
Computational Mathematics
2025 Projects

Patrick E. Farrell

University of Oxford

1 / 61

Overview

General advice on projects

2025A: Convex hulls

2025B: Orbital elements

2025C: Pension planning

Summary

Previous projects: comments and guidance

2024A: Primality testing

2024C: Percolation

2 / 61

Overview

Section 1

Overview

3 / 61

Overview

Computational Mathematics is assessed by projects.

You must complete two projects out of three offered.

You can do the projects in any order.

Together, the two projects count for one half of a Prelims paper.

Passing Computational Mathematics is necessary to pass Prelims.

4 / 61

Overview

Computational Mathematics is assessed by projects.

You must complete two projects out of three offered.

You can do the projects in any order.

Together, the two projects count for one half of a Prelims paper.

Passing Computational Mathematics is necessary to pass Prelims.

4 / 61

Overview

Computational Mathematics is assessed by projects.

You must complete two projects out of three offered.

You can do the projects in any order.

Together, the two projects count for one half of a Prelims paper.

Passing Computational Mathematics is necessary to pass Prelims.

4 / 61

Overview

Computational Mathematics is assessed by projects.

You must complete two projects out of three offered.

You can do the projects in any order.

Together, the two projects count for one half of a Prelims paper.

Passing Computational Mathematics is necessary to pass Prelims.

4 / 61

Overview

Computational Mathematics is assessed by projects.

You must complete two projects out of three offered.

You can do the projects in any order.

Together, the two projects count for one half of a Prelims paper.

Passing Computational Mathematics is necessary to pass Prelims.

4 / 61

Overview

The deadlines for these projects are

I 1st project: 12 noon on Monday of week 2 TT25
I 2nd project: 12 noon on Monday of week 5 TT25

Please submit online via Inspera before these deadlines.

The University imposes mark penalties for late submission.

5 / 61

Overview

The deadlines for these projects are

I 1st project: 12 noon on Monday of week 2 TT25

I 2nd project: 12 noon on Monday of week 5 TT25

Please submit online via Inspera before these deadlines.

The University imposes mark penalties for late submission.

5 / 61

Overview

The deadlines for these projects are

I 1st project: 12 noon on Monday of week 2 TT25
I 2nd project: 12 noon on Monday of week 5 TT25

Please submit online via Inspera before these deadlines.

The University imposes mark penalties for late submission.

5 / 61

Overview

The deadlines for these projects are

I 1st project: 12 noon on Monday of week 2 TT25
I 2nd project: 12 noon on Monday of week 5 TT25

Please submit online via Inspera before these deadlines.

The University imposes mark penalties for late submission.

5 / 61

Overview

The deadlines for these projects are

I 1st project: 12 noon on Monday of week 2 TT25
I 2nd project: 12 noon on Monday of week 5 TT25

Please submit online via Inspera before these deadlines.

The University imposes mark penalties for late submission.

5 / 61

General advice on projects

Section 2

General advice on projects

6 / 61

General advice on projects

The projects are similar to extended problem sheets.

Write your code in Python, taking care to answer each question completely.

Each project has some mathematical questions not answered by coding. You can write your
answer in words, or use basic latex: adding

\begin{equation*}
\sin{x} = 1.
\end{equation*}

to your code produces published output that looks like

sinx = 1.

You can write latex inline using dollars: \sin{x} produces sinx.

7 / 61

General advice on projects

The projects are similar to extended problem sheets.

Write your code in Python, taking care to answer each question completely.

Each project has some mathematical questions not answered by coding. You can write your
answer in words, or use basic latex: adding

\begin{equation*}
\sin{x} = 1.
\end{equation*}

to your code produces published output that looks like

sinx = 1.

You can write latex inline using dollars: \sin{x} produces sinx.

7 / 61

General advice on projects

The projects are similar to extended problem sheets.

Write your code in Python, taking care to answer each question completely.

Each project has some mathematical questions not answered by coding. You can write your
answer in words, or use basic latex: adding

\begin{equation*}
\sin{x} = 1.
\end{equation*}

to your code produces published output that looks like

sinx = 1.

You can write latex inline using dollars: \sin{x} produces sinx.

7 / 61

General advice on projects

The projects are similar to extended problem sheets.

Write your code in Python, taking care to answer each question completely.

Each project has some mathematical questions not answered by coding. You can write your
answer in words, or use basic latex: adding

\begin{equation*}
\sin{x} = 1.
\end{equation*}

to your code produces published output that looks like

sinx = 1.

You can write latex inline using dollars: \sin{x} produces sinx.

7 / 61

General advice on projects

Use publish.py to generate a .html of the code and its output.

Submit both your code (.py) and the published output (.html), gathered into exactly one .zip
or .tar.gz file.

I think everyone got publish working in the demonstration sessions, but in case it doesn’t
work, don’t stress. Just submit the .py file.

Examiners may wish to run your code to e.g. test if a function is implemented correctly.

8 / 61

General advice on projects

Use publish.py to generate a .html of the code and its output.

Submit both your code (.py) and the published output (.html), gathered into exactly one .zip
or .tar.gz file.

I think everyone got publish working in the demonstration sessions, but in case it doesn’t
work, don’t stress. Just submit the .py file.

Examiners may wish to run your code to e.g. test if a function is implemented correctly.

8 / 61

General advice on projects

Use publish.py to generate a .html of the code and its output.

Submit both your code (.py) and the published output (.html), gathered into exactly one .zip
or .tar.gz file.

I think everyone got publish working in the demonstration sessions, but in case it doesn’t
work, don’t stress. Just submit the .py file.

Examiners may wish to run your code to e.g. test if a function is implemented correctly.

8 / 61

General advice on projects

Use publish.py to generate a .html of the code and its output.

Submit both your code (.py) and the published output (.html), gathered into exactly one .zip
or .tar.gz file.

I think everyone got publish working in the demonstration sessions, but in case it doesn’t
work, don’t stress. Just submit the .py file.

Examiners may wish to run your code to e.g. test if a function is implemented correctly.

8 / 61

General advice on projects

What makes a good submission?

Projects are marked for mathematical insight (40%), programming skill (40%), and clarity of
presentation (20%).

Markers are looking for:
I clear and well-written code;
I computational evidence that each function is correct;
I clear and comprehensible plots (e.g. axis labels, titles, legends);
I mathematical discussion that indicates understanding of and insight into the algorithms

and observed results.

9 / 61

General advice on projects

What makes a good submission?

Projects are marked for mathematical insight (40%), programming skill (40%), and clarity of
presentation (20%).

Markers are looking for:
I clear and well-written code;
I computational evidence that each function is correct;
I clear and comprehensible plots (e.g. axis labels, titles, legends);
I mathematical discussion that indicates understanding of and insight into the algorithms

and observed results.

9 / 61

General advice on projects

What makes a good submission?

Projects are marked for mathematical insight (40%), programming skill (40%), and clarity of
presentation (20%).

Markers are looking for:
I clear and well-written code;
I computational evidence that each function is correct;
I clear and comprehensible plots (e.g. axis labels, titles, legends);
I mathematical discussion that indicates understanding of and insight into the algorithms

and observed results.

9 / 61

General advice on projects

We strongly recommend you complete and upload them in good time.

You may have unforeseen problems with
I getting the code to work correctly;
I hardware issues, e.g. your computer failing;
I network problems, when trying to upload.

Completing the projects in good time also gives you the opportunity to proofread and edit your
work before submission.

Keep good backups of all your work.

10 / 61

General advice on projects

We strongly recommend you complete and upload them in good time.

You may have unforeseen problems with
I getting the code to work correctly;
I hardware issues, e.g. your computer failing;
I network problems, when trying to upload.

Completing the projects in good time also gives you the opportunity to proofread and edit your
work before submission.

Keep good backups of all your work.

10 / 61

General advice on projects

We strongly recommend you complete and upload them in good time.

You may have unforeseen problems with
I getting the code to work correctly;
I hardware issues, e.g. your computer failing;
I network problems, when trying to upload.

Completing the projects in good time also gives you the opportunity to proofread and edit your
work before submission.

Keep good backups of all your work.

10 / 61

General advice on projects

We strongly recommend you complete and upload them in good time.

You may have unforeseen problems with
I getting the code to work correctly;
I hardware issues, e.g. your computer failing;
I network problems, when trying to upload.

Completing the projects in good time also gives you the opportunity to proofread and edit your
work before submission.

Keep good backups of all your work.

10 / 61

General advice on projects

All projects must be your own unaided work. You will be asked to make a declaration
to this effect when you submit them.

