Problem Sheet 4

Section B

QUESTION 3. Strongly monotone operator Let $\Omega = (-1, 1)$ and $X = H^2(\Omega) \cap H^1_0(\Omega)$ endowed with the H^2 -norm.

(a) Let $A \colon X \to X^*$ be defined via

$$\langle A(u),v\rangle:=\int_\Omega u^{\prime\prime}v^{\prime\prime}dx.$$

Show that A is a strongly monotone operator, i.e. hemicontinuous and so that there exists some $c_0 > 0$ with

$$\langle A(u) - A(v), u - v \rangle \ge c_0 ||u - v||^2$$
 for all $u, v \in M$.

Hint: Use Poincaré's inequality, as well as Poincaré's inequality for functions with mean value zero.

- (b) Let now $F_{\mu}(u) := A(u) + \mu B(u)$ where $B(u)(v) := u(0) \cdot v(0) + \int_{\Omega} x \cdot v(x) dx$.
 - Show that $F_{\mu}: X \to X^*$ is well defined for any $\mu \in \mathbb{R}$ and that there exists a number $\mu_0 > 0$ so that for each μ with $|\mu| \leq \mu_0$ there exists a unique solution of the equation

$$F_{\mu}(u) = 0.$$

(c) Let now $\mu \ge 0$. Determine a functional $I_{\mu} : X \to \mathbb{R}$ so that the following holds: $u \in X$ is a solution of $F_{\mu}(u) = 0$ if and only if u is a minimiser of I_{μ} on X

Solution. (a) (i) Proof of hemi-continuity: Note that A is linear and

$$\langle A(u), v \rangle | \le ||u|| ||v||$$

which implies that $||A(u)||_* \leq ||u||$, which in turns implies that A is bounded and so continuous. It follows that A is hemi-continuous.

(Alternatively, one can argue directly: Let $u, v, w \in X$ and consider

$$f(t) = \langle A(tu + (1-t)v), w \rangle = \int_{-1}^{1} (tu + (1-t)v)''w'' \, dx, \quad t \in [0,1]$$

Note that the integrand of f(t) is bounded in absolute value by (|u''| + |v''|)|w''|, which, by Cauchy-Schwarz, belongs to $L^1((-1,1))$. A simple application of Lebesgues' dominated convergence theorem implies that f is continuous in [0,1]. Since u, v, w are arbitrary, we conclude that A is hemi-continuous.)

(ii) Proof of strong monotonicity: Let $u, v \in X$. We have

$$\langle A(u) - A(v), u - v \rangle = \int_{-1}^{1} ((u - v)'')^2 dx$$

Applying Wirtinger's inequality for the function (u-v)' which has zero average (since $\int_{-1}^{1} (u-v)' dx = 0$ by Newton-Leibnitz), we have

$$\langle A(u) - A(v), u - v \rangle = \int_{-1}^{1} ((u - v)'')^2 dx \ge \pi^2 \int_{-1}^{1} ((u - v)')^2 dx$$

Applying Wirtinger's inequality for the function u - v which vanishes at ± 1 , we then have

$$\langle A(u) - A(v), u - v \rangle \ge \pi^2 \int_{-1}^{1} ((u - v)')^2 \, dx \ge \frac{\pi^4}{4} \int_{-1}^{1} (u - v)^2 \, dx$$

Combining these estimates, we obtain

$$(1 + \frac{1}{\pi^2} + \frac{4}{\pi^4})\langle A(u) - A(v), u - v \rangle \ge \int_{-1}^{1} \left[((u - v)'')^2 + ((u - v)')^2 + (u - v)^2 \right] dx = ||u - v||^2,$$

which proves the stated inequality with $c_0 = (1 + \frac{1}{\pi^2} + \frac{4}{\pi^4})^{-1}$.

