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Part I

Introduction

1 Synopsis

� Free groups. Uniqueness of reduced words and universal mapping property.
Normal subgroups of free groups and generators and relations for groups. Ex-
amples. [2]

� Review of the First Isomorphism Theorem and proof of Second and Third
Isomorphism Theorems. Simple groups, statement that An is simple (proof
for n = 5). Definition and proof of existence of composition series for finite
groups. Statement of the Jordan-Hölder Theorem. Examples. The derived
subgroup and solvable groups. [3]

� Discussion of semi-direct products and extensions of groups. Examples. [1]

� Sylow’s three theorems. Applications including classification of groups of small
order. [2]

Reading List

� Armstrong, M. A. Groups and Symmetry, Springer, 1988

� Alperin, J. L.; Bell, Rowen B. Groups and Representations 162. Springer,
1995

� Humphreys, A course in group theory, Oxford, 1996.

� Neumann, Peter M.; Stoy, Gabrielle A.; Thompson, Edward C., Groups and
Geometry, OUP, 1994
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STANDARD GROUP NOTATION

� Z, Q, R, C – the integers/rationals/reals/complex numbers under +.

� Cn – the cyclic group of order n.

� Zn – the integers, mod ulo n, under +, which is isomorphic to Cn.

� Q∗, R∗, C∗ – non-zero rationals/reals/complex numbers under ×.

� Z∗
p – the non-zero elements of Zp, where p is a prime, under ×.

� Z∗
n – more generally for composite n, the units of Zn under ×, i.e. those

integers coprime with n.

� (0,∞) – the positive real numbers under ×.

� Sym(S) – the permutations (i.e. bijections S → S) of a set S under composi-
tion.

� Sn – permutations of {1, 2, . . . n} under composition.

� An – even permutations of {1, 2, . . . , n} under composition.

� D2n – the symmetries of a regular n-sided polygon under composition.

� V or V4 – the Klein four-group C2 × C2
∼= {e, (12)(34), (13)(24), (14)(23)}.

� Q8 – the quaternion group {±1,±i,±j,±k}.

� S1 – the complex numbers with unit mod ulus under multiplication.

� GL(n, F ) – invertible n× n matrices with entries in the field F under matrix
multiplication.

� SL(n, F ) – the subgroup of GL(n, F ) whose elements have determinant 1.

� AGL(n, F ) – the affine maps of F n.

� O(n) – orthogonal n×n real matrices (A−1 = AT ) under matrix multiplication.
Also SO(n).

� U(n) – unitary n× n complex matrices (A−1 = ĀT ) under matrix multiplica-
tion. Also SU(n).
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� Aut(G) – the automorphisms (i.e. isomorphisms G→ G) of a group G under
composition.

� G1 ×G2 – the direct product group of two groups G1 and G2.

� G1 ⋊φ G2 – the semi-direct product of two groups G1 and G2 associated with
the homomorphism φ : G2 → Aut(G1).

� G/H – the quotient (or factor) group of a group G by a normal subgroup H
of G.

� ⟨g⟩ – the cyclic subgroup of G generated by g ∈ G.

� ⟨S⟩ – the subgroup of a group G generated by a subset S of G.
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2 A Brief Summary of the Course

This course includes various themes, which might at first glance seem unrelated.
The summary below aims to give a narrative showing how these themes do indeed
interconnect and provide us with some of the theory and tools to better understand
the internal structure of groups. This summary will not be covered in lectures and
so may well be worth reading ahead of the course.

A starting point for better understanding the nature of groups is the Jordan-
Hölder Theorem (JHT). This says that for any finite group G there is a composition
series of subgroups

{e} = G0 ◁G1 ◁G2 ◁ · · ·◁Gn = G

such that each composition factor Gi/Gi−1 (i = 1, . . . , n) is simple. (A non-trivial
group is simple if it has no non-trivial proper normal subgroups.) So for example
the following are composition series of

{e}◁ A3 ◁ S3; {e}◁
{
e, g2, g4

}
◁ C6; {e}◁

{
e, g3

}
◁ C6.

The corresponding composition factors are C3, C2 for S3, C3, C2 for C6, and C2, C3

for C6. JHT guarantees more than the existence of a composition series: it states
that different composition series for the same group will list the same composition
factors (as in the latter two cases for C6). As the composition factors are simple
they are, in some sense, the atomic components of the group. However the simple
examples above demonstrate that knowing the atoms, we don’t then necessarily
know the molecule – the non-isomorphic group S3 has the same composition factors
as C6.

Nonetheless JHT breaks the classification problem for finite groups into two (still
difficult) problems: (i) identify the simple groups; (ii) identify the ways these simple
groups may be put together to form bigger groups. The second of these problems
is called the extension problem. Given two groups, a larger group may always be
created by taking their direct product. With the example of C3 and C2 above we
would obtain C3 × C2

∼= C6. However we could also create a semi-direct product. If
C3 = ⟨r⟩ and C2 = ⟨s⟩ then there is a semi-direct product

C3 ⋊ C2 = ⟨r, s : r3 = e = s2, rs = sr−1⟩ = D6
∼= S3.

This is a twisted version of the direct product, where the two groups actually interact
(unlike with the direct product). We will further need the language of generators
and relations to properly describe such semi-direct products.
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So, we have refined the problem of classifying groups into two smaller problems
of determining the simple groups and understanding how we might combine them.
Given a problem such as ”how many groups are there of order n?” the three Sylow
Theorems are key tools in answering this. They go a long way to providing a partial
converse to Lagrange’s Theorem and state the following for a group G of order pam,
where p is a prime and p does not divide m.

� G has a subgroup of order pa, a so-called Sylow p-group.

� All such Sylow p-groups are conjugate in G.

� The number np of such subgroups satisfies np = 1 ( mod p) and np divides m.

So, in the simple example of a group G of order 6, with p = 3 we know that
n3 = 1 ( mod 3) and that n3 divides 2. This means that n3 = 1 and in particular it
means our Sylow 3-group is normal in G (as it is closed under conjugacy). This then
means that G is an extension of C3 by C2 and both these extensions manifest as
semi-direct products. For small values of n, at least, the Sylow theorems can prove
similarly useful.

3 Recap: Basic notions

Below is a recap of some of the important definitions and theory from the first year.
This will not be covered in lectures.

A group (G, ∗) is a set G with an associative binary operation (product) ∗, with
an identity element e ∈ G and an inverse element g−1 for each g ∈ G such that

g ∗ g−1 = g−1 ∗ g = e

for all g ∈ G. We will often omit ∗ from the notation and write the group operation
as juxtaposition g ∗ h = gh. A group G is abelian if gh = hg for each pair g, h
of elements; most interesting examples of groups are non-abelian. If G has finitely
many elements (we will call such G finite), its order (size) is denoted by |G|. For an
element g ∈ G, its order is defined to be the smallest positive integer n such that
gn = e; equivalently, it is the size of the subgroup ⟨g⟩ of G generated by g. For G
finite, this is always a finite number of course but in general it may be infinite.

A subset H ⊆ G is a subgroup, denoted H ⩽ G, if it is closed for the group
operations: it contains the identity element, the inverse g−1 of every element g ∈ H,
and the product gh of any two elements g, h ∈ H.
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The left cosets of a subgroup H are the sets gH = {gh : h ∈ H} for some g ∈ G.
The different left cosets are disjoint subsets of G, and their union is G itself. The
right cosets are Hg = {hg : h ∈ H}, which have the same properties. The number
of left, equivalently right cosets is called the index [G : H] of H in G (which may of
course be infinite in general). Different group elements can represent the same left
coset and gH = kH if and only if g−1k ∈ H.

Theorem 1 (Lagrange’s Theorem) If G is finite, then

|G| = [G : H]× |H| .

Conjugation by an element g ∈ G is the operation on G defined by

h 7→ g−1hg.

Two group elements h1, h2 are conjugate if there exists g ∈ G such that h1 = g−1h2g.
Conjugation by any group element is an isomorphism of G – so that conjugate ele-
ments have the same order and conjugate subgroups are isomorphic. Being conjugate
is an equivalence relation, so splits up G as a union of conjugacy classes. Note that
the notion here is being conjugate in a group and elements may be conjugate in a
group but not conjugate in some smaller subgroup.

A subgroup N ⩽ G is called a normal subgroup, if one of the following three
equivalent conditions is satisfied.

(i) The left and right cosets coincide: gN = Ng (as sets!) for all g ∈ G.

(ii) Conjugation by elements of G leaves N invariant: g−1Ng = N (as sets!) for
all g ∈ G.

(iii) N is a union of conjugacy classes of G.