Examples of unacceptable conduct include:
I copying a substantial part of anyone else’s program;
I using a substantial part of another program as a model;
I agreeing a detailed program plan with others;
I using generative AI (ChatGPT etc) to produce any part of your code;
I posting questions on the internet, such as on StackExchange;
I sharing your work with other students (actively or passively, e.g. by uploading your work

somewhere available to the public).

The University’s plagiarism policy applies in full. Potential penalties for plagiarism range from
deduction of marks to expulsion.

11 / 61

General advice on projects

All projects must be your own unaided work. You will be asked to make a declaration
to this effect when you submit them.

Examples of unacceptable conduct include:
I copying a substantial part of anyone else’s program;

I using a substantial part of another program as a model;
I agreeing a detailed program plan with others;
I using generative AI (ChatGPT etc) to produce any part of your code;
I posting questions on the internet, such as on StackExchange;
I sharing your work with other students (actively or passively, e.g. by uploading your work

somewhere available to the public).

The University’s plagiarism policy applies in full. Potential penalties for plagiarism range from
deduction of marks to expulsion.

11 / 61

General advice on projects

All projects must be your own unaided work. You will be asked to make a declaration
to this effect when you submit them.

Examples of unacceptable conduct include:
I copying a substantial part of anyone else’s program;
I using a substantial part of another program as a model;

I agreeing a detailed program plan with others;
I using generative AI (ChatGPT etc) to produce any part of your code;
I posting questions on the internet, such as on StackExchange;
I sharing your work with other students (actively or passively, e.g. by uploading your work

somewhere available to the public).

The University’s plagiarism policy applies in full. Potential penalties for plagiarism range from
deduction of marks to expulsion.

11 / 61

General advice on projects

All projects must be your own unaided work. You will be asked to make a declaration
to this effect when you submit them.

Examples of unacceptable conduct include:
I copying a substantial part of anyone else’s program;
I using a substantial part of another program as a model;
I agreeing a detailed program plan with others;

I using generative AI (ChatGPT etc) to produce any part of your code;
I posting questions on the internet, such as on StackExchange;
I sharing your work with other students (actively or passively, e.g. by uploading your work

somewhere available to the public).

The University’s plagiarism policy applies in full. Potential penalties for plagiarism range from
deduction of marks to expulsion.

11 / 61

General advice on projects

All projects must be your own unaided work. You will be asked to make a declaration
to this effect when you submit them.

Examples of unacceptable conduct include:
I copying a substantial part of anyone else’s program;
I using a substantial part of another program as a model;
I agreeing a detailed program plan with others;
I using generative AI (ChatGPT etc) to produce any part of your code;

I posting questions on the internet, such as on StackExchange;
I sharing your work with other students (actively or passively, e.g. by uploading your work

somewhere available to the public).

The University’s plagiarism policy applies in full. Potential penalties for plagiarism range from
deduction of marks to expulsion.

11 / 61

General advice on projects

All projects must be your own unaided work. You will be asked to make a declaration
to this effect when you submit them.

Examples of unacceptable conduct include:
I copying a substantial part of anyone else’s program;
I using a substantial part of another program as a model;
I agreeing a detailed program plan with others;
I using generative AI (ChatGPT etc) to produce any part of your code;
I posting questions on the internet, such as on StackExchange;

I sharing your work with other students (actively or passively, e.g. by uploading your work
somewhere available to the public).

The University’s plagiarism policy applies in full. Potential penalties for plagiarism range from
deduction of marks to expulsion.

11 / 61

General advice on projects

All projects must be your own unaided work. You will be asked to make a declaration
to this effect when you submit them.

Examples of unacceptable conduct include:
I copying a substantial part of anyone else’s program;
I using a substantial part of another program as a model;
I agreeing a detailed program plan with others;
I using generative AI (ChatGPT etc) to produce any part of your code;
I posting questions on the internet, such as on StackExchange;
I sharing your work with other students (actively or passively, e.g. by uploading your work

somewhere available to the public).

The University’s plagiarism policy applies in full. Potential penalties for plagiarism range from
deduction of marks to expulsion.

11 / 61

General advice on projects

All projects must be your own unaided work. You will be asked to make a declaration
to this effect when you submit them.

Examples of unacceptable conduct include:
I copying a substantial part of anyone else’s program;
I using a substantial part of another program as a model;
I agreeing a detailed program plan with others;
I using generative AI (ChatGPT etc) to produce any part of your code;
I posting questions on the internet, such as on StackExchange;
I sharing your work with other students (actively or passively, e.g. by uploading your work

somewhere available to the public).

The University’s plagiarism policy applies in full. Potential penalties for plagiarism range from
deduction of marks to expulsion.

11 / 61

General advice on projects

Acceptable (and encouraged) practices include:
I using search engines like Google;

I consulting documentation, e.g. for libraries used;
I consulting online forums, e.g. StackExchange, for details of how to use libraries or resolve

errors.

When you do these, include the URL of the resource you have employed in code comments, as
a citation.

12 / 61

General advice on projects

Acceptable (and encouraged) practices include:
I using search engines like Google;
I consulting documentation, e.g. for libraries used;

I consulting online forums, e.g. StackExchange, for details of how to use libraries or resolve
errors.

When you do these, include the URL of the resource you have employed in code comments, as
a citation.

12 / 61

General advice on projects

Acceptable (and encouraged) practices include:
I using search engines like Google;
I consulting documentation, e.g. for libraries used;
I consulting online forums, e.g. StackExchange, for details of how to use libraries or resolve

errors.

When you do these, include the URL of the resource you have employed in code comments, as
a citation.

12 / 61

General advice on projects

Acceptable (and encouraged) practices include:
I using search engines like Google;
I consulting documentation, e.g. for libraries used;
I consulting online forums, e.g. StackExchange, for details of how to use libraries or resolve

errors.

When you do these, include the URL of the resource you have employed in code comments, as
a citation.

12 / 61

2025A: Convex hulls

Section 3

2025A: Convex hulls

13 / 61

2025A: Convex hulls

Convexity is a fundamental notion in geometry.

Definition (Convex set)
Let V = Rd, d ∈ N+. A set C ⊂ V is convex if the line segment joining any two points in C is
itself a subset of C:

∀ p, q ∈ C ∀ t ∈ [0, 1] tp+ (1− t)q ∈ C.

𝑝

𝑞

𝑝

𝑞

14 / 61

2025A: Convex hulls

Definition (Convex hull)
Given S ⊂ V , its convex hull C = hullS is the minimal convex set containing S.

Minimality means that if S ⊂ C ′ and C ′ is convex, then C ⊆ C ′.

S = black points. (a) A nonconvex containing set. (b) A convex containing set. (c) The minimal
convex containing set, the convex hull.

15 / 61

2025A: Convex hulls

Definition (Convex hull)
Given S ⊂ V , its convex hull C = hullS is the minimal convex set containing S.

Minimality means that if S ⊂ C ′ and C ′ is convex, then C ⊆ C ′.

S = black points. (a) A nonconvex containing set. (b) A convex containing set. (c) The minimal
convex containing set, the convex hull.

15 / 61

2025A: Convex hulls

Definition (Convex hull)
Given S ⊂ V , its convex hull C = hullS is the minimal convex set containing S.

Minimality means that if S ⊂ C ′ and C ′ is convex, then C ⊆ C ′.

S = black points. (a) A nonconvex containing set. (b) A convex containing set. (c) The minimal
convex containing set, the convex hull.

15 / 61

2025A: Convex hulls

Given a point set S, how do we compute its convex hull?

In this project we will study two algorithms for solving this problem in two dimensions:
I Graham scan;
I divide and conquer.

The Graham scan is very simple and efficient, but only works in two dimensions. Divide and
conquer extends to higher dimensions but is a little bit more involved.

We will also investigate the complexity of these algorithms, in runtime and in storage.

16 / 61

2025A: Convex hulls

Given a point set S, how do we compute its convex hull?

In this project we will study two algorithms for solving this problem in two dimensions:
I Graham scan;
I divide and conquer.

The Graham scan is very simple and efficient, but only works in two dimensions. Divide and
conquer extends to higher dimensions but is a little bit more involved.

We will also investigate the complexity of these algorithms, in runtime and in storage.

16 / 61

2025A: Convex hulls

Given a point set S, how do we compute its convex hull?

In this project we will study two algorithms for solving this problem in two dimensions:
I Graham scan;
I divide and conquer.

The Graham scan is very simple and efficient, but only works in two dimensions. Divide and
conquer extends to higher dimensions but is a little bit more involved.