(b)(i) Well-definition of F_{μ} : Note that $X \subset H^2((-1,1)) \hookrightarrow C^1([-1,1]) \hookrightarrow C^0([-1,1]) \hookrightarrow L^1((-1,1))$. Hence, for every $u \in X$, it makes sense to speak of u(0), and for every $v \in X$, it makes sense to speak of v(0) and $\int_{-1}^{1} xv(x) dx$. Thus, for $u, v \in X$, $\langle B(u), v \rangle$ is well-defined and

$$|\langle B(u), v \rangle| \le ||u||_{L^{\infty}} ||v||_{L^{\infty}} + ||v||_{L^{1}} \le C(||u|| + 1)||v||,$$

where here and below C denote a universal constant depending only on the constants in the embedding of X into $C^0([-1,1])$ and $L^1((-1,1))$. This shows that $B(u) \in X^*$, and so $F_{\mu} : X \to X^*$ is well-defined for every $\mu \in \mathbb{R}$.

(ii) Existence of zero of F_{μ} : We first show that F_{μ} satisfies (H1) and (H3).

We saw above that $||A(u)||_* \le ||u||$ and $||B(u)||_* \le C(||u|| + 1)$ and so

$$||F_{\mu}(u)||_{*} \leq ||u|| + \mu C(||u|| + 1)$$

This implies that F_{μ} maps bounded sets into bounded sets, i.e. (H1) holds.

Before proving (H3), we note that A is a monotone operator (by (a)) and B is a compact operator. To see that B is compact, suppose that (w_n) is bounded in X. By reflexivity of X and compactness of the embedding $H^2((-1,1)) \hookrightarrow C^1([-1,1])$, there exists a subsequence (w_{n_k}) which converges weakly in X and uniformly to a limit $w \in X$. Then

$$\langle B(w_{n_k}) - B(w), v \rangle = |(w_{n_k}(0) - u(0))v(0)| \le C ||w_{n_k} - w||_{L^{\infty}} ||v||$$

which implies $||B(w_{n_k}) - B(w)||_* \le C ||w_{n_k} - w||_{L^{\infty}} \to 0$, i.e. $B(w_{n_k}) \to B(w)$ in X^* . Thus B is compact.

We can now prove (H3). Assume that $u_n \rightharpoonup u$ in X and $F_{\mu}(u_n) \rightharpoonup \xi$ in X^{*}. By compactness, we have that $B(u_n) \rightarrow B(u)$ in X^{*}. This, on one hand, implies that

$$\langle B(u), u \rangle = \lim \langle B(u_n), u_n \rangle,$$

and, on the other hand, implies that $A(u_n) \rightharpoonup \xi - \mu B(u)$ in X^* and so (since monotone operator satisfies (H3)),

$$\langle \xi - \mu B(u), u \rangle \le \liminf \langle A(u_n), u_n \rangle.$$

We thus have

$$\langle \xi, u \rangle \le \liminf \langle F_{\mu}(u_n), u_n \rangle.$$

Moreover, if equality holds, then by (H3) for A, it must hold that $A(u) = \xi - \mu B(u)$ and so $F_{\mu}(u) = \xi$. We have thus shown that F_{μ} satisfies (H3).

[Note that, with a little bit of further effort, one can show that if $u_n \rightharpoonup u$, then $F_{\mu}(u_n) \rightharpoonup F_{\mu}(u)$.]

We next show that if $|\mu| \leq \mu_0$ for some threshold μ_0 , then F_{μ} satisfies (H2), namely there exists R > 0 such that

$$\langle F_{\mu}(u), u \rangle > 0$$
 for $||u|| > R$.

Indeed we have

$$\langle F_{\mu}(u), u \rangle = \int_{-1}^{1} (u'')^2 \, dx + \mu u(0)^2 + \mu \int_{-1}^{1} x u(x) \, dx$$

$$\geq c_0 \|u\|^2 - |\mu| \|u\|_{L^{\infty}}^2 - |\mu| \|u\|_{L^1}$$

$$\geq c_0 \|u\|^2 - C|\mu| \|u\|^2 - C|\mu|.$$

Thus, if $|\mu|| \leq \mu_0 := \frac{c_0}{2C}$, then $\langle F_{\mu}(u), u \rangle > 0$ when $||u|| > \frac{C\mu_0}{c_0 - C\mu_0}$. (H2) is established.