We will denote this by N ◁ G. All the subgroups of an Abelian group are normal
but non-Abelian groups can also have normal subgroups. For a given group G it is
always the case that G and {e} are normal subgroups of G. Note that normality
refers to one subgroup sitting inside another group; there isn’t a notion of a normal
group.

If N is normal in G, the (left and right) cosets form a group themselves under
the group operation

g1N ∗ g2N = g1g2N,

8



well defined precisely because N is normal in G. Being well-defined here means
that the product of the cosets is independent of the choice of representatives for
the cosets being multiplied; the above product is well-defined if and only if N is
normal. This new group, whose elements are the cosets, is called the quotient group
and denoted G/N . It is often easiest to think of G/N as ”G mod N”.

A map of groups ϕ : (G1, ∗) → (G2, ◦) is called a homomorphism if it preserves
the group operation:

ϕ(g ∗ h) = ϕ(g) ◦ ϕ(h) for all g, h ∈ G1.

In particular, this implies that ϕ takes the identity of G1 to that of G2, and inverses
to inverses. The kernel

kerϕ = {g ∈ G |ϕ(g) = e}
is a subgroup and in fact a normal subgroup of G1. The image

Imϕ = {ϕ(g) ∈ G2 | g ∈ G1}

is a subgroup of G2.
Note that ϕ is injective if and only if kerϕ = {e}, and surjective if and only if

Imϕ = G2. If ϕ is both bijective then ϕ is an isomorphism, we say that the groups
G1, G2 are isomorphic and we write G1

∼= G2. Being isomorphic is an equivalence
relation as the inverse of an isomorphism and the composition of two isomorphisms
are also isomorphisms.

Given a normal subgroup N of a group G there is a natural quotient homomor-
phism

q : G→ G/N defined by q(g) = gN.

Note that ker q = N , and q is surjective. Conversely, we have:

Theorem 2 (The First Isomorphism Theorem) Given a homomorphism ϕ : G1 →
G2, there is a well-defined isomorphism

G1/ kerϕ
∼=−→ Imϕ, given by g kerϕ 7→ ϕ(g)

and the map ϕ factors into the canonical quotient map G1 → G1/ kerϕ, the above
isomorphism, and the inclusion Imϕ→ G2.

If G is a finite group and N is a non-trivial normal subgroup of G, then G is in
some sense ”made up” of the smaller groups N and G/N . Quite how the abstract
groups N and G/N fit together can be rather subtle though. A non-trivial group G
is simple if it cannot be decomposed in this way, i.e. if whenever N ◁G is a normal
subgroup, either N = G or N = {e} (i.e. G does not admit a non-trivial proper
normal subgroup).
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4 Recap: Basic Examples of Groups

� Cyclic Groups

The cyclic group Cn is the group generated by a non-trivial generator g of order n.
Concretely,

Cn
∼= Zn,

the additive group of integer numbers mod ulo n. Choosing a primitive nth root of
unity ξ ∈ C gives another realization of Cn as a multiplicative group of the powers
of ξ.

Proposition 3 If G is a group of prime order p, then G ∼= Cp.

This follows from Lagrange’s Theorem as a non-trivial element g of G generates a
subgroup whose order divides p and hence such a g is a generator.

� Symmetric and Alternating Groups

The symmetric group Sn is the group of all permutations (bijections) of the set
{1, . . . , n}, the group operation being composition. In this course, we agree once
and for all that for permutations σ, τ ∈ Sn, the composite στ means σ followed by
τ . The order of Sn is n!.

The sign homomorphism

sgn: Sn → C2
∼= {±1}

was defined in Prelims Linear Algebra; one definition is that sgn(σ) is the parity of
the number of transpositions in a decomposition of σ as a product of transpositions
(remembering that this is always possible and that the resulting sign is well defined).
The kernel

An = ker sgn

is the group of even permutations, the alternating group.
Two permutations σ1, σ2 are conjugate in Sn if and only if they have the same

cycle decomposition type.

� Normal subgroups of S3

We list the conjugacy classes in S3 and their sizes.
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Cycle type Size of conjugacy class
(1)(1)(1) 1
(2)(1) 3
(3) 2

By Lagrange’s theorem, the only proper non-trivial normal subgroup of S3 is A3.

� Normal subgroups of S4

Similarly, we list the conjugacy classes in S4 and their sizes.

Cycle type Size of conjugacy class
(1)(1)(1)(1) 1
(2)(1)(1) 6
(3)(1) 8
(2)(2) 3
(4) 6

By Lagrange’s theorem, there are two proper non-trivial normal subgroups in S4: as
well as A4, there is also the group usually denoted V4, consisting of all (2)(2) types
and the identity; note

V4
∼= C2 × C2.

� Normal subgroups of S5

Finally, here are the conjugacy classes in S5.

Cycle type Size of conjugacy class
(1)(1)(1)(1)(1) 1
(2)(1)(1)(1) 10
(3)(1)(1) 20
(2)(2)(1) 15
(3)(2) 20
(4)(1) 30
(5) 24

A normal subgroup of S5 must be a union of conjugacy classes, must contain the
class of the identity, and by Lagrange’s theorem, it must have order dividing 120.
A short check shows that the only non-trivial normal subgroup is A5.
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� Linear Groups

Let V be a vector space over a field K. The general linear group GL(V ) is
the group of invertible linear maps of V . Concretely, if V is finite dimensional,
choosing a basis we can identify V ∼= Kn for n = dimV , and then GL(V ) becomes
identified with the group GL(n,K) of n × n invertible matrices with entries in K.
Usually these are infinite groups, but when K itself is finite, they become finite and
very interesting groups. The subgroup SL(n,K)◁GL(n,K) consists of matrices of
determinant one, in other words the kernel of the determinant homomorphism to
K∗, the group of nonzero elements in K under multiplication.
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Part II

Generators and Relations. Free
Groups.
The concept of generators for a group is fundamental for advanced group theory.
We start with a slightly informal definition, which hopefully captures the essence of
the idea, then formalize it.

� Let G be a group and let S be a subset of G. The subgroup of G generated
by S is the smallest subgroup of G containing S.

The informality is in the use of the word “smallest”: what if two different subgroups
of the same order (i.e. size as sets) both contain S? In fact this cannot happen
and by improving our definition, we can see this immediately. First, remember that
the intersection of two subgroups is a subgroup – in fact, for any non-empty set I
(possibly uncountable), if {Gi : i ∈ I} is a set of subgroups of G then

⋂
i∈I Gi is

again a subgroup. Now we can give a formal definition.

Definition 4 Let G be a group and let S be a subset of G. The subgroup of G
generated by S, written ⟨S⟩, is defined to be

⟨S⟩ =
⋂

S⊆H ⩽G

H.

(Note that S ⊆ G ⩽ G and so the above intersection is non-empty and well-defined.)

This definition takes care of both the existence and uniqueness of ⟨S⟩. Notice
that ⟨H⟩ = H for any subgroup H of G, and of course ⟨G⟩ = G. Indeed ⟨H⟩ = H
for a subset H ⊆ G implies H is a subgroup. Note also ⟨∅⟩ = {e}.

Example 5 In S3 (the symmetric group on three symbols, {1, 2, 3}) we have

⟨(12)⟩ = {e, (12)} ;
⟨(123)⟩ = {e, (123) , (132)} ;

⟨(12) , (123)⟩ = S3;

⟨(12) , (23)⟩ = S3;

⟨(12) , (13) , (23)⟩ = S3;
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Note, as the last of our examples here shows, generating sets need not be minimal,
though often we would prefer minimal ones.

Example 6 In the Abelian group Z under addition, ⟨k⟩ = kZ. We know that Z
is cyclic (needing only a single generator, say 1 or −1), and hence all subgroups of
Z are also cyclic. We note that ⟨6, 9⟩ = 3Z and for general integers a, b we have
⟨a, b⟩ = hZ where h is the highest common factor of a and b.

We placed no restrictions on the cardinality of G or of X – the above definition
works fine in all cases. However, we are often interested in whether S can be chosen
to be finite.

Definition 7 Let G be a group. We say that G is finitely generated if there
exists a finite subset S ⊆ G such that ⟨S⟩ = G.

Example 8 � Sn is generated by (12) and (123 . . . n).

� All finite groups are finitely-generated (for example by taking the group itself
as a set of generators).

� Finitely-generated groups are countable as there are countably many words in
a finite alphabet.

� Q is countable but not finitely generated.

� There are finitely-generated groups with subgroups that are not finitely gener-
ated.

5 Free Groups

For any set S, we will define a group F (S), known as the free group on S. Informally,
one should view S as an ‘alphabet’, and elements of F (S) as ‘words’ in this alphabet.
So, for example, if S = {a, b}, then ab and ba are elements of F (S). The group
operation is ‘concatenation’; in other words, to compose two words in F (S), we
simply write one down and then follow it by the other. For example, the product of
ab and ba is abba.