We will also investigate the complexity of these algorithms, in runtime and in storage.

16 / 61

2025A: Convex hulls

Given a point set S, how do we compute its convex hull?

In this project we will study two algorithms for solving this problem in two dimensions:
I Graham scan;
I divide and conquer.

The Graham scan is very simple and efficient, but only works in two dimensions. Divide and
conquer extends to higher dimensions but is a little bit more involved.

We will also investigate the complexity of these algorithms, in runtime and in storage.

16 / 61

2025A: Convex hulls

Euclid’s Elements culminates with a proof that there are only five regular convex
three-dimensional polyhedra:

Plato associates each of these to a constituent of the physical universe:
… four equilaterals form the sides of a regular solid, the tetrahedron or pyramid, which is
the constituent particle of fire: eight such equilaterals are the sides of the octahedron,
which is the particle of air; twenty equilaterals are the sides of the icosahedron, being
the particle of water. … six squares are the sides of a fourth regular solid called the
cube, which is the particle proper to earth. A fifth regular solid still exists, namely the
dodecahedron, which does not form the element of any substance; but God used it as
a pattern for dividing the zodiac into its twelve signs.

17 / 61

2025A: Convex hulls

Euclid’s Elements culminates with a proof that there are only five regular convex
three-dimensional polyhedra:

Plato associates each of these to a constituent of the physical universe:
… four equilaterals form the sides of a regular solid, the tetrahedron or pyramid, which is
the constituent particle of fire: eight such equilaterals are the sides of the octahedron,
which is the particle of air; twenty equilaterals are the sides of the icosahedron, being
the particle of water. … six squares are the sides of a fourth regular solid called the
cube, which is the particle proper to earth. A fifth regular solid still exists, namely the
dodecahedron, which does not form the element of any substance; but God used it as
a pattern for dividing the zodiac into its twelve signs.

17 / 61

2025B: Orbital elements

Section 4

2025B: Orbital elements

18 / 61

2025B: Orbital elements

In 1609 Kepler realised that a single planet orbiting the sun follows an
elliptical trajectory.

With multiple planets this is no longer true, but it is still a good
approximation.

Geometers therefore paid great attention to ellipses in three dimensions.

Ellipses in three dimensions are described by six parameters: the orbital
elements.

Johannes Kepler, 1571–1630

19 / 61

2025B: Orbital elements

In 1609 Kepler realised that a single planet orbiting the sun follows an
elliptical trajectory.

With multiple planets this is no longer true, but it is still a good
approximation.

Geometers therefore paid great attention to ellipses in three dimensions.

Ellipses in three dimensions are described by six parameters: the orbital
elements.

Johannes Kepler, 1571–1630

19 / 61

2025B: Orbital elements

In 1609 Kepler realised that a single planet orbiting the sun follows an
elliptical trajectory.

With multiple planets this is no longer true, but it is still a good
approximation.

Geometers therefore paid great attention to ellipses in three dimensions.

Ellipses in three dimensions are described by six parameters: the orbital
elements.

Johannes Kepler, 1571–1630

19 / 61

2025B: Orbital elements

In 1609 Kepler realised that a single planet orbiting the sun follows an
elliptical trajectory.

With multiple planets this is no longer true, but it is still a good
approximation.

Geometers therefore paid great attention to ellipses in three dimensions.

Ellipses in three dimensions are described by six parameters: the orbital
elements.

Johannes Kepler, 1571–1630

19 / 61

2025B: Orbital elements

In A Synopsis of the Astronomy of Comets, Halley realised that the comet
he had observed in 1682 was the same as that seen by Kepler in 1607:

The principal Use therefore of this Table of the Elements of their
Motions, and that which induced me to construct it, is, That when-
ever a new Comet shall appear, we may be able to know, by com-
paring together the Elements, whether it be any of those which has
appear’d before, and consequently to determine its Period, and the
Axis of its Orbit, and to foretell its Return. And, indeed, there are
many Things which make me believe that the Comet which Apian
observ’d in the Year 1531, was the same with that which Kepler and
Longomontanus took Notice of and describ’d in the Year 1607, and
which I my self have seen return, and observ’d in the Year 1682.
All the Elements agree, and nothing seems to contradict this my
Opinion, besides the Inequality of the Periodick Revolutions.

Edmund Halley FRS, 1656–1742

20 / 61

2025B: Orbital elements

Halley’s comet also appeared in 1066, just before the Norman invasion.

In this project we use the orbital elements of Halley’s comet to ‘foretell its Return’.

21 / 61

2025B: Orbital elements

Halley’s comet also appeared in 1066, just before the Norman invasion.

In this project we use the orbital elements of Halley’s comet to ‘foretell its Return’.
21 / 61

2025B: Orbital elements

Positive 𝑥-axis

Celestial body

Reference plane

Orbit

We describe ellipses in three dimensions with six parameters (a, e, i, Ω, ω, T).
22 / 61

2025B: Orbital elements

semi-major axis

Positive 𝑥-axis

Celestial body

Reference plane

Orbit

𝑎

The semi-major axis a is half the longest diameter of the ellipse.
22 / 61

2025B: Orbital elements

semi-major axis

Positive 𝑥-axis

Celestial body

Reference plane

Orbit

𝑎

The eccentricity e ∈ [0, 1) describes how circular or elliptical the orbit is.
22 / 61

2025B: Orbital elements

semi-major axis

Inclination

Positive 𝑥-axis

Celestial body

Reference plane

Orbit

𝑎

𝑖

The inclination i measures the angle between the orbiting ellipse and the reference plane.
22 / 61

2025B: Orbital elements

semi-major axis

Inclination

Positive 𝑥-axis

Celestial body

Reference plane

Orbit

𝑎

𝑖

The nodes are the two points where the orbit intersects the reference plane.
22 / 61

2025B: Orbital elements

semi-major axis

Inclination

Ascending node

Positive 𝑥-axis

Celestial body

Reference plane

Orbit

𝑎

𝑖
𝐴

The ascending node is the node with ż > 0.
22 / 61

2025B: Orbital elements

Longitude of ascending node

semi-major axis

Inclination

Ascending node

Positive 𝑥-axis

Celestial body

Reference plane

Orbit

Ω

𝑎

𝑖
𝐴

The longitude of the ascending node Ω measures the angle to the ascending node.
22 / 61

2025B: Orbital elements

Longitude of ascending node

𝑃 Periapsis

semi-major axis

Inclination

Ascending node

Positive 𝑥-axis

Celestial body

Reference plane

Orbit

Ω

𝑎

𝑖
𝐴

The periapsis is the point on the orbit closest to the sun.
22 / 61

2025B: Orbital elements

Longitude of ascending node

Argument of periapsis

𝑃 Periapsis

semi-major axis

Inclination

Ascending node

Positive 𝑥-axis

Celestial body

Reference plane

Orbit

Ω
ω

𝑎

𝑖
𝐴

The argument of periapsis measures the angle between the line of nodes and the periapsis.
22 / 61

2025B: Orbital elements

Longitude of ascending node

Argument of periapsis

𝑃 Periapsis

semi-major axis

Inclination

Ascending node

Positive 𝑥-axis

Celestial body

Reference plane

Orbit

Ω
ω

𝑎

𝑖
𝐴

The period T is the time taken by one orbit.
22 / 61

2025B: Orbital elements

Longitude of ascending node

Argument of periapsis

𝑃 Periapsis

semi-major axis

Inclination

Ascending node

Positive 𝑥-axis

Celestial body

Reference plane

Orbit

Ω
ω

𝑎

𝑖
𝐴

Finally, the time of periapsis τ is a time at which the body was at periapsis.
22 / 61

2025B: Orbital elements

Once you have the orbital elements, you can compute the position of the body at any time.

The key step is solving Kepler’s equation

f(E) = E − e sinE −M

for given M . We analyse this with the Banach contraction mapping theorem.

23 / 61

2025B: Orbital elements

Once you have the orbital elements, you can compute the position of the body at any time.

The key step is solving Kepler’s equation

f(E) = E − e sinE −M

for given M . We analyse this with the Banach contraction mapping theorem.

23 / 61

2025B: Orbital elements

Once you have the orbital elements, you can compute the position of the body at any time.

The key step is solving Kepler’s equation

f(E) = E − e sinE −M

for given M . We analyse this with the Banach contraction mapping theorem.

23 / 61

2025C: Pension planning

Section 5

2025C: Pension planning

24 / 61

2025C: Pension planning

Almost all pensions are now defined contribution: you and your employer invest a certain
amount M each month, and you use whatever money you have at retirement age to live on.