We may now apply the theorem in the lectures to conclude that F_{μ} has a zero for $|\mu| \leq \mu_0$.

(iii) Uniqueness of zero of F_{μ} : If u_1 and u_2 are two zeros of F_{μ} , then with $v = u_1 - u_2$,

$$0 = \langle F_{\mu}(u_1) - u_2, v \rangle = \int_{-1}^{1} (u'')^2 \, dx + \mu u(0)^2 \ge (c_0 - C\mu) \|v\|^2$$

Since $c_0 - C\mu > 0$ (by the very definition of μ_0), we deduce that v = 0, i.e. $u_1 = u_2$.

[In fact, the above prove the existence and uniqueness of zero of F_{μ} for $\mu \geq -\mu_0$.]

(c) The desired functional is

$$I_{\mu}[u] = \int_{-1}^{1} \frac{1}{2} (u'')^2 \, dx + \frac{\mu}{2} (u(0))^2 + \int_{-1}^{1} \mu x u(x) \, dx.$$

When $\mu > 0$, it is routine to check that I_{μ} is strictly convex (using (a)) and Frechet differentiable with derivative

$$\langle DI_{\mu}[u], v \rangle = \int_{-1}^{1} u'' v'' \, dx + u(0)v(0) + \int_{-1}^{1} \mu x v(x) \, dx = \langle F_{\mu}(u), v \rangle.$$

Thus u is a zero of F_{μ} if and only if it is a critical point of I_{μ} , which must be unique because of the convexity of I_{μ} .

To conclude, we show that I_{μ} has a minimizer. By convexity, we know that I_{μ} is weakly sequentially lower semi-continuous. Thus, we only need to show that I_{μ} is coercive. Indeed, by (a) and noting that $\mu \geq 0$,

$$I_{\mu}[u] \ge \frac{\pi^4}{4} \|u\|_{L^2}^2 - \mu\sqrt{2}\|u\|_{L^2} \ge \frac{\pi^4}{8} \|u\|_{L^2}^2 - \frac{4\mu^2}{\pi^4}.$$

We are done.

QUESTION 4. Consider a domain $\Omega \subset \mathbb{R}^n$ which is smooth and bounded, and $g \in C^2(\mathbb{R}^n)$ such that $g \leq 0$ on $\partial\Omega$. Consider the energy I given by

$$I(v) = \int_{\Omega} |\Delta v|^2 + fv dx, \quad v \in H^2(\Omega) \cap H^1_0(\Omega)$$

for some $f \in L^2(\Omega)$.

- (1) Find the Euler-Lagrange equation satisfied by the critical points of I(v) and prove that every critical point of I is a minimiser.
- (2) Consider the set M given by

$$M := \left\{ v \in H^2(\Omega) \cap H^1_0(\Omega) \, | \, v \ge g \text{ a.e. on } \Omega \right\}.$$

Show that there exists a unique minimizer of I on M —check carefully that the assumptions of the Theorem(s) you use are satisfied. You may use without proof that for all $u \in H_0^1(\Omega) \cap H^2(\Omega)$

$$||u||_{H^1_0(\Omega)} \le C ||\Delta u||_{L^2(\Omega)},$$

where the constant C is independent of u.

Solution. (1) Let $X = H^2(\Omega) \cap H^1_0(\Omega)$. It is routine to check that I is strictly convex and Frechet differentiable on X with derivative

$$\langle DI(u), v \rangle = \int_{\Omega} (2\Delta u \Delta v + fv) \, dx$$

The Euler-Lagrange equation is thus

$$2\Delta^2 u + f = 0.$$

The assertion that every criticial point is a minimizer of I follows from the same argument as in $Q_3(c)$.

(2) Since $g \leq 0$ on $\partial \Omega$, $0 \in M$ and so M is non-empty. M is clearly convex.

We have that I is convex and so is weakly sequentially lower semi-continuous.