The above discussion is somewhat oversimplified, because it does not take ac-
count of the fact that groups have inverses. So, whenever a is an element of S, we
must allow not only a but a−1 to appear in the words. But then, aa−1b and b should
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represent the same element of the group. So, in fact, elements of F (S) are not words
in the alphabet S, but are equivalence classes of words.

We are now ready to give the formal definitions. Throughout, S is some set,
known as the alphabet. From this set, create a new set S−1. This is a copy of the
set S, but for each element x of S, we denote the corresponding element of S−1 by
x−1. We insist that S ∩ S−1 = ∅. When x−1 ∈ S−1, we say that (x−1)−1 = x.

Definition 9 A word w is a finite sequence x1, . . . , xm, where m ⩾ 0 and each
xi ∈ S ∪ S−1. We write w as x1x2 . . . xm. Note that the empty sequence, where
m = 0 is a word, denoted ∅.

Definition 10 A word w′ is an elementary contraction of a word w if w =
y1xx

−1y2 and w′ = y1y2,for words y1 and y2, and some x ∈ S ∪ S−1.

Definition 11 A word is reduced if it does not admit an elementary contraction.

Example 12 Let F2 denote the group freely generated by two elements a and b.
Then the word a−1bb−1aba−1a reduces to b as

a−1bb−1aba−1a ↘ a−1aba−1a ↘ a−1ab ↘ b.

Proposition 13 (a) Any word w can be transformed into a reduced word by a se-
quence of elementary contractions.

(b) If a word w can be transformed into reduced words w1 and w2 by elementary
contractions then w1 = w2.

Proof (a) As an elementary contraction reduce’s a word’s length by two, then w is
either reduced or it can be transformed to a shorter length word by an elementary
contraction. As the length of the original word is finite, and all words have non-
negative length, then this process must eventually terminate.

(b) Suppose that the word w can be transformed to the reduced words w1 and
w2. This means there is a sequence of words

w1 = αk ↙ αk−1 ↙ · · · ↙ α2 ↙ α1 ↙ w ↘ β1 ↘ β2 ↘ · · · ↘ βl−1 ↘ βl = w2

where ↘ means ”transforms into by means of an elementary contraction” and ↙
means ”transforms from by means of an elementary contraction”. We now prove
the following technical lemma:
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Lemma 14 If α, β, γ are words such that α↙ β ↘ γ then either α = γ or there is
a word δ such that α↘ δ ↙ γ.

Proof Since α ↙ β, we can write α = ab, and β = axx−1b, for some x ∈ S ∪ S−1

and some words a and b. As β ↘ γ, then γ is obtained from β by removing yy−1,
for some y ∈ S ∪ S−1. The words xx−1 and yy−1 intersect in either zero, one or two
letters. We will consider these three possibilities in turn. If they do not intersect,
then it is possible to remove yy−1 from α before inserting xx−1. Hence, if we denote
by δ the word obtained by removing yy−1 from α, then α ↘ δ ↗ γ, as required.
Suppose now that xx−1 and yy−1 intersect in a single letter. Then x = y−1, and
so in β, there is chain of letters xx−1x or x−1xx−1, and α and γ are obtained from
β by the two possible ways of performing an elementary contraction on these three
letters. In particular, α = γ, as required. Finally, if xx−1 and yy−1 intersect in two
letters, then clearly, all we have done in the sequence α↙ β ↘ γ is to insert a pair
of letters and then remove it again, and so α = γ.

Proof (Continuation of the proof of Proposition 13) If k = l and αi = βi for each
i then w1 = w2. So if w1 ̸= w2 then there is a first instance where αi ̸= βi and
without loss of generality we can assume that i = 1. By the above lemma we can
replace our sequence with

w1 = αk ↙ αk−1 ↙ · · · ↙ α2 ↙ α1 ↘ δ ↙ β1 ↘ β2 ↘ · · · ↘ βl−1 ↘ βl = w2.

If δ = α2 then we can omit α1 and α2 and if not by the lemma again there is ε such
that

w1 = αk ↙ αk−1 ↙ · · · ↙ α2 ↘ ε↙ δ ↙ β1 ↘ β2 ↘ · · · ↘ βl−1 ↘ βl = w2.

Proceeding in this way, applying the above lemma to both the left and the right of
δ we are eventually left with a sequence where all the ↘ arrows appear to the left
of the ↙arrows so that

w1 = αk ↘ · · · ↘ ω ↙ · · · ↙ βl = w2.

But this would imply that either w1 or w2 is not reduced which is a contradiction.

Notation 15 Given a word w we shall write [w] for the unique reduced word into
which w can be transformed by elementary contractions.
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Definition 16 The concatenation of two words x1x2 . . . xm and y1y2 . . . yn is the
word

x1x2 . . . xmy1y2 . . . yn.

Definition 17 The free group on the set S, denoted F (S), consists of the re-
duced words in the alphabet S. The composition of two reduced words w and w′ is the
reduced word [ww′] where ww′ denotes the concatenation of w and w. The identity
element is ∅, and is denoted e.

Proof F (S), as defined above, does indeed have a group structure. We clearly have
a binary operation. If w,w′, w′′ are reduced words then

[[ww′]w′′] = [w [w′w′′]]

as both are reduced words that are achievable by elementary contractions of ww′w′′

and so equal by uniqueness. Thus we have associativity. ∅ clearly plays the role of
the identity. Finally if w = x1 · · · xn is a reduced word then so is w−1 = x−1

n · · ·x−1
1

and we have[
w−1w

]
=
[
x−1
n · · ·x−1

1 x1 · · ·xn

]
= [∅] = ∅;

[
ww−1

]
=
[
x1 · · · xnx

−1
n · · · x−1

1

]
= [∅] = ∅,

after n elementary contractions in each case.

Proposition 18 Every non-trivial element of a free group has infinite order.

Proof Let w be a reduced non-empty word. We may write w as w1w2w
−1
1 for words

w1 and w2 with the property that the initial and final letters of w2 are not mutual
inverses. Then for any n ⩾ 0 we note [wn] = w1w

n
2w

−1
1 and so is non-trivial.

6 The Universal Mapping Property

Given a set S, there is a function i : S → F (S), known as the canonical inclusion,
sending each element of S to the corresponding generator of F (S). The following is
known as the universal mapping property of free groups.

Theorem 19 (Universal Mapping Property) Given any set S, any group G
and any function f : S → G, there is a unique homomorphism ϕ : F (S) → G such
that the following diagram commutes

S
f→ G

↓ i ↗ ϕ
F (S)

where i : S → F (S) is the canonical inclusion.
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Remark 20 The map f assigns elements of the group G to elements of the alphabet
S, so that a word in this alphabet S corresponds to some long calculation in G; the
map ϕ is simply evaluation of this calculation in G.

Proof Given any reduced word w = xϵ1
1 . . . xϵn

n , where each xi ∈ S and each
ϵi ∈ {−1, 1} we define ϕ(w) to be f(x1)

ϵ1 . . . f(xn)
ϵn . It is also clear that ϕ is a

homomorphism and any elementary contractions involved in transforming a prod-
uct w1w2 to [w1w2] correspond to similar contractions in transforming ϕ(w1)ϕ(w2) to
[ϕ(w1)ϕ(w2)] . Finally, ϕ is the unique such homomorphism for which the diagram
commutes. This is because for each x ∈ S, ϕ(x) = f(x), and a homomorphism
between groups is determined by what it does to a set of generators.

� We say that f : S → G induces the homomorphism ϕ : F (S)→ G.

The significance of the class of free groups among all groups is indicated by the
following theorem.

Theorem 21 Any group is isomorphic to a quotient of a free group.

Proof Let G be a group and S a generating set for G. Let F be the free group on
S and let θ : S → G be the identity set map. By the definition of a free group, θ
extends to a homomorphism θ : F → G. Then F/ ker θ ∼= Imθ = G.

7 Presentations

Most undergraduates have come across groups described using generators and rela-
tions. A common example is the dihedral group D2n, which is ‘defined’ as

⟨σ, τ | σn = e, τ 2 = e, τστ = σ−1⟩.

The idea is that σ and τ generate the group, and the ‘relations’ of the group are
given by the equalities on the right-hand side. These relations should be, in some
sense, the ‘only’ ones that hold. However, very rarely is it explained precisely what
this means! Of course, one is allowed to ‘deduce’ relations from the given ones.
For example, if σn = e and τ 2 = e, then σnτ 2 = e. However, there are slightly
more subtle relations that also follow. For example, τσnτ is also the identity, since
τσnτ = τeτ = e. So, it is clear that some more work must be done before one can
specify a group using generations and relation, with complete rigour. It turns out
that free groups play a central rôle in this process.
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Definition 22 Let B be a subset of a group G. The normal subgroup generated
by B or normal closure is the smallest normal subgroup of G that contains B.
We will denote it ⟨⟨B⟩⟩.