Our investments are uncertain: we do not know in advance how much money we will have.

How much do we need to invest in order to have a high probability of a comfortable
retirement?

25 / 61

2025C: Pension planning

Almost all pensions are now defined contribution: you and your employer invest a certain
amount M each month, and you use whatever money you have at retirement age to live on.

Our investments are uncertain: we do not know in advance how much money we will have.

How much do we need to invest in order to have a high probability of a comfortable
retirement?

25 / 61

2025C: Pension planning

Almost all pensions are now defined contribution: you and your employer invest a certain
amount M each month, and you use whatever money you have at retirement age to live on.

Our investments are uncertain: we do not know in advance how much money we will have.

How much do we need to invest in order to have a high probability of a comfortable
retirement?

25 / 61

2025C: Pension planning

Here is a very simple model of a pension.

We decide to invest in a stock whose price per share is S(t).

Each month we buy M worth of shares, so our holdings H increase by M/S(t) when
t = 0, 1/12, 2/12,

The final value of our pension is
V = H(T)S(T)

where T is the time at which we retire (e.g. T = 40 years).

Will V be enough to live on?

26 / 61

2025C: Pension planning

Here is a very simple model of a pension.

We decide to invest in a stock whose price per share is S(t).

Each month we buy M worth of shares, so our holdings H increase by M/S(t) when
t = 0, 1/12, 2/12,

The final value of our pension is
V = H(T)S(T)

where T is the time at which we retire (e.g. T = 40 years).

Will V be enough to live on?

26 / 61

2025C: Pension planning

Here is a very simple model of a pension.

We decide to invest in a stock whose price per share is S(t).

Each month we buy M worth of shares, so our holdings H increase by M/S(t) when
t = 0, 1/12, 2/12,

The final value of our pension is
V = H(T)S(T)

where T is the time at which we retire (e.g. T = 40 years).

Will V be enough to live on?

26 / 61

2025C: Pension planning

Here is a very simple model of a pension.

We decide to invest in a stock whose price per share is S(t).

Each month we buy M worth of shares, so our holdings H increase by M/S(t) when
t = 0, 1/12, 2/12,

The final value of our pension is
V = H(T)S(T)

where T is the time at which we retire (e.g. T = 40 years).

Will V be enough to live on?

26 / 61

2025C: Pension planning

Here is a very simple model of a pension.

We decide to invest in a stock whose price per share is S(t).

Each month we buy M worth of shares, so our holdings H increase by M/S(t) when
t = 0, 1/12, 2/12,

The final value of our pension is
V = H(T)S(T)

where T is the time at which we retire (e.g. T = 40 years).

Will V be enough to live on?

26 / 61

2025C: Pension planning

To answer questions about V , we need a model for S(t).

A reasonable first choice is geometric Brownian motion:

dS = µSdt+ σSdW.

This is a stochastic differential equation (SDE). It defines a stochastic process S(t), a family
of random variables indexed by time.

Here µ is the expected real growth rate (e.g. 5%), W is one-dimensional Brownian motion,
and σ is the volatility, a measure of how random the trajectories are.

27 / 61

2025C: Pension planning

To answer questions about V , we need a model for S(t).

A reasonable first choice is geometric Brownian motion:

dS = µSdt+ σSdW.

This is a stochastic differential equation (SDE). It defines a stochastic process S(t), a family
of random variables indexed by time.

Here µ is the expected real growth rate (e.g. 5%), W is one-dimensional Brownian motion,
and σ is the volatility, a measure of how random the trajectories are.

27 / 61

2025C: Pension planning

To answer questions about V , we need a model for S(t).

A reasonable first choice is geometric Brownian motion:

dS = µSdt+ σSdW.

This is a stochastic differential equation (SDE). It defines a stochastic process S(t), a family
of random variables indexed by time.

Here µ is the expected real growth rate (e.g. 5%), W is one-dimensional Brownian motion,
and σ is the volatility, a measure of how random the trajectories are.

27 / 61

2025C: Pension planning

To answer questions about V , we need a model for S(t).

A reasonable first choice is geometric Brownian motion:

dS = µSdt+ σSdW.

This is a stochastic differential equation (SDE). It defines a stochastic process S(t), a family
of random variables indexed by time.

Here µ is the expected real growth rate (e.g. 5%), W is one-dimensional Brownian motion,
and σ is the volatility, a measure of how random the trajectories are.

27 / 61

2025C: Pension planning

0 5 10 15 20 25 30 35 40
Time (years)

0

5

10

15

20

25

30

S(
t)

Geometric Brownian motion simulation of a stock
Mean path
5th percentile
95th percentile
Sample paths

σ = 0
28 / 61

2025C: Pension planning

0 5 10 15 20 25 30 35 40
Time (years)

0

5

10

15

20

25

30

S(
t)

Geometric Brownian motion simulation of a stock
Mean path
5th percentile
95th percentile
Sample paths

σ = 0.05
28 / 61

2025C: Pension planning

0 5 10 15 20 25 30 35 40
Time (years)

0

5

10

15

20

25

30

S(
t)

Geometric Brownian motion simulation of a stock
Mean path
5th percentile
95th percentile
Sample paths

σ = 0.10
28 / 61

2025C: Pension planning

0 5 10 15 20 25 30 35 40
Time (years)

0

5

10

15

20

25

30

S(
t)

Geometric Brownian motion simulation of a stock
Mean path
5th percentile
95th percentile
Sample paths

σ = 0.15
28 / 61

2025C: Pension planning

In this project, we compute samples from the SDE and use them to estimate quantities like

P[V ≥ £1, 000, 000]

as a function of the growth rate µ and monthly investment M .

29 / 61

Summary

Section 6

Summary

30 / 61

Summary

This year’s projects are
I computing convex hulls;
I predicting orbits;
I pension planning.

I hope that you find the projects interesting, and that you have fun!

31 / 61

Summary

This year’s projects are
I computing convex hulls;
I predicting orbits;
I pension planning.

I hope that you find the projects interesting, and that you have fun!

31 / 61

Previous projects: comments and guidance

Section 7

Previous projects: comments and guidance

32 / 61

2024A: Primality testing

Section 8

2024A: Primality testing

33 / 61

2024A: Primality testing

In 1801, in his magnum opus Disquisitiones Arithmeticae, Gauss wrote

The problem of distinguishing prime numbers from composite num-
bers and of resolving the latter into their prime factors is known
to be one of the most important and useful in arithmetic. It has
engaged the industry and wisdom of ancient and modern geometers
to such an extent that it would be superfluous to discuss the prob-
lem at length. … Further, the dignity of the science itself seems to
require that every possible means be explored for the solution of a
problem so elegant and so celebrated.

In this project we explored algorithms for primality testing.

Carl Friedrich Gauss, 1777–1855

34 / 61

2024A: Primality testing

In 1801, in his magnum opus Disquisitiones Arithmeticae, Gauss wrote

The problem of distinguishing prime numbers from composite num-
bers and of resolving the latter into their prime factors is known
to be one of the most important and useful in arithmetic. It has
engaged the industry and wisdom of ancient and modern geometers
to such an extent that it would be superfluous to discuss the prob-
lem at length. … Further, the dignity of the science itself seems to
require that every possible means be explored for the solution of a
problem so elegant and so celebrated.

In this project we explored algorithms for primality testing.

Carl Friedrich Gauss, 1777–1855

34 / 61

2024A: Primality testing

Question 2024A.1. Modify your code for Exercise 7.6 (which implements an efficient variant
of trial division) to return (flag, ndivisions), where flag = True if the input is prime
and False otherwise, and ndivisions is the count of the number of divisions performed.
Print the output of the function applied to all n ∈ 2 : 20. How many divisions are performed
to test the primality of 9999991111111?

−→ code

35 / 61

2024A: Primality testing

Question 2024A.1. Modify your code for Exercise 7.6 (which implements an efficient variant
of trial division) to return (flag, ndivisions), where flag = True if the input is prime
and False otherwise, and ndivisions is the count of the number of divisions performed.
Print the output of the function applied to all n ∈ 2 : 20. How many divisions are performed
to test the primality of 9999991111111?

−→ code

35 / 61

2024A: Primality testing

Many answers didn’t correctly count the number of divisions performed:

for m in range(2, math.isqrt(n)):
if m == 2 or m == 3 or m % 6 == 1 or m % 6 == 5:

ndivisions += 1
if n % m == 0:

return False

Some answers constructed the list of all numbers to try:

numbers_to_try = list(range(5, rootn, 6)) + list(range(7, rootn, 6))

This is egregiously inefficient since it takes O(
√
n) storage whereas there’s a straightforward

O(1) algorithm.