I is coercive because

$$I(u) \ge c_0 ||u||^2 - ||f||_{L^2} ||u|| \ge \frac{c_0}{2} ||u||^2 - \frac{||f||_{L^2}^2}{2c_0}.$$

To obtain a minimiser of I in M, we only need to show that M is closed (hence weakly closed by convexity of M). Indeed, if $(u_n) \subset M$ and $u_n \to u$ in X, then along a subsequence $u_{n_k} \to u$ a.e. which implies $u \geq g$ a.e. and so $u \in M$.

The uniqueness of the minimiser follows from the strict convexity of I.

QUESTION 5. Three approaches to the same problem. Consider a domain $\Omega = \{(x, y) \in \mathbb{R}^2 \text{ s.t. } x^2 + y^2 \leq 1\}$ and the equation

$$-\Delta u + u^5 = 1$$
 in Ω , $u = 0$ on $\partial \Omega$.

- Show that this equation makes sense in $H_0^1(\Omega)$, that is, it has a legitimate weak variational formulation.
- Using the first part of the course, show that you can formulate it as a fixed point problem of the form u = T(u) where T is a continuous compact map.
- Find a simple subsolution \underline{u} and a simple supersolution \overline{u} . Show that the problem can be transformed into

$$-\Delta u + \lambda u = f_{\lambda}(u)$$

for a constant $\lambda > 0$ chosen so that $f_{\lambda}(u)$ is increasing when $\underline{u} \leq u \leq \overline{u}$, and use the method of sub and super solutions to show that a solution u can be found by a constructive (iterative) method.

- Using Schauder's FPT and the above show that there exists a solution.
- Use the variational inequality approach to find a solution in $H_0^1(\Omega)$.
- What can you say about uniqueness?

Solution. (a) Note that if $u \in H_0^1(\Omega)$, then $u \in L^p(\Omega)$ for any $p < \infty$ by the Gagliardo-Nirenberg-Sobolev theorem. Thus, we can define a weak solution to the given problem as a function $u \in H_0^1(\Omega)$ such that

(WF)
$$\int_{\Omega} [\nabla u \cdot \nabla v + u^5 v - v] \, dx = 0 \text{ for all } v \in H^1_0(\Omega).$$

(b) We may recast this as a fixed point problem of the form u = T(u) with T defined by

$$T(u) = (-\Delta)^{-1} N(u)$$

where $(-\Delta)^{-1} : H^{-1}(\Omega) \to H^1_0(\Omega)$ denotes the inverse of the operator $-\Delta : H^1_0(\Omega) \to H^{-1}(\Omega)$ and $N : H^1_0(\Omega) \to H^{-1}(\Omega)$ is defined by $N(u) = -u^5 + 1$.

By the result on the continuity of the Nemytsky map, N is continuous as a map from e.g. $L^{10}(\Omega)$ into $L^2(\Omega)$. Since $H_0^1(\Omega)$ embeds compactly into $L^{10}(\Omega)$ by Rellich-Kondrachov's theorem, and $L^2(\Omega)$ embeds continuously (in fact compactly, but this isn't needed) into $H^{-1}(\Omega)$, we have that N is a compact operator from $H_0^1(\Omega)$ into $H^{-1}(\Omega)$. Since $(-\Delta)^{-1}$ is continuous, we deduce that $T = (-\Delta)^{-1}N$ is compact.

(c) One can simply takes $\underline{u} = 0$ and $\overline{u} = 1$.

Let $f(t) = -t^5 + 1$. Note that $f'(t) = -5t^4 \ge -5$ in [0, 1]. Hence f(t) + 5t is increasing in [0, 1]. Define

$$g(t) = \begin{cases} f(t) + 5t & \text{if } t \in [0, 1], \\ f(0) & \text{if } t < 0, \\ f(1) + 5 & \text{if } t > 1. \end{cases}$$

Then g is increasing and the problem

$$-\Delta u + 5u = g(u)$$
 in $\Omega, u = 0$ on $\partial \Omega$

admits \underline{u} as a subsolution and \overline{u} as a super-solution. Hence it has a solution $u \in H_0^1(\Omega)$ satisfying $0 = \underline{u} \leq u \leq \overline{u} = 1$ a.e. In particular g(u) = f(u) + 5u and so $-\Delta u = f(u)$ as required.