Remark 23 The intersection of a collection of normal subgroups is again a normal
subgroup. Hence, ⟨⟨B⟩⟩ is normal in G. It is therefore the smallest normal subgroup
of G that contains B, in the sense that any other normal subgroup that contains B
also contains ⟨⟨B⟩⟩.

It can be specified quite precisely, as follows.

Proposition 24 For B ⊆ G we have

⟨⟨B⟩⟩ = ⟨g−1bg : g ∈ G, b ∈ B⟩

or more explicitly precisely ⟨⟨B⟩⟩ consists of all expressions of the form

n∏
i=1

gib
ϵi
i g

−1
i ,

where n ⩾ 0, gi ∈ G, bi ∈ B and ϵi = ±1, for all i.

Proof Any normal subgroup containing B must contain all elements of the form
gbg−1 and gb−1g−1 (b ∈ B, g ∈ G). Hence, it must contain all finite products of
these:

n∏
i=1

gib
ϵi
i g

−1
i .

LetN be the set of all these finite products. We have therefore shown thatN ⊆ ⟨⟨B⟩⟩.
We will show that N is in fact a normal subgroup; it clearly contains B, and so we
would then have ⟨⟨B⟩⟩ ⊆ N proving the proposition. To show that N is a normal
subgroup, we check the various conditions:

� Identity: N clearly contains e.

� Inverses: The inverse of
∏n

i=1 gib
ϵi
i g

−1
i is

∏1
i=n gib

−ϵi
i g−1

i , which also lies in N .

� Closure: The product of two elements in N clearly lies in N .
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� Normality: For
∏n

i=1 gib
ϵi
i g

−1
i in N and g ∈ G,

g

(
n∏

i=1

gib
ϵi
i g

−1
i

)
g−1 =

n∏
i=1

(ggi)b
ϵi
i (g

−1
i g−1) =

n∏
i=1

(ggi)b
ϵi
i (ggi)

−1,

which lies in N .

We can now specify what it means to define a group via generators and relations.
The generators will come from a set X. The relations will be words in X, which we
can view as instructions that force these words to be the identity in the group. The
precise definition is as follows.

Definition 25 Let X be a set, and let R be a collection of elements of F (X). The
group with presentation ⟨X |R⟩ is defined to be F (X)/⟨⟨R⟩⟩.

Definition 26 Let G be a group. If S ⊆ G and R is a set of reduced words in
S ∪ S−1 such that G = ⟨S |R⟩, then we say ⟨S |R⟩ is a presentation of G.

We sometimes slightly abuse notation by allowing relations of the form ‘w1 = w2’,
where this is shorthand for the relation w1w

−1
2 .

Example 27 We can now genuinely define the dihedral group D2n to be

⟨σ, τ |σn, τ 2, τστσ⟩.

It is less than apparent from this definition that D2n contains 2n elements. However
the relation τστσ can be rearrange to τσ = στ−1. We can see that this relation
can be used to reduce any word in σ and τ to one of the form σsτ t. Because of the
relations σ2 and τn we can assume that 0 ⩽ s ⩽ 1 and 0 ⩽ t < n. A simple check
shows that these 2n words represent distinct elements of the group.

Example 28 � ⟨x |∅⟩ ∼= Z.

� ⟨x |xa = xb = e⟩ ∼= {e} if a and b are coprime.

� ⟨x, y |x2 = y2 = e, xy = yx⟩ ∼= C2 × C2.
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Example 29 Determine the order of the group

G = ⟨a, b | a4 = e, a2 = b2, b−1ab = a−1⟩.

From these relations we can see that ab = ba−1 = ba3 and so every word in a and
b can be put in the form bjai. Further as a2 = b2 and a4 = e we can assume that
0 ⩽ j ⩽ 1 and 0 ⩽ i ⩽ 3. We then have

G = {e, a, a2, a3, b, ba, ba2, ba3}

and we can see that the relations cannot be further used to equate any of these
elements. So |G| = 8. In fact this is the quaternion group Q8. By way of showing
how products can be calculated note

(ba)(ba3) = b(ab)a3 = b(ba3)a3 = b2a6 = a8 = e.

(a2)(ba) = a(ab)a = a(ba3)a = (ab)a4 = (ba3).

Do not get however the wrong idea that one can always determine the order of
a group given a presentation of the group. The Adian-Rabin theorem, proved in
the 1950s, implies that there is no algorithm that, given any presentation, will be
able to determine whether the associated group is trivial or not: it is an undecidable
problem!

We now show that any group G has a presentation. Let F (G) be the free group
on the generating set G. Thus, F (G) consists of all reduced words in the alphabet
G. There is a canonical homomorphism F (G)→ G sending each generator of F (G)
to the corresponding element of G, which is clearly surjective. Let R(G) be the
kernel of this homomorphism. Then, by the First Isomorphism Theorem for groups,
G is isomorphic to F (G)/R(G). Hence, G has presentation ⟨G |R(G)⟩.

Definition 30 The canonical presentation for G is ⟨G |R(G)⟩.

The canonical presentation of a group is extremely inefficient. Its main rôle
comes from the fact that it depends only on the group G and involves no arbitrary
choices.

The following result allows us to check whether a function from a group ⟨X |R⟩
to another group is a homomorphism.

Lemma 31 Let ⟨X |R⟩ and H be groups. Let a map f : X → H induce a homo-
morphism ϕ : F (X) → H. This descends to a homomorphism ⟨X |R⟩ → H if and
only if ϕ(r) = e for all r ∈ R.
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Proof Clearly, the condition that ϕ(r) = e is necessary for ϕ to give a homo-
morphism, since any r ∈ R represents the identity element of ⟨X|R⟩. Conversely,
suppose that ϕ(r) = e for all r ∈ R. Any element w of ⟨⟨R⟩⟩ can be written as

n∏
i=1

wir
ϵi
i w

−1
i ,

where n ⩾ 0, wi ∈ F (X), ri ∈ R and ϵi = ±1, for all i. Since ϕ(r) = e for all
r ∈ R, ϕ(w) is also e. Hence, ϕ descends to a homomorphism F (X)/⟨⟨R⟩⟩ → H, as
required.
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Part III

Isomorphism Theorems. Simple
Groups

8 The First Isomorphism Theorem

Recall that a map of groups ϕ : (G1, ∗) → (G2, ◦) is called a homomorphism if it
preserves the group operation:

ϕ(g ∗ h) = ϕ(g) ◦ ϕ(h) for all g, h ∈ G1,

and ϕ is called an isomorphism if it is bijective. The kernel

kerϕ = {g ∈ G |ϕ(g) = e}

is a subgroup and in fact a normal subgroup of G1. The image

Imϕ = {ϕ(g) ∈ G2 | g ∈ G1}

is a subgroup of G2.
Given a normal subgroup N of a group G there is a natural quotient homomor-

phism
q : G→ G/N defined by q(g) = gN.

Note that ker q = N , and q is surjective. Conversely, we have:

Theorem 32 (The First Isomorphism Theorem) Given a homomorphism
ϕ : G1 → G2, there is a well-defined isomorphism

G1/ kerϕ
∼=−→ Imϕ, given by g kerϕ 7→ ϕ(g)

and the map ϕ factors into the canonical quotient map G1 → G1/ kerϕ, the above
isomorphism, and the inclusion Imϕ→ G2.

Example 33 Let G1 = D8 = ⟨σ, τ |σ4 = τ 2 = e, σ−1τ = τσ⟩ and G2 = C2 × C2 =
⟨g⟩ × ⟨h⟩. As a set

G1 =
{
e, σ, σ2, σ3, τ, στ, σ2τ, σ3τ

}
.
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The map ϕ : D8 → C2 × C2 determined by

ϕ(σ) = g, ϕ(τ) = h,

is a well-defined homomorphism by Lemma 31 as

ϕ(σ4) = g4 = e, ϕ(τ 2) = h2 = e, ϕ(τστσ) = ghgh = g2h2 = e.

The kernel of ϕ equals ⟨σ2⟩ and the First Isomorphism Theorem shows that

D8/⟨σ2⟩ ∼= C2 × C2.

Example 34 Let G1 = S4 and G2 = S3. Then a = (12) and b = (234) generate S4

and a presentation for S4 is

S4 = ⟨a, b | a2 = b3 = e, (ab)4 = e⟩.

There is a well-defined homomorphism ϕ : S4 → S3 induced by ϕ(a) = (12) and
ϕ(b) = (321) by Lemma 31 as

ϕ
(
a2
)
= (12)2 = e, ϕ

(
b3
)
= (321)3 = e, ϕ

(
(ab)4

)
= ((12) (321))4 = (13)4 = e.