Some answers missed the point completely and tested with each odd number, or worse, with
each number up to

√
n.

36 / 61

2024A: Primality testing

Many answers didn’t correctly count the number of divisions performed:

for m in range(2, math.isqrt(n)):
if m == 2 or m == 3 or m % 6 == 1 or m % 6 == 5:

ndivisions += 1
if n % m == 0:

return False

Some answers constructed the list of all numbers to try:

numbers_to_try = list(range(5, rootn, 6)) + list(range(7, rootn, 6))

This is egregiously inefficient since it takes O(
√
n) storage whereas there’s a straightforward

O(1) algorithm.

Some answers missed the point completely and tested with each odd number, or worse, with
each number up to

√
n.

36 / 61

2024A: Primality testing

Many answers didn’t correctly count the number of divisions performed:

for m in range(2, math.isqrt(n)):
if m == 2 or m == 3 or m % 6 == 1 or m % 6 == 5:

ndivisions += 1
if n % m == 0:

return False

Some answers constructed the list of all numbers to try:

numbers_to_try = list(range(5, rootn, 6)) + list(range(7, rootn, 6))

This is egregiously inefficient since it takes O(
√
n) storage whereas there’s a straightforward

O(1) algorithm.

Some answers missed the point completely and tested with each odd number, or worse, with
each number up to

√
n.

36 / 61

2024A: Primality testing

Many answers didn’t correctly count the number of divisions performed:

for m in range(2, math.isqrt(n)):
if m == 2 or m == 3 or m % 6 == 1 or m % 6 == 5:

ndivisions += 1
if n % m == 0:

return False

Some answers constructed the list of all numbers to try:

numbers_to_try = list(range(5, rootn, 6)) + list(range(7, rootn, 6))

This is egregiously inefficient since it takes O(
√
n) storage whereas there’s a straightforward

O(1) algorithm.

Some answers missed the point completely and tested with each odd number, or worse, with
each number up to

√
n.

36 / 61

2024A: Primality testing

Question 2024A.2. Compute the number of divisions performed for all numbers n ∈ 2 : 105.
By means of a plot, verify that trial division takes about

√
n/3 divisions in the worst case to

test a number n for primality.

37 / 61

2024A: Primality testing

The code for the first question already returns the number of divisions required:
N = list(range(2, 10**5+1))
divisions = [trial_division(n)[1] for n in N]

In contrast, poor answers copied and pasted the answer to the first question and slightly
tweaked the code to only return the number of divisions.

This is an opportunity for demonstrating insight. Is the approximation perfect? No, because
we ignore the extra two divisions by {2, 3}.

The very best answers (not necessary for full marks) commented that the number of inputs
requiring the maximum number of divisions (i.e. prime numbers) appears not to decrease over
time—this is because the Prime Number Theorem guarantees that

π(n)

n
∼ 1

log n

which decays slowly.

38 / 61

2024A: Primality testing

The code for the first question already returns the number of divisions required:
N = list(range(2, 10**5+1))
divisions = [trial_division(n)[1] for n in N]

In contrast, poor answers copied and pasted the answer to the first question and slightly
tweaked the code to only return the number of divisions.

This is an opportunity for demonstrating insight. Is the approximation perfect? No, because
we ignore the extra two divisions by {2, 3}.

The very best answers (not necessary for full marks) commented that the number of inputs
requiring the maximum number of divisions (i.e. prime numbers) appears not to decrease over
time—this is because the Prime Number Theorem guarantees that

π(n)

n
∼ 1

log n

which decays slowly.

38 / 61

2024A: Primality testing

The code for the first question already returns the number of divisions required:
N = list(range(2, 10**5+1))
divisions = [trial_division(n)[1] for n in N]

In contrast, poor answers copied and pasted the answer to the first question and slightly
tweaked the code to only return the number of divisions.

This is an opportunity for demonstrating insight. Is the approximation perfect? No, because
we ignore the extra two divisions by {2, 3}.

The very best answers (not necessary for full marks) commented that the number of inputs
requiring the maximum number of divisions (i.e. prime numbers) appears not to decrease over
time—this is because the Prime Number Theorem guarantees that

π(n)

n
∼ 1

log n

which decays slowly.

38 / 61

2024A: Primality testing

The code for the first question already returns the number of divisions required:
N = list(range(2, 10**5+1))
divisions = [trial_division(n)[1] for n in N]

In contrast, poor answers copied and pasted the answer to the first question and slightly
tweaked the code to only return the number of divisions.

This is an opportunity for demonstrating insight. Is the approximation perfect? No, because
we ignore the extra two divisions by {2, 3}.

The very best answers (not necessary for full marks) commented that the number of inputs
requiring the maximum number of divisions (i.e. prime numbers) appears not to decrease over
time—this is because the Prime Number Theorem guarantees that

π(n)

n
∼ 1

log n

which decays slowly.
38 / 61

2024A: Primality testing

Question 2024A.3. Write a function to implement the Fermat trial for given n and a.
Write another function to apply the Fermat test with all a in a given list; if no list is supplied,
use as default value all a ∈ 2 : (n− 2) in ascending order. This latter function should return a
tuple (flag, ntrials) where flag = False if the Fermat test has shown n to not be prime
and True otherwise1, and where ntrials is the number of Fermat trials performed. Print the
output of the function applied to the natural numbers n ∈ 2 : 20, using in each case all
a ∈ 2 : (n− 2) in ascending order.

[Hint: the greatest common divisor can be computed using math.gcd.]

[Hint: in Python, the pow function takes an optional third argument. pow(x, y, z)
calculates xy mod z.]

1In other words, a number with flag True might still be composite.
39 / 61

2024A: Primality testing

The question explicitly requests two functions. Some answers did not write two functions, or
wrote two functions where one did not call the other.

There was some confusion around how to write functions with default values for variables.
Such answers generally used global variables to determine the bases to use, which is fragile,
and they often worked incorrectly.

40 / 61

2024A: Primality testing

The question explicitly requests two functions. Some answers did not write two functions, or
wrote two functions where one did not call the other.

There was some confusion around how to write functions with default values for variables.
Such answers generally used global variables to determine the bases to use, which is fragile,
and they often worked incorrectly.

40 / 61

2024A: Primality testing

Question 2024A.4. Compute the first 5 odd numbers n where the Fermat test proves
compositeness with just one trial, i.e. with a = 2.

This was more or less answered correctly by everyone with a correct implementation of the
Fermat test.

41 / 61

2024A: Primality testing

Question 2024A.4. Compute the first 5 odd numbers n where the Fermat test proves
compositeness with just one trial, i.e. with a = 2.

This was more or less answered correctly by everyone with a correct implementation of the
Fermat test.

41 / 61

2024A: Primality testing

Question 2024A.5. For how many odd n ∈ 3 : 10, 000 does the Fermat test prove
compositeness with at most five trials (using a ∈ 2 : min (6, n− 2))? What proportion of odd
composite numbers in 3 : 10, 000 does this represent?

Generally answered well. Some students divided by the number of odd numbers, not odd
composite numbers.

Some didn’t get the loop right and their count was off by one or two.

42 / 61

2024A: Primality testing

Question 2024A.5. For how many odd n ∈ 3 : 10, 000 does the Fermat test prove
compositeness with at most five trials (using a ∈ 2 : min (6, n− 2))? What proportion of odd
composite numbers in 3 : 10, 000 does this represent?

Generally answered well. Some students divided by the number of odd numbers, not odd
composite numbers.

Some didn’t get the loop right and their count was off by one or two.

42 / 61

2024A: Primality testing

Question 2024A.5. For how many odd n ∈ 3 : 10, 000 does the Fermat test prove
compositeness with at most five trials (using a ∈ 2 : min (6, n− 2))? What proportion of odd
composite numbers in 3 : 10, 000 does this represent?

Generally answered well. Some students divided by the number of odd numbers, not odd
composite numbers.

Some didn’t get the loop right and their count was off by one or two.

42 / 61

2024A: Primality testing

Question 2024A.6. A Carmichael number, also called an absolute Fermat pseudoprime, is a
composite number which passes the Fermat trial for any a ∈ 2 : (n− 1) with gcd(a, n) = 1.
Compute the Carmichael numbers up to 10, 000.

[Hint: the first Carmichael number is 561.]

Generally answered well. The very best answers (not needed for full marks) investigated
whether the number of Carmichael numbers followed the n

2
7 law prediced by Alford, Granville

& Pomerance.