[In fact, one can show that all solutions must satisfy $0 \le u \le 1$:

(i) Proof that $u \ge 0$: Suppose u solves (WF). Using $v = u^{-1}$ in (WF), we get

$$0 = \int_{\Omega} [\nabla u \cdot \nabla u^{-} + u^{5}u^{-} - u^{-}] \, dx = \int_{\{u < 0\}} [-|\nabla u|^{2} - u^{6} + u] \, dx \le 0$$

which implies that u = 0 a.e. in $\{u < 0\}$, which means $u \ge 0$ a.e.

(ii) Proof that $u \leq 1$: Suppose u solves (WF). Using $v = (u - 1)^+$ in (WF), we get

$$0 = \int_{\Omega} \left[\nabla u \cdot \nabla (u-1)^{+} + u^{5}(u-1)^{+} - (u-1)^{+} \right] dx = \int_{\{u>1\}} \left[|\nabla u|^{2} + (u^{5}-1)(u-1) \right] dx \ge 0$$

which implies that u = 1 a.e. in $\{u > 1\}$, which means $u \ge 1$ a.e.]

(d) Remark: If one follows the lecture notes, one will have a difficulty in finding R > 0 such that T maps \bar{B}_R into \bar{B}_R because T have super-linear growth at infinity.

Here we use the intuition from (c). One recast the problem in the fixed point form $u = \tilde{T}(u)$ where

$$\tilde{T}(u) = (-\Delta + 5)^{-1} \tilde{N}(u)$$

with N(u) = f(u) + 5u =: h(u).

We knew from the discussion at the end of (c) that any solution if exists with be trapped between 0 and 1. We thus consider the non-empty closed convex set

$$M = \{ u \in H_0^1(\Omega) : 0 \le u \le 1 \}.$$

Claim: \tilde{T} maps M into itself. Once this is done we can apply Schauder's fixed point theorem to get a fixed point of \tilde{T} in M, which will conclude this part.

Let $u \in M$. We would like to show that $0 \leq v := \tilde{T}(u) \leq 1$. Note v := T(u) satisfies

$$-\Delta v + 5v = h(u)$$
 in $\Omega, v = 0$ on $\partial \Omega$,

(i) Proof that $v \ge 0$: As $0 \ge u \le 1$ and h is increasing in [0, 1],

$$-\Delta v + 5v \ge h(0) = 0 \text{ in } \Omega, v = 0 \text{ on } \partial\Omega,$$

By the weak maximum principle, $v \ge 0$ a.e.

(ii) Proof that $v \leq 1$: Similarly, we have

$$-\Delta(v-1) + 5(v-1) = h(v) - h(1) \le 0 \text{ in } \Omega, v-1 = -1 \le 0 \text{ on } \partial\Omega,$$

By the weak maximum principle, $v - 1 \leq 0$ a.e., i.e. $v \leq 1$ a.e.

We can now apply Schauder's fixed point theorem to the compact map $\tilde{T}: M \to M$ to obtain the desired solution.

[Alternatively, one can work with $\hat{T} = (-\Delta + 5)^{-1}\hat{N}$ where $\hat{N}(u) = g(u)$, and using the fact that g is bounded to obtain a fixed point of \hat{T} . After this is achieved, use the weak maximum principle to show that the obtained solution satisfies $0 \le u \le 1$ and so satisfies the original equation.]

(e) The given equation is recognised as the Euler-Lagrange equation for critical points of the functional

$$J[u] = \int_{\Omega} (\frac{1}{2} |\nabla u|^2 + \frac{1}{6} u^6 - u) \, dx.$$

This is a convex functional, and we could use the argument in Q3, Q4 to deduce the existence of a minimiser, which is the unique critical point of J.

Alternatively, one uses $A(u) = -\Delta u + u^5 - 1$ as a map from $H_0^1(\Omega)$ into $H^{-1}(\Omega)$ and verify the condition (H1), (H2), (H3) as in Q1, noting that A is a monotone operator.

(f) As seen in (e), uniqueness of solution holds.