b) We may recast this as a fixed point problem of the form u = T'(u) with T defined by
T(u) = (~=A)"'N(u)

where (—A)~! : H71(Q) — H(Q) denotes the inverse of the operator —A : Hi(2) — H~1(Q) and
N : H}(Q) — H7Y(Q) is defined by N(u) = —u’ + 1.

By the result on the continuity of the Nemytsky map, N is continuous as a map from e.g. L'°(Q) into
L?(Q). Since H () embeds compactly into L1°(Q) by Rellich-Kondrachov’s theorem, and L?(€2) embeds
continuously (in fact compactly, but this isn’t needed) into H ~1(2), we have that N is a compact operator
from Hg () into H=1(£). Since (—A)~! is continuous, we deduce that T = (—=A)~'N is compact.

(c) One can simply takes v = 0 and @ = 1.
Let f(t) = —t°> + 1. Note that f/(t) = —5t* > —5in [0,1]. Hence f(t) + 5t is increasing in [0, 1].
Define
Ft) +5t ifteo,1],
g9(t) =< £(0) if t <0,
F)+5  ift>1.
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Then g is increasing and the problem
—Au+5u = g(u) in Q,u =0 on IN

admits u as a subsolution and % as a super-solution. Hence it has a solution u € H{(Q) satisfying
0=u<wu<a=1a.e. In particular g(u) = f(u) + 5u and so —Au = f(u) as required.

[In fact, one can show that all solutions must satisfy 0 < u < 1:

(i) Proof that u > 0: Suppose u solves (WF). Using v = u~ in (WF), we get
O:/[Vu'Vu7+u5u*—u*]dm:/ [—|Vu? —u® +u]dz <0
Q {u<0}

which implies that © = 0 a.e. in {u < 0}, which means u > 0 a.e.
(ii) Proof that u < 1: Suppose u solves (WF). Using v = (u — 1)* in (WF), we get

= u - u — usu— —\u — €T = U2 u57 u — X
of/Q[v Vi — )"+ — 1)F — (u—1)*]d /{u>1}[lvl+( 1)(u— 1)) dz >0

which implies that v =1 a.e. in {u > 1}, which means v > 1 a.e.]

(d) Remark: If one follows the lecture notes, one will have a difficulty in finding R > 0 such that T maps
Bp into By because T have super-linear growth at infinity.

Here we use the intuition from (c). One recast the problem in the fixed point form u = T'(u) where

T(u) = (=A+5)" N (u)

with N(u) = f(u) 4+ 5u =: h(u).
We knew from the discussion at the end of (c) that any solution if exists with be trapped between 0

and 1. We thus consider the non-empty closed convex set
M={ucH}Q):0<u<1}.

Claim: T maps M into itself. Once this is done we can apply Schauder’s fixed point theorem to get a
fixed point of T in M, which will conclude this part.
Let u € M. We would like to show that 0 < v := T'(u) < 1. Note v := T'(u) satisfies

—Av +5v = h(u) in Q,v =0 on 99,

(i) Proof that v > 0: As 0 >« < 1 and h is increasing in [0, 1],
—Av+5v > h(0) =0in Q,v =0 on 01,
By the weak maximum principle, v > 0 a.e.
(ii) Proof that v < 1: Similarly, we have
—“Av—1)+5w—-1)=h(v)—h(1) <0in Q,v—1= -1 <0 on 01,

By the weak maximum principle, v — 1 <0 a.e., i.e. v <1 a.e.

We can now apply Schauder’s fixed point theorem to the compact map T : M — M to obtain the
desired solution.

[Alternatively, one can work with 7' = (—A + 5)" N where N(u) = g(u), and using the fact that g
is bounded to obtain a fixed point of T'. After this is achieved, use the weak maximum principle to show

that the obtained solution satisfies 0 < v < 1 and so satisfies the original equation.]

(e) The given equation is recognised as the Euler-Lagrange equation for critical points of the functional

1 1
Ju] = / (§|Vu|2 + 6u6 —u)dx.
Q
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This is a convex functional, and we could use the argument in Q3, Q4 to deduce the existence of a
minimiser, which is the unique critical point of J.

Alternatively, one uses A(u) = —Au + u® — 1 as a map from HE(Q) into H~1(Q) and verify the
condition (H1), (H2), (H3) as in Q1, noting that A is a monotone operator.

(f) As seen in (e), uniqueness of solution holds.