43 / 61

2024A: Primality testing

Question 2024A.6. A Carmichael number, also called an absolute Fermat pseudoprime, is a
composite number which passes the Fermat trial for any a ∈ 2 : (n− 1) with gcd(a, n) = 1.
Compute the Carmichael numbers up to 10, 000.

[Hint: the first Carmichael number is 561.]

Generally answered well. The very best answers (not needed for full marks) investigated
whether the number of Carmichael numbers followed the n

2
7 law prediced by Alford, Granville

& Pomerance.

43 / 61

2024A: Primality testing

Question 2024A.7. Write a function to implement the Miller–Rabin trial for given n and a.

Write another function to apply the Miller–Rabin test with all a in a given list; if no list is
supplied, use as default value the single trial a = 2. This latter function should return a tuple
(flag, ntrials) where flag = False if the Miller–Rabin test has shown n to not be prime
and True otherwise2, and where ntrials is the number of Miller–Rabin trials performed.
Print the output of the function applied to the natural numbers n ∈ 5 : 20, using in each case
only a = 2.

2In other words, a number with flag True might still be composite.
44 / 61

2024A: Primality testing

The main difficulty here was computing s and d such that

n− 1 = 2sd

Write $n - 1 = 2^s d$.
s = 0
d = n - 1
while d % 2 == 0:

s += 1
d = d / 2

assert d == int(d)
d = int(d)
assert n - 1 == 2**s * d
assert d % 2 == 1

45 / 61

2024A: Primality testing

The main difficulty here was computing s and d such that

n− 1 = 2sd

Write $n - 1 = 2^s d$.
s = 0
d = n - 1
while d % 2 == 0:

s += 1
d = d / 2

assert d == int(d)
d = int(d)
assert n - 1 == 2**s * d
assert d % 2 == 1

45 / 61

2024A: Primality testing

Question 2024A.8. Using only the single trial with base a = 2, what is the minimal odd
composite number n for which the test does not conclude that n is composite?

Question 2024A.9. Using only the trials a ∈ {2, 3}, what is the minimal odd composite
number n for which the test does not conclude that n is composite?

These questions are very similar, so write one function that takes in the bases to use.

This also makes it easier to test the code on the examples that are given in the question—the
question tells us the minimal inconclusive odd composite number for bases {2, 3, 5}.

46 / 61

2024A: Primality testing

Question 2024A.8. Using only the single trial with base a = 2, what is the minimal odd
composite number n for which the test does not conclude that n is composite?

Question 2024A.9. Using only the trials a ∈ {2, 3}, what is the minimal odd composite
number n for which the test does not conclude that n is composite?

These questions are very similar, so write one function that takes in the bases to use.

This also makes it easier to test the code on the examples that are given in the question—the
question tells us the minimal inconclusive odd composite number for bases {2, 3, 5}.

46 / 61

2024A: Primality testing

Question 2024A.8. Using only the single trial with base a = 2, what is the minimal odd
composite number n for which the test does not conclude that n is composite?

Question 2024A.9. Using only the trials a ∈ {2, 3}, what is the minimal odd composite
number n for which the test does not conclude that n is composite?

These questions are very similar, so write one function that takes in the bases to use.

This also makes it easier to test the code on the examples that are given in the question—the
question tells us the minimal inconclusive odd composite number for bases {2, 3, 5}.

46 / 61

2024A: Primality testing

Question 2024A.10. Using trials a ∈ {2, 3, 5, 7, 11, 13, 17}3, how much faster or slower is the
Miller–Rabin test than trial division to verify the primality of n = 9999991111111?

On Windows, it turns out that the operating system timer isn’t fine-grained enough to capture
the time taken by a Miller–Rabin trial. (I didn’t know this.) Many answers therefore reported
a time of 0.0 s.

This obviously doesn’t make sense. The right thing to do here is to instead time 100 or 1000
trials, and then divide by the number of trials taken, to get a sensible estimate.

3With these bases, the Miller–Rabin test is guaranteed to be correct for this n.
47 / 61

2024A: Primality testing

Question 2024A.10. Using trials a ∈ {2, 3, 5, 7, 11, 13, 17}3, how much faster or slower is the
Miller–Rabin test than trial division to verify the primality of n = 9999991111111?

On Windows, it turns out that the operating system timer isn’t fine-grained enough to capture
the time taken by a Miller–Rabin trial. (I didn’t know this.) Many answers therefore reported
a time of 0.0 s.

This obviously doesn’t make sense. The right thing to do here is to instead time 100 or 1000
trials, and then divide by the number of trials taken, to get a sensible estimate.

3With these bases, the Miller–Rabin test is guaranteed to be correct for this n.
47 / 61

2024A: Primality testing

Question 2024A.10. Using trials a ∈ {2, 3, 5, 7, 11, 13, 17}3, how much faster or slower is the
Miller–Rabin test than trial division to verify the primality of n = 9999991111111?

On Windows, it turns out that the operating system timer isn’t fine-grained enough to capture
the time taken by a Miller–Rabin trial. (I didn’t know this.) Many answers therefore reported
a time of 0.0 s.

This obviously doesn’t make sense. The right thing to do here is to instead time 100 or 1000
trials, and then divide by the number of trials taken, to get a sensible estimate.

3With these bases, the Miller–Rabin test is guaranteed to be correct for this n.
47 / 61

2024C: Percolation

Section 9

2024C: Percolation

48 / 61

2024C: Percolation

Statistical mechanics, founded by Maxwell, Boltzmann, and Gibbs in the
1800s, applies statistical and probabilistic methods to large assemblies of
microscopic entities.

For example, the Newtonian approach to understanding a gas would be to
track the velocity and position of each of the trillions of trillions of
molecules in a typical cubic metre.

Maxwell’s great insight was that this description was excessive. To
understand the macroscopic properties of the gas like its pressure or
temperature, you could instead merely store a probability distribution
recording statistics about the molecules.

James Clerk Maxwell,
1831–1879

Ludwig Boltzmann, 1844–1906

Josiah Willard Gibbs, 1839–190349 / 61

2024C: Percolation

Statistical mechanics, founded by Maxwell, Boltzmann, and Gibbs in the
1800s, applies statistical and probabilistic methods to large assemblies of
microscopic entities.

For example, the Newtonian approach to understanding a gas would be to
track the velocity and position of each of the trillions of trillions of
molecules in a typical cubic metre.

Maxwell’s great insight was that this description was excessive. To
understand the macroscopic properties of the gas like its pressure or
temperature, you could instead merely store a probability distribution
recording statistics about the molecules.

James Clerk Maxwell,
1831–1879

Ludwig Boltzmann, 1844–1906

Josiah Willard Gibbs, 1839–190349 / 61

2024C: Percolation

Statistical mechanics, founded by Maxwell, Boltzmann, and Gibbs in the
1800s, applies statistical and probabilistic methods to large assemblies of
microscopic entities.

For example, the Newtonian approach to understanding a gas would be to
track the velocity and position of each of the trillions of trillions of
molecules in a typical cubic metre.

Maxwell’s great insight was that this description was excessive. To
understand the macroscopic properties of the gas like its pressure or
temperature, you could instead merely store a probability distribution
recording statistics about the molecules.

James Clerk Maxwell,
1831–1879

Ludwig Boltzmann, 1844–1906

Josiah Willard Gibbs, 1839–190349 / 61

2024C: Percolation

One of the major goals of statistical mechanics is to understand and predict phase transitions.
A phase transition is an abrupt, discontinuous change in the properties of a system.

For example, if you cool a gas, at a critical temperature it will (usually) turn into a liquid, with
its density and volume changing discontinuously.

Phase diagram of ice, from Hansen (2021).

50 / 61

2024C: Percolation

One of the major goals of statistical mechanics is to understand and predict phase transitions.
A phase transition is an abrupt, discontinuous change in the properties of a system.

For example, if you cool a gas, at a critical temperature it will (usually) turn into a liquid, with
its density and volume changing discontinuously.

Phase diagram of ice, from Hansen (2021).

50 / 61

2024C: Percolation

One of the major goals of statistical mechanics is to understand and predict phase transitions.
A phase transition is an abrupt, discontinuous change in the properties of a system.

For example, if you cool a gas, at a critical temperature it will (usually) turn into a liquid, with
its density and volume changing discontinuously.

Phase diagram of ice, from Hansen (2021).

50 / 61

2024C: Percolation

One route to understanding phase transitions is to study simpler
mathematical systems that exhibit them.

A prominent class of such systems is studied in percolation theory.
Percolation theory describes the properties of a graph as nodes or edges are
added.