As (12) and (321) generate S3 then ϕ is onto and so |kerϕ| = 24/6 = 4. Hence
kerϕ = V4 and we have S4/V4

∼= S3.

9 The Second and Third Isomorphism Theorems

Lemma 35 Let G be a group, H ⩽ G and N ◁G. The set HN = {hn |h ∈ H,n ∈
N} is a subgroup of G.

Proof Clearly e = ee ∈ HN. For h ∈ H,n ∈ N,

nh = h(h−1nh) ∈ HN.

Hence h1n1h2n2 ∈ HN and (hn)−1 = n−1h−1 ∈ HN .

Theorem 36 (The Second Isomorphism Theorem) Let G be a group, and
H,N subgroups of G with N ◁G. Then H ∩N ◁H and there is an isomorphism

HN

N
∼=

H

H ∩N
.
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Proof The first statement follows from the fact that both N and H are closed under
conjugation by elements of H. For the second, consider the composition

H −→ HN → HN/N

where the first arrow is the inclusion and the second one is the quotient map. This
composition is surjective with kernel H ∩ N . Now apply the First Isomorphism
Theorem.

Example 37 Let G = S4, H = S3 = Sym({1, 2, 3}) ⩽ S4 and N = V4 ◁ S4. Then
HN = S4 and H ∩N = {e} so that the Second Isomorphism Theorem gives

S4/V4
∼= S3.

Theorem 38 (The Third Isomorphism Theorem) Let N , K be normal sub-
groups of a group G, with K ⊆ N . Then N/K◁G/K and there is an isomorphism

(G/K)/(N/K) ∼= G/N.

Proof To show the first statement, we note, for g ∈ G and n ∈ N ,

(gK)−1(nK)(gK) = g−1KnKgK = g−1ngK ∈ N/K

since K is normal in G. To see the isomorphism, consider the composition of the
quotient maps

G −→ G/K −→ (G/K)/(N/K).

As a composition of surjective maps, this is surjective, with kernel N . Now apply
the First Isomorphism Theorem again.

Example 39 Let G = S4, N = A4 ◁ S4 and K = V4 ◁ S4. Then G/K ∼= S3 and
N/K ∼= A3 so that the Third Isomorphism Theorem gives

(S4/V4)/(A4/V4) ∼= S3/A3
∼= C2.

The first statement of the Third Isomorphism Theorem has a converse.

Proposition 40 Let K ◁G. Denote Ḡ = G/K and let H̄ ⩽ Ḡ. Then

H = {h ∈ G |hK ∈ H̄}

is a subgroup of G, containing K as a normal subgroup, with H/K = H̄. If H̄ is
normal in Ḡ, then H is normal in G.
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Proof This is left to Sheet 1, Exercise 1.

Corollary 41 Given K ◁G, there is a one-to-one correspondence

H 7→ H̄ = H/K

between subgroups of G containing K, and subgroups of G/K, which preserves nor-
mal subgroups.

Example 42 Note that V4◁S4 and that S4/V4
∼= S3. In this case the above corollary

is demonstrated by noting

V4/V4
∼= {e}, A4/V4

∼= A3 S4/V4
∼= S3.

10 Simple Groups

Recall that a non-trivial group G is called simple if it has no non-trivial proper
normal subgroups. In a sense – to be made more rigorous in the next chapter – the
simple groups are the building blocks for general finite groups.

The symmetric group Sn of degree n is one of the first examples of a group that
one meets, as the group of permutations of n objects. One learns quickly that Sn is
interesting partly because it is not Abelian. Note for n ⩾ 3 that Sn is not simple: it
has a subgroup of index 2, which is of course non-trivial, proper and normal. This
subgroup is also well-known to us as the alternating group An i.e. the subgroup of
even permutations.

For small n, these groups An are easily identified: both A1 and A2 are trivial
and A3 is cyclic of order 3; of these, only A3 is simple (but it is Abelian). The group
A4 is a little more interesting: it has order 4!/2 = 12 and is not Abelian. It is not
simple as V4 = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} is a normal subgroup. However
the alternating groups An are simple for n ⩾ 5. We shall prove this only for the
case n = 5.

Theorem 43 The alternating group of degree 5, A5, is a simple group, of order 60.

We begin by studying the conjugacy classes of A5. Two permutations that are
conjugate in A5 are conjugate in S5 and so of the same cycle type, but the converse
does not follow.
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Lemma 44 The conjugacy classes of A5 are:
(a) the identity;
(b) all twenty 3-cycles;
(c) all fifteen double-transpositions;
(d) twelve (half) of the 5-cycles;
(e) twelve (half) of the 5-cycles, these being the squares of those in (d).

Proof (a) The identity commutes with every other element and so is conjugate only
to itself.

(b) Let σ = (123) and τ be two 3-cycles. There is an element ρ ∈ S5 such that
ρ−1τρ = σ. If ρ is odd then we can use ρ (45) instead which is even. Hence all the
3-cycles are conjugate in A5.

(c) Let σ = (12) (34) and τ be two double-transpositions. There is an element
ρ ∈ S5 such that ρ−1τρ = σ. If ρ is odd then we can use ρ (34) instead which is
even. Hence all the double transpositions are conjugate in A5.

(d) All 24 5-cycles are in A5. These cannot form a single conjugacy class in A5 as
24 does not divide 60. Given a 5-cycle, say σ = (12345), then clearly e, σ, σ2, σ3, σ4

all commute with σ. On the other hand if ρ ∈ A5 commutes with σ then

(1ρ 2ρ 3ρ 4ρ 5ρ) = ρ−1 (12345) ρ = (12345)

and we see ρ is entirely determined by the choice of 1ρ. Hence only these 5 powers
of σ commute with σ. It follows that σ has 60/5 = 12 conjugates in A5.

(e) Let σ = (12345). Say that ρ is such that

(1ρ 2ρ 3ρ 4ρ 5ρ) = ρ−1 (12345) ρ = (13524) = σ2.

If 1ρ = 1 then 2ρ = 3,. . . and we see ρ = (2354) , which is odd.
If 1ρ = 3 then 2ρ = 5,. . . and we see ρ = (1325) , which is odd.
If 1ρ = 5 then 2ρ = 2,. . . and we see ρ = (1534) , which is odd.
If 1ρ = 2 then 2ρ = 4,. . . and we see ρ = (1243) , which is odd.
If 1ρ = 4 then 2ρ = 1,. . . and we see ρ = (1452) , which is odd.

Hence σ is not conjugate to σ2 in A5.
Proof (Proof of Theorem) The possible orders of a proper non-trivial normal sub-
group are proper factors of 60. If a normal subgroup contains a 5-cycle σ it must
contain its 12 conjugates, but also its square σ2 and its 12 conjugates, so all 24 in
fact. Thus any normal subgroup must have an order which is a sum of numbers
from

1, 20, 15, 24,
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and must include the 1. We can quickly see combinatorially that this is not possible
– a choice of two of the larger numbers takes us past 30 and a choice of just one
does not give us a factor of 60. Hence A5 is simple.

In fact A5 is, up to isomorphism, the only simple group of order 60, and is
the smallest non-abelian simple group. In the next section we shall see that all
finite groups are in some (nontrivial!) sense composed of simple groups. Thus
the Classification of Finite Simple Groups, now complete, was a major and crucial
success, a result coming from numerous mathematicians working over decades. The
classification shows that:

Theorem 45 (The Classification of Finite Simple Groups) Let G be a finite
simple group. Then G is isomorphic to one of the following.

(i) A cyclic group of prime order Cp.

(ii) A group An for n > 4.

(iii) A finite group of Lie type such as PSL(n, q) for n > 2 or q > 3.

(iv) An explicit list of 26 sporadic groups, including as largest the Monster and
Baby Monster of orders ∼ 8 · 1053 and ∼ 4 · 1033 respectively.
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Part IV

Composition series.
Jordan–Hölder Theorem
Informally, a series for a group G is a sequence of nested subgroups of G. Here we
study composition series ; a group may have many such series but the Jordan–Hölder
theorem tells us something of the invariants of such series and might be thought of
as a “unique factorization” theorem. One should be wary of trusting this viewpoint
too much as we shall see that different (i.e. non-isomorphic) groups can have the
same ”factorization” in some sense.

Definition 46 A composition series for a group G is a sequence of subgroups

{e} ◁ G1 ◁ · · · ◁ Gn−1 ◁ Gn = G

such that each composition factor Gi+1/Gi simple (or equivalently each Gi is a
maximal proper normal subgroup of Gi+1).

Proposition 47 Let G be a finite non-trivial group. Then G possesses a composi-
tion series.