Percolation theory was founded in a seminal 1957 article by Broadbent &
Hammersley. Hammersley was later a professor at Trinity College, Oxford.

Percolation theory is active to this day. Hugo Duminil-Copin won a Fields
Medal in 2022 for his work in this area.

John Hammersley, 1920–2004

Hugo Duminil-Copin, 1985–

51 / 61

2024C: Percolation

One route to understanding phase transitions is to study simpler
mathematical systems that exhibit them.

A prominent class of such systems is studied in percolation theory.
Percolation theory describes the properties of a graph as nodes or edges are
added.

Percolation theory was founded in a seminal 1957 article by Broadbent &
Hammersley. Hammersley was later a professor at Trinity College, Oxford.

Percolation theory is active to this day. Hugo Duminil-Copin won a Fields
Medal in 2022 for his work in this area.

John Hammersley, 1920–2004

Hugo Duminil-Copin, 1985–

51 / 61

2024C: Percolation

One route to understanding phase transitions is to study simpler
mathematical systems that exhibit them.

A prominent class of such systems is studied in percolation theory.
Percolation theory describes the properties of a graph as nodes or edges are
added.

Percolation theory was founded in a seminal 1957 article by Broadbent &
Hammersley. Hammersley was later a professor at Trinity College, Oxford.

Percolation theory is active to this day. Hugo Duminil-Copin won a Fields
Medal in 2022 for his work in this area.

John Hammersley, 1920–2004

Hugo Duminil-Copin, 1985–

51 / 61

2024C: Percolation

One route to understanding phase transitions is to study simpler
mathematical systems that exhibit them.

A prominent class of such systems is studied in percolation theory.
Percolation theory describes the properties of a graph as nodes or edges are
added.

Percolation theory was founded in a seminal 1957 article by Broadbent &
Hammersley. Hammersley was later a professor at Trinity College, Oxford.

Percolation theory is active to this day. Hugo Duminil-Copin won a Fields
Medal in 2022 for his work in this area.

John Hammersley, 1920–2004

Hugo Duminil-Copin, 1985–

51 / 61

2024C: Percolation

We consider the simplest unsolved case, Bernoulli site percolation.

Each site on an n× n grid is open or closed, open with probability p.

A site is full if it is open and can be connected via a chain of open sites to an open site in the
top row (moving left, right, up, down).
The system percolates if there is a full site on the bottom row.

52 / 61

2024C: Percolation

We consider the simplest unsolved case, Bernoulli site percolation.
Each site on an n× n grid is open or closed, open with probability p.

A site is full if it is open and can be connected via a chain of open sites to an open site in the
top row (moving left, right, up, down).
The system percolates if there is a full site on the bottom row.

52 / 61

2024C: Percolation

We consider the simplest unsolved case, Bernoulli site percolation.
Each site on an n× n grid is open or closed, open with probability p.

A site is full if it is open and can be connected via a chain of open sites to an open site in the
top row (moving left, right, up, down).

The system percolates if there is a full site on the bottom row.

52 / 61

2024C: Percolation

We consider the simplest unsolved case, Bernoulli site percolation.
Each site on an n× n grid is open or closed, open with probability p.

A site is full if it is open and can be connected via a chain of open sites to an open site in the
top row (moving left, right, up, down).

The system percolates if there is a full site on the bottom row.

52 / 61

2024C: Percolation

We consider the simplest unsolved case, Bernoulli site percolation.
Each site on an n× n grid is open or closed, open with probability p.

A site is full if it is open and can be connected via a chain of open sites to an open site in the
top row (moving left, right, up, down).
The system percolates if there is a full site on the bottom row.

52 / 61

2024C: Percolation

We consider the simplest unsolved case, Bernoulli site percolation.
Each site on an n× n grid is open or closed, open with probability p.

A site is full if it is open and can be connected via a chain of open sites to an open site in the
top row (moving left, right, up, down).
The system percolates if there is a full site on the bottom row.

52 / 61

2024C: Percolation

We consider the simplest unsolved case, Bernoulli site percolation.
Each site on an n× n grid is open or closed, open with probability p.

A site is full if it is open and can be connected via a chain of open sites to an open site in the
top row (moving left, right, up, down).
The system percolates if there is a full site on the bottom row.

52 / 61

2024C: Percolation

Each site is open with vacancy probability p.

For a given p, what is the probability of percolation C(p)?

This exhibits a phase transition!

C(p) jumps very rapidly from 0 to 1 around a critical p = pc.

Despite a great deal of effort, no analytical formula is known for the critical probability pc.

53 / 61

2024C: Percolation

Each site is open with vacancy probability p.

For a given p, what is the probability of percolation C(p)?

This exhibits a phase transition!

C(p) jumps very rapidly from 0 to 1 around a critical p = pc.

Despite a great deal of effort, no analytical formula is known for the critical probability pc.

53 / 61

2024C: Percolation

Each site is open with vacancy probability p.

For a given p, what is the probability of percolation C(p)?

This exhibits a phase transition!

C(p) jumps very rapidly from 0 to 1 around a critical p = pc.

Despite a great deal of effort, no analytical formula is known for the critical probability pc.

53 / 61

2024C: Percolation

Each site is open with vacancy probability p.

For a given p, what is the probability of percolation C(p)?

This exhibits a phase transition!

C(p) jumps very rapidly from 0 to 1 around a critical p = pc.

Despite a great deal of effort, no analytical formula is known for the critical probability pc.

53 / 61

2024C: Percolation

Each site is open with vacancy probability p.

For a given p, what is the probability of percolation C(p)?

This exhibits a phase transition!

C(p) jumps very rapidly from 0 to 1 around a critical p = pc.

Despite a great deal of effort, no analytical formula is known for the critical probability pc.

53 / 61

2024C: Percolation

To estimate C(p), we use Monte Carlo methods.

Essentially, for fixed p we will draw many sample grids, and count the
fraction that percolate.

The first thoughts and attempts I made to practice were suggested
by a question which occurred to me in 1946 as I was convalescing
from an illness and playing solitaires. The question was what are
the chances that a Canfield solitaire laid out with 52 cards will come
out successfully? After spending a lot of time trying to estimate
them by pure combinatorial calculations, I wondered whether a
more practical method than “abstract thinking” might not be to
lay it out say one hundred times and simply observe and count the
number of successful plays.

Stanisław Ulam, 1909–1984

John von Neumann, 1903–1957

54 / 61

2024C: Percolation

To estimate C(p), we use Monte Carlo methods.

Essentially, for fixed p we will draw many sample grids, and count the
fraction that percolate.

The first thoughts and attempts I made to practice were suggested
by a question which occurred to me in 1946 as I was convalescing
from an illness and playing solitaires. The question was what are
the chances that a Canfield solitaire laid out with 52 cards will come
out successfully? After spending a lot of time trying to estimate
them by pure combinatorial calculations, I wondered whether a
more practical method than “abstract thinking” might not be to
lay it out say one hundred times and simply observe and count the
number of successful plays.

Stanisław Ulam, 1909–1984

John von Neumann, 1903–1957

54 / 61

2024C: Percolation

To estimate C(p), we use Monte Carlo methods.

Essentially, for fixed p we will draw many sample grids, and count the
fraction that percolate.

The first thoughts and attempts I made to practice were suggested
by a question which occurred to me in 1946 as I was convalescing
from an illness and playing solitaires. The question was what are
the chances that a Canfield solitaire laid out with 52 cards will come
out successfully? After spending a lot of time trying to estimate
them by pure combinatorial calculations, I wondered whether a
more practical method than “abstract thinking” might not be to
lay it out say one hundred times and simply observe and count the
number of successful plays.

Stanisław Ulam, 1909–1984

John von Neumann, 1903–1957

54 / 61

2024C: Percolation

Question 2024C.1. Write a function make_grid(n, p) to make an n× n numpy array of
Boolean values, with each site True with probability p and False otherwise.

[Hint: this should take one line of numpy code.]

Draw a few samples to ensure that the empirical probability of a site being open is
approximately p.

This can be answered in one line using np.random.binomial(1, p, size=(n, n)), but
many answers didn’t use this.

Weaker answers forgot to compute the empirical probabilities.

Weaker answers computed the mean with manual loops; better answers used np.mean or
np.sum.

55 / 61

2024C: Percolation

Question 2024C.1. Write a function make_grid(n, p) to make an n× n numpy array of
Boolean values, with each site True with probability p and False otherwise.

[Hint: this should take one line of numpy code.]

Draw a few samples to ensure that the empirical probability of a site being open is
approximately p.

This can be answered in one line using np.random.binomial(1, p, size=(n, n)), but
many answers didn’t use this.

Weaker answers forgot to compute the empirical probabilities.

Weaker answers computed the mean with manual loops; better answers used np.mean or
np.sum.

55 / 61

2024C: Percolation

Question 2024C.1. Write a function make_grid(n, p) to make an n× n numpy array of
Boolean values, with each site True with probability p and False otherwise.

[Hint: this should take one line of numpy code.]

Draw a few samples to ensure that the empirical probability of a site being open is
approximately p.

This can be answered in one line using np.random.binomial(1, p, size=(n, n)), but
many answers didn’t use this.

Weaker answers forgot to compute the empirical probabilities.

Weaker answers computed the mean with manual loops; better answers used np.mean or
np.sum.

55 / 61

2024C: Percolation

Question 2024C.1. Write a function make_grid(n, p) to make an n× n numpy array of
Boolean values, with each site True with probability p and False otherwise.

[Hint: this should take one line of numpy code.]

Draw a few samples to ensure that the empirical probability of a site being open is
approximately p.

This can be answered in one line using np.random.binomial(1, p, size=(n, n)), but
many answers didn’t use this.

Weaker answers forgot to compute the empirical probabilities.

Weaker answers computed the mean with manual loops; better answers used np.mean or
np.sum.

55 / 61

2024C: Percolation

Question 2024C.2. Write a function visualise_grid to visualise a grid produced by
make_grid with matplotlib. The function should take in a Boolean array. The output should
look similar to [Figure]: plot closed sites in black; plot open sites in white; colour the borders
of each square in black.

[Hint: you will need to consult the matplotlib documentation and other online resources to do
this; the relevant matplotlib methods were not discussed in the handbook.]

Use your function to visualise a few sample grids.

Some answers flipped black and white. A few answers flipped up with down. You should print
out the grid that you render and check by eye that they conform.

56 / 61

2024C: Percolation

Question 2024C.2. Write a function visualise_grid to visualise a grid produced by
make_grid with matplotlib. The function should take in a Boolean array. The output should
look similar to [Figure]: plot closed sites in black; plot open sites in white; colour the borders
of each square in black.

[Hint: you will need to consult the matplotlib documentation and other online resources to do
this; the relevant matplotlib methods were not discussed in the handbook.]

Use your function to visualise a few sample grids.

Some answers flipped black and white. A few answers flipped up with down. You should print
out the grid that you render and check by eye that they conform.

56 / 61

2024C: Percolation

Question 2024C.3. Write a function visualise_fill to visualise the fill status of a given
grid. The function should take as input two Boolean arrays, the grid and the fill status. The
output should look similar to [Figures]. Plot closed sites in black, open unfilled sites in white,
and open filled sites in blue. Colour the borders of each square in black.

My comments here are similar.

57 / 61

2024C: Percolation

Question 2024C.3. Write a function visualise_fill to visualise the fill status of a given
grid. The function should take as input two Boolean arrays, the grid and the fill status. The
output should look similar to [Figures]. Plot closed sites in black, open unfilled sites in white,
and open filled sites in blue. Colour the borders of each square in black.

My comments here are similar.

57 / 61

2024C: Percolation

Question 2024C.4. Write a function compute_fill that takes in a grid produced by
make_grid and calculates whether each site is full or not.

[Hint: think carefully about what should happen when a site is visited. For example, if it is
already full, it should terminate without further action.]

[Hint: it may be useful during your development to visualise the fill state of the grid as you
visit each site in the top row.]

Implementations ranged from very elegant to very convoluted. Some implementations swept
through the grid row-by-row, not allowing propagation of fill upwards.

58 / 61

2024C: Percolation

Question 2024C.4. Write a function compute_fill that takes in a grid produced by
make_grid and calculates whether each site is full or not.

[Hint: think carefully about what should happen when a site is visited. For example, if it is
already full, it should terminate without further action.]

[Hint: it may be useful during your development to visualise the fill state of the grid as you
visit each site in the top row.]

Implementations ranged from very elegant to very convoluted. Some implementations swept
through the grid row-by-row, not allowing propagation of fill upwards.

58 / 61

2024C: Percolation

Question 2024C.5. Write a function percolates that returns True if the given grid
percolates, and False otherwise.

[Hint: the core logic can be written with one line of numpy.]

Draw 10 samples of a 20× 20 grid with vacancy probability p = 0.6. For each, visualise its fill
status, titling each figure with whether that grid percolates or not.

Some implementations were less efficient than necessary: they didn’t terminate once a filled
site was found on the bottom row.

A few answers were egregiously inefficient: they called compute_fill over and over on each
column.

59 / 61

2024C: Percolation

Question 2024C.5. Write a function percolates that returns True if the given grid
percolates, and False otherwise.

[Hint: the core logic can be written with one line of numpy.]

Draw 10 samples of a 20× 20 grid with vacancy probability p = 0.6. For each, visualise its fill
status, titling each figure with whether that grid percolates or not.

Some implementations were less efficient than necessary: they didn’t terminate once a filled
site was found on the bottom row.

A few answers were egregiously inefficient: they called compute_fill over and over on each
column.

59 / 61

2024C: Percolation

Question 2024C.5. Write a function percolates that returns True if the given grid
percolates, and False otherwise.

[Hint: the core logic can be written with one line of numpy.]

Draw 10 samples of a 20× 20 grid with vacancy probability p = 0.6. For each, visualise its fill
status, titling each figure with whether that grid percolates or not.

Some implementations were less efficient than necessary: they didn’t terminate once a filled
site was found on the bottom row.

A few answers were egregiously inefficient: they called compute_fill over and over on each
column.

59 / 61

2024C: Percolation

Question 2024C.6. Take a suitable grid P ⊂ [0, 1] of p values. (You may wish to increase
the resolution for p ∈ [0.4, 0.7].) For each p ∈ P , draw N samples of a 20× 20 grid with
vacancy probability p. For each sample, calculate whether the grid percolates or not; the
fraction of grids that percolates is our estimate for C(p). Plot C(p) as a function of p.

[Hint: you will need to choose suitable N and P so that the interpolation error and statistical
error due to sampling are acceptable. The curve should appear smooth; if it is not, try
increasing N and/or refining P .]

The main problem here was insufficient samples; trial and error shows you needed around
N = 20, 000 for a reasonably smooth C(p) curve.

Here efficiency of the code matters (for you more than for me): with a reasonable
implementation, it took my code about 7 minutes to answer this question. If your
implementation is very inefficient, then that could become hours, or days.

60 / 61

2024C: Percolation

Question 2024C.6. Take a suitable grid P ⊂ [0, 1] of p values. (You may wish to increase
the resolution for p ∈ [0.4, 0.7].) For each p ∈ P , draw N samples of a 20× 20 grid with
vacancy probability p. For each sample, calculate whether the grid percolates or not; the
fraction of grids that percolates is our estimate for C(p). Plot C(p) as a function of p.

[Hint: you will need to choose suitable N and P so that the interpolation error and statistical
error due to sampling are acceptable. The curve should appear smooth; if it is not, try
increasing N and/or refining P .]

The main problem here was insufficient samples; trial and error shows you needed around
N = 20, 000 for a reasonably smooth C(p) curve.

Here efficiency of the code matters (for you more than for me): with a reasonable
implementation, it took my code about 7 minutes to answer this question. If your
implementation is very inefficient, then that could become hours, or days.

60 / 61

2024C: Percolation

Question 2024C.6. Take a suitable grid P ⊂ [0, 1] of p values. (You may wish to increase
the resolution for p ∈ [0.4, 0.7].) For each p ∈ P , draw N samples of a 20× 20 grid with
vacancy probability p. For each sample, calculate whether the grid percolates or not; the
fraction of grids that percolates is our estimate for C(p). Plot C(p) as a function of p.

[Hint: you will need to choose suitable N and P so that the interpolation error and statistical
error due to sampling are acceptable. The curve should appear smooth; if it is not, try
increasing N and/or refining P .]

The main problem here was insufficient samples; trial and error shows you needed around
N = 20, 000 for a reasonably smooth C(p) curve.

Here efficiency of the code matters (for you more than for me): with a reasonable
implementation, it took my code about 7 minutes to answer this question. If your
implementation is very inefficient, then that could become hours, or days.

60 / 61

2024C: Percolation

Conclusion
Best of luck with the projects!

61 / 61

	Overview
	General advice on projects
	2025A: Convex hulls
	2025B: Orbital elements
	2025C: Pension planning
	Summary
	Previous projects: comments and guidance
	2024A: Primality testing
	2024C: Percolation