Proof We shall prove this by induction on |G|, the case of groups of small order
being clear. Let H ◁ G be a maximal normal subgroup, a normal subgroup of G
not equal to G which is not contained in any larger normal subgroup. Then G/H
is simple by Corollary 41 above. If H is not trivial, apply the inductive hypothesis
to H.

Example 48 � C12 has several composition series, for example

{e}◁ C2 ◁ C4 ◁ C12; {e}◁ C3 ◁ C6 ◁ C12; {e}◁ C2 ◁ C6 ◁ C12,

thinking of C2 = ⟨g6⟩, C3 = ⟨g4⟩, C4 = ⟨g3⟩, C6 = ⟨g2⟩ where g is a generator
of C12. Note that the composition factors are respectively

C2, C2, C3, C3, C2, C2, C2, C3, C2,.
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� A4 has three composition series, all of the form

{e}◁ C2 ◁ V4 ◁ A4

with composition factors C2, C2, C3 also. (There are three choices of subgroups
of V4 that are isomorphic to C2.)

� Z does not have a composition series.

Example 48 is suggestive of a special property of composition series: the set of
composition factors of C12 is the same for all three series. In fact this turns out to
be true for any finite group. This is the celebrated Jordan–Hölder theorem.

Theorem 49 (Jordan–Hölder theorem) Let G be a finite group. Then all com-
position series of G have the same length and, moreover, have the same composition
factors, including multiplicities, in some order.

Proof (Off-Syllabus, but included here for completeness.) Let us introduce some
terminology, to help simplify the proof of the theorem. We will say two composition
series of a groupG are equivalent if they have the same composition factors, including
multiplicities. So we want to prove that any two composition series for a finite group
G are equivalent.

Let
{e}◁G1 ◁G2 ◁ · · ·◁Gr−1 ◁Gr = G (1)

and
{e}◁H1 ◁H2 ◁ · · ·◁Hs−1 ◁Hs = G (2)

be two composition series of G. We will proceed by induction on r. If r = 1 then
G/ {e} = G is simple and {e} ◁ G is its only composition series. So, let r > 1
and assume that the theorem holds for any group having some composition series
of length less than r.

If Gr−1 = Hs−1 then Gr−1 has two composition series

{e}◁G1 ◁ · · ·◁Gr−1, {e}◁H1 ◁ · · ·◁Hs−1 = Gr−1,

of length r−1 and s−1 respectively. By the inductive hypothesis, r−1 = s−1 and
these two composition series of Gr−1 are equivalent. Hence r = s and G/Gr−1

∼=
G/Hs−1 so (1) and (2) are equivalent.

If Gr−1 ̸= Hs−1, since Gr−1 ◁ G and Hs−1 ◁ G, we have Gr−1Hs−1 ◁ G. But
G/Gr−1 is simple so we cannot have Gr−1 ◁ Hs−1, else Hs−1/Gr−1 is a non-trivial
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proper normal subgroup of G/Gr−1. Therefore we must have Hs−1 < Gr−1Hs−1,
but since G/Hs−1 is simple, we must have that Gr−1Hs−1 is equal to G. Let K =
Gr−1∩Hs−1◁G. By the Second Isomorphism Theorem, we have G/Gr−1

∼= Hs−1/K
and G/Hs−1

∼= Gr−1/K and so Gr−1/K and Hs−1/K are simple.
Now K is finite so certainly has a composition series

{e}◁K1 ◁K2 ◁ · · ·◁Kt−1 ◁Kt = K.

Then
{e}◁G1 ◁G2 ◁ · · ·◁Gr−2 ◁Gr−1 (3)

and
{e}◁K1 ◁K2 ◁ · · ·◁Kt−1 ◁K ◁Gr−1 (4)

are composition series of Gr−1 of length r−1 and t+1 respectively. By the inductive
hypothesis, t = r − 2 and (3) is equivalent to (4). Similarly we have composition
series

{e}◁H1 ◁H2 ◁ · · ·◁Hs−2 ◁Hs−1 (5)

and
{e}◁K1 ◁K2 ◁ · · ·◁Kt−1 ◁K ◁Hs−1 (6)

of Hs−1 of length s − 1 and t + 1 = r − 1 respectively, so again by the inductive
hypothesis r = s and (5) and (6) are equivalent.

Finally, since Gr−1/K ∼= G/Hs−1 = G/Hr−1 and Hr−1/K ∼= G/Gr−1, we see that
the composition series

{e}◁K1 ◁K2 ◁ · · ·◁Kt−1 ◁K ◁Gr−1 ◁G (7)

and
{e}◁K1 ◁K2 ◁ · · ·◁Kt−1 ◁K ◁Hs−1 ◁G (8)

are equivalent. So since (3) and (4) are equivalent, and (5) and (6) are equivalent,
then (1) and (7) are equivalent and (2) and (8) are equivalent. Now since (7) and
(8) are equivalent, (1) and (2) are equivalent.

Remark 50 � Note that the composition factors of C6 and S3 are both C2, C3.
Thus there exist non-isomorphic groups having the same composition factors
including multiplicities.

� If G is finite and abelian then its composition factors must also be and so must
be cyclic of prime order.
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� Let G be a finite group and let H◁G. If X1, . . . , Xr are the composition factors
of H and Y1, . . . , Ys are the composition factors of G/H, then the composition
factors of G are X1, . . . , Xr, Y1, . . . , Ys.

� Let X and Y be non-Abelian finite simple groups, and let G = X × Y . Then
the only two composition series of G are

{e}◁X × {e}◁X × Y and {e}◁ {e} × Y ◁X × Y.

Example 51 The composition factors of A4 are C2, C2, C3 and of A5 are just A5.

Example 52 All five groups of order 8 has composition factors C2, C2, C2.

Example 53 Note that applying the result to the finite group Cm for a positive
integer m gives the Fundamental Theorem of Arithmetic.
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Part V

Solvable Groups
Definition 54 A finite group G is said to be solvable (or in older terminology,
soluble), if every composition factor of G is a cyclic group of prime order.

Remark 55 Note that the above definition – for finite groups – is equivalent to
requiring that the group have a composition series whose composition factors are
abelian. We might more generally say that a group (finite or infinite) is solvable
if it has a subnormal series with abelian (and not necessarily simple) composition
factors.

The terminology comes from Galois theory, and in particular the following the-
orem: given a polynomial f ∈ Q[x], there is a group associated to f , its Galois
group G, which permutes the roots of f . The roots of f can be expressed by radical
expressions in rational numbers if and only if G is solvable.

Example 56 � All finite abelian groups are solvable.

� S4 is solvable as {e}◁C2◁V4◁A4◁S4 with composition factors C2, C2, C3, C2

� Groups of order pa where p is prime are solvable – see Sheet 2, Exercise 5.

Two (very off-syllabus) significant theorems relating to solvable groups are:

Theorem 57 (Burnside’s pαqβ theorem) If p and q are primes then any group
of order pαqβ, α, β ∈ N, is solvable.

However, there exist groups whose orders are divisible by only three distinct
primes that are not solvable (for example, A5).

Theorem 58 (Feit–Thompson) All finite groups of odd order are solvable.

One significant consequence of this result is that the only finite simple groups of
odd order are cyclic of prime order.

Theorem 59 Let G be finite.

(i) If N ◁G, and both N and G/N are solvable, then so is G.
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(ii) If G is solvable, then any subgroup of G is solvable.

(iii) If G is solvable, then any quotient group of G is solvable.

Proof To prove (i), we’ll show that the composition factors of G are those of N and
G/N put together. To see this, let

{e} = K̄0 ◁ K̄1 ◁ · · ·◁ K̄n = G/N

be a composition series for G/N with abelian factors, and let

{e} = N0 ◁N1 ◁ · · ·◁Nk = N

be one for N . The subgroups K̄i ⩽ G/N correspond, by Corollary 41, to subgroups
Ki ⩽ G containing N , and there are isomorphisms

Ki/Ki+1
∼= (Ki/N)/(Ki+1/N) = K̄i/K̄i+1

by the Third Isomorphism Theorem. Hence we get a composition series

{e} = N0 ◁N1 ◁ · · ·◁Nk = N = K0 ◁K1 ◁ · · ·◁Kn = G.

with abelian factors. To show (ii), let {e} = G0◁G1◁· · ·◁Gn = G be a composition
series for G, and for a subgroup H ⩽ G, let Hi = Gi ∩H. Then clearly Hi ◁Hi+1.
Now apply the Second Isomorphism Theorem to get

Hi+1/Hi = Hi+1/(Hi+1 ∩Gi) ∼= Hi+1Gi/Gi

which is a subgroup of Gi+1/Gi, an abelian group of prime order. Hence Hi+1/Hi

is either trivial (so that Hi = Hi+1 and one of these may be omitted) or abelian of
prime order itself. Thus H is solvable.

(iii) Assume G is solvable with composition series {e} = G0◁G1◁ · · ·◁Gn = G,
and N ◁G. Let Ni = NGi/N . It is easy to check that Ni ◁Ni+1 and that there is
a natural surjective map

Gi+1/Gi → (NGi+1/N)/(NGi/N) = Ni+1/Ni.

Hence Ni+1/Ni is a quotient of the cyclic abelian group Gi+1/Gi, and hence it is
cyclic abelian or trivial. Thus N is solvable.

Corollary 60 For n > 4, the symmetric group Sn is not solvable.
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Continuing with our preview of Galois theory, this implies that the roots of a
general polynomial of degree n > 4 are not expressible using radical expressions.

An alternative definition of solvable groups is via the derived subgroup and
the derived series.

Definition 61 Let G be a group. The derived subgroup or commutator sub-
group of G is the subgroup

G′ = [G,G ] = ⟨a−1b−1ab | a, b ∈ G⟩.

We commonly write [a, b] for the commutator a−1b−1ab.

Example 62 G is abelian if and only if G′ = {e}.

Example 63 (Sn)
′ = An.

Proof Certainly it is the case that [a, b] is even for any a, b ∈ Sn and so [a, b] ⩽ An.
On the other hand when a = (12) and b = (13) we see

[a, b] = (12)(13)(12)(13) = (123)(123) = (132).

From similar calculations we can see that all 3-cycles are in (Sn)
′ and the 3-cycles

generate An.
Some elementary properties of commutator subgroups are useful:

Lemma 64 Let G be a group.

(i) G′ ◁G

(ii) If H ◁G and G/H is Abelian then G′ ⩽ H.

(iii) Conversely, if G′ ⩽ H ⩽ G then H ◁G and G/H is Abelian.

(iv) If H ◁G then H ′ ◁G.

Proof (i) We have G′ ⩽ G as it is by definition the subgroup generated by the
commutators. Further it is a normal subgroup as

g−1[a, b]g = g−1a−1b−1abg = (g−1a−1g)(g−1b−1g)(g−1ag)(g−1bg) = [g−1ag, g−1bg],
(9)

with a similar calculation being true for the conjugates of words in the commutators.
(ii) and (iii) are left to Sheet 2, Exercise 2. (iv) is a reapplication of (9).

The derived series arises out of repeated taking of commutator subgroups.
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Definition 65 Let G be a finite group. Set G(0) = G and for k ⩾ 1, define G(k) =
(G(k−1))′. The series G = G(0) ⩾ G(1) (= G′(2) ⩾ · · · is called the derived series
of G. By the preceding lemma, each G(k) is normal in G and G(k−1)/G(k) is Abelian
so the composition factors are abelian.

Definition 66 If the derived series is of finite length and k ⩾ 0 is the first instance
that G(k) = {e}, then k is known as the derived length of G.

We can now prove the following theorem.

Theorem 67 Let G be a finite group. Then the following are equivalent:

1. the derived length of G is finite, i.e. there exists k ∈ N such that G(k) = {e};

2. G has a subnormal series with Abelian factors, i.e. G is solvable.

Proof 1 ⇒ 2 follows from the classification of finite abelian groups. It remains to
prove 2 ⇐ 1. Suppose {e} = Gr ◁Gr−1 ◁ · · ·◁G0 = G is a subnormal series for G
with Abelian factors (note the numbering is the reverse of our usual one). To show
the existence of k with G(k) = {e}, it suffices to show that G(i) ⩽ Gi for each i, as
then G(r) ⩽ Gr = {e}. We work by induction on i.

For i = 0, G(0) = G = G0, so this our base case. Now let i ⩾ 1 and assume by
the inductive hypothesis that G(i−1) ⩽ Gi−1. Then G(i) = (G(i−1))′ ⩽ (Gi−1)

′ and
(Gi−1)

′ ⩽ Gi (by Lemma 64), since Gi−1/Gi is Abelian.

Example 68 � The derived series for S4 is

S4 ▷ A4 ▷ V4 ▷ {e} .

� The derived series for Sn where n > 4 is

Sn ▷ An ▷ An ▷ · · ·

36



Part VI

Semi-direct Products
Given two groups G1 and G2 it is always possible to make their direct product G1×
G2. However, algebraically, this is rather uninteresting as essentially no interaction
goes on between the two groups. We also know that most groups are not the direct
product of any pair of their subgroups. So we might try to better understand cases
where a group is of the form G = G1G2 and each g can be written uniquely as g1g2
where g1 ∈ G1, g2 ∈ G2.

Say then that a group G has two subgroups G1 and G2 such that G = G1G2.
Since g1g2 = g′1g

′
2 if and only if g−1

1 g′1 = g2g
′−1
2 and the latter belongs to G1∩G2, we

see that the expression g = g1g2 will always be unique if and only if G1 ∩G2 = {e}.
However when we try to understand a product

g1g2 ∗ g̃1g̃2,

it is rather unclear how we might express this as the product of an element in G1

with an element in G2. We can get around this problem if one of the factors G1 or
G2 is a normal subgroup. Hence we define:

Definition 69 Let G be a group, H ⩽ G and N ◁ G. We say G is an internal
semi-direct product of H and N , denoted

G = N ⋊H,

if G = NH and H ∩N = {e}.

Example 70 Here are some examples.

� Any direct product G = N ×H; in this case, both {e} ×H and N × {e} are
normal in G.

� G = D2n, the dihedral group, N = ⟨σ⟩ is the group of rotations, H = ⟨τ⟩ is
any subgroup generated by a reflection.

� G = Sn, N = An and H is any subgroup generated by a transposition.

� G = S4, H = S3 and N = V4.
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Example 71 Consider G = S3, A = ⟨(1 2 3)⟩ and B = ⟨(1 2)⟩. As A ∩ B = {e}
it follows that AB = G. Therefore S3 = ⟨(1 2 3)⟩ ⋊ ⟨(1 2)⟩. Notice that (1 2) and
(1 2 3) do not commute and S3 ̸= ⟨(1 2 3)⟩ × ⟨(1 2)⟩ (the latter is Abelian, the
former is not).

We wish to understand how to recover the multiplication rule of the semidirect
product G from information about H and N . First of all, note that if n1h1 = n2h2,
then

n−1
2 n1 = h2h

−1
1 ∈ H ∩N = {e},

so that n1 = n2 and h1 = h2 and the representation g = nh is indeed unique as we
claimed earlier. Set-theoretically we can identify G with N ×H, the set of ordered
pairs (n, h). Also, if g1 = n1h1 and g2 = n2h2, then

g1g2 = n1h1n2h2 = n1(h1n2h
−1
1 )︸ ︷︷ ︸

∈N

h1h2︸︷︷︸
∈H

,

as N is normal. So this is almost like straightforward multiplication of pairs, except
that the multiplication in N is “twisted” by conjugation with h1.

Recall that in any group G, with h ∈ G, conjugation by h is an automorphism
of G. That is the map ϕh : G→ G given by

ϕh(g) = hgh−1

is an isomorphism from G to itself. So we might rewrite the product in G = N ⋊H
as

(n1, h1) ◦ (n2, h2) = (n1ϕh1(n2), h1h2) .

This twist ϕh comes internally from the group G containing N and H as subgroups
of. If instead we hoped to take two unrelated groups and make an external semi-
direct product N ⋊H we would need to somehow know how to twist our product.
So we now note:

Lemma 72 (a) If N ◁G, then for each h ∈ G, ϕh restricts to an automorphism of
N .

(b) If H ⩽ G the map h 7→ ϕh gives a group homomorphism H → Aut(N).

Remark 73 Recall that the set of automorphisms of a group G form a group Aut(G)
under composition.
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Proof (a) We know that ϕh is an automorphism of G; it restricts to a map N → N
as normal subgroups are preserved by conjugation.

(b) For h1, h2 ∈ H we have

ϕh1h2(n) = (h1h2)n(h1h2)
−1 = h1(h2nh

−1
2 )h2 = ϕh1ϕh2(n).

This now shows precisely what information we need to build an external semidi-
rect product.

Theorem 74 Given two groups H and N , and a homomorphism

ϕ : H → Aut(N),

define (N ⋊ H, ◦) to consist of the set of pairs (n, h) with h ∈ H, n ∈ N , with
operation

(n1, h1) ◦ (n2, h2) = (n1ϕ(h1)(n2), h1h2).

Then (N ⋊H, ◦) is a group. It contains subgroups H̃ = {(e, h))} and Ñ = {(n, e)},
the latter normal, isomorphic respectively to H and N .

Proof This is left to Sheet 2, Exercise 3.

Example 75 If ϕ : H → Aut(N) is the map ϕ(h) = idN then

(n1, h1) ◦ (n2, h2) = (n1idN(n2), h1h2) = (n1n2, h1h2),

and we have recreated the (external) direct product.

Example 76 Let Cn = ⟨a⟩ for some n ⩾ 2 and let C2 = ⟨b⟩. Let ϕ : C2 → Aut(Cn)
be the map determined by ϕ(b)(ar) = a−r, for r ∈ Z, i.e. the non-trivial element of
C2 acts by inverting elements of Cn. For n ⩾ 3 the group Cn⋊ϕC2 is isomorphic to
D2n, the dihedral group of order 2n. To appreciate this we can see that ar = b2 = e
as we expect and

ba = (e, b) ◦ (a, e) = (ϕ(b) (a), b) =
(
a−1b

)
= a−1b,

so that we can identify a with σ and b with τ. Note that C2 ⋊ϕ C2 = C2 × C2
∼= D4

as C2 = ⟨a⟩ has a−1 = a so ϕ is trivial.
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Example 77 Recall that an automorphism σ : Zn → Zn must map a fixed generator
to another generator, and is uniquely determined by this choice, so

Aut(Zn) ∼= U(Zn),

the group of units of the ring Zn.

Example 78 (a) What semi-direct products Z3 ⋊ Z3 are there? As

Aut(Z3) ∼= U(Z3) = {1, 2} ∼= Z2

then the only homomorphism H = Z3 → Z2
∼= Aut(N) is the trivial map and so the

only semidirect product is in fact the direct product Z3 × Z3.
(b) What semi-direct products Z3 ⋊ Z4 are there? Again Aut(Z3) ∼= Z2 but now

there are two homomorphisms H = Z4 → Z2
∼= Aut(N). One is the trivial map

and this again leads to the direct product Z3 × Z4. The other is comes from the
homomorphism

Z4 → Z2 given by n mod 4 7→ n mod 2.

In terms of the automorphisms of Z3 we are discussing here 0 mod 2 represents the
identity and 1 mod 2 represents the negative map. So multiplication in Z3 ⋊ Z4 is
given by

(n1 mod 3, h1 mod 4)◦(n2 mod 3, h2 mod 4) =
(
n1 + (−1)h1 n2 mod 3, h1 + h2 mod 4

)
.

This may well be easier to understand in terms of generators and relations. If we
take

x = (1 mod 3, 0 mod 4) y = (0 mod 3, 1 mod 4) ,

which are generators for our group, then we have

x3 = y4 = (0 mod 3, 0 mod 4) = e.

We also have

yx = (0 mod 3, 1 mod 4) ◦ (1 mod 3, 0 mod 4)

= (−1 mod 3, 1 mod 4)

= (−1 mod 3, 0 mod 4) ◦ (0 mod 3, 1 mod 4)

= x−1y.
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Thus we have a presentation for this group

C3 ⋊ C4 = ⟨x, y |x3 = y4 = e, yx = x−1y⟩.

This group manifests as a subgroup of the quaternions: we can set x = eiπ/3 and
y = j, noting that x3 = 1 = y4 and that

yx = jeiπ/3 = j

(
−1

2
+

√
3

2
i

)
=

(
−1

2
j −
√
3

2
k

)
=

(
−1

2
−
√
3

2
i

)
j = e2πi/3j = x−1y.

Note that this group is not isomorphic to any of C12, C2 × C6, A4, D12 (the first
two are abelian and the last two have no order 4 elements). In fact we now have a
complete list of the order 12 groups

C12, C2 × C6, A4, D12, C3 ⋊ C4,

though we will need some further results before we can be sure of that.

Example 79 Recall that S4 is the internal semi-direct product of V4 and S3 =
Sym {1, 2, 3} . How might we have arrived at S4 as an external semi-direct product
V4 ⋊ S3? Note that

Aut (V4) ∼= S3

as V4 can be thought of as e together with three commuting order two elements a, b, c.
Thus any permutation of a, b, c is an automorphism of V4. We will write

a = (14) (23) , b = (13) (24) , c = (12) (34) .

We need to work out which homomorphism ϕ : S3 = Sym {1, 2, 3} → Aut (V4) ∼=
S3 = Sym {a, b, c} comes internally from the group structure of S4. Recall that ϕσ

denotes conjugation by σ and so

ϕ(12) = (ab) ; ϕ(13) = (ac)

and so ϕ : Sym {1, 2, 3} → Sym {a, b, c} is (essentially) the identity map 1↔ a, 2↔
b, 3↔ c.
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11 Extensions

We now discuss the general extension problem.

Definition 80 Let A and B be groups. Then an extension of A by B is a group
G together with a normal subgroup K such that K ∼= A and G/K ∼= B. Note
necessarily that |G| = |A| |B| |.

The extension problem is: given groups A and B, can one classify all extensions
of A by B? This problem is hard but sophisticated methods to tackle it have been
developed. Notice that some extensions certainly exist: A×B is an extension of A
by B (and of B by A). Semi-direct products are also extensions, since A ◁ A ⋊ B
and (A⋊B)/A ∼= B.

Another way to view an extension is as a short exact sequence of groups.

Definition 81 Let M, N, P be groups. A short exact sequence involving M , N
and P is a sequence

{e} →M
i→ N

π→ P → {e}

with i injective, π surjective and Imi = ker π. (The last of these is “exactness at N”;
exactness at M is equivalent to i being injective and exactness at P is equivalent to π
being surjective, since i and π are maps from and to the trivial group, respectively.)

Observe that i(M) = kerπ ◁N and P ∼= N/M . So an extension of A by B is a
short exact sequence

{e} → A
i→ G

π→ B → {e}

Example 82 Here are some examples.

� extensions of C2 = ⟨a⟩ by C2 = ⟨b⟩:

{e} → C2
i1→ C2 × C2

π1→ C2 → {e} . i1(a) = (a, e) , π1 (e, b) = b.(10)

{e} → C2
i2→ C4 = ⟨c⟩

π2→ C2 → {e} . i2(a) = c2, π2 (c) = b. (11)

� extensions of C3 = ⟨a⟩ by C2 = ⟨b⟩:

{e} → C3
i1→ C6 = ⟨c⟩

π1→ C2 → {e} . i1(a) = c2, π2 (c) = b. (12)

{e} → C3
i2→ S3

π2→ C2 → {e} . i2(a) = (1 2 3) , π2 (ρ) = sgn(ρ).(13)
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� extensions of Cn = ⟨a⟩ by C2 = ⟨b⟩:

{e} → Cn
i1→ C2n = ⟨c⟩ π1→ C2 → {e} . i1(a) = c2, π2 (c) = b. (14)

{e} → Cn
i2→ D2n

π2→ C2 → {e} . i2(a) = σ, π2

(
σkτ l

)
= bl. (15)

� extensions of An by C2 = {±1}:

{e} → An
i1→ An × C2

π1→ C2 → {e} . i1(ρ) = (ρ, e) , π2

(
ρ, bi

)
= bi.(16)

{e} → An
i2→ Sn

π2→ C2 → {e} . i2(ρ) = ρ, π2 (ρ) = sgn(ρ). (17)

We know direct and semi-direct products are extensions. But how do we know
when an extension results from a semi-direct product?

Definition 83 An extension of a group A by a group B described by the short exact
sequence

{e} → A
i→ G

π→ B → {e}
is said to split if there exists a group homomorphism j : B → G such that π◦j = idB.
(Note that j is consequently injective.)

The importance of the splitting of an extension (that is, a split extension) is
given by the following.

Lemma 84 There exists homomorphisms i and π making the sequence

{e} → A
i→ G

π→ B → {e}

split if and only if G ∼= A⋊ϕ B for some ϕ : B → Aut(A).

Proof This is left as an exercise. Hint for (⇒): consider

ϕ(b)(a) = i−1(j(b)i(a)j(b−1)).

Example 85 Here are some examples.

� S3 as an extension of C3 by C2 splits.

� Sn as an extension of An by C2 splits.

� C4 as an extension of C2 by C2 does not split.
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Part VII

Sylow’s Theorems
In the first year we saw that Lagrange’s Theorem doesn’t have a converse, the easiest
instance of this being that the group A4 doesn’t have a subgroup of order 6. We
did though see that there are partial converses to the result: for example if a prime
p divides the order of a group G then there is an element of order p and hence a
subgroup of order p. This is Cauchy’s Theorem. We will substantially improve on
that result in the next two lectures.

Definition 86 Let G be a finite group. We say that G is a p-group, where p is a
prime, if the order of G is a power of p.

Definition 87 Let G a group of order pam where p is a prime and p ∤ m. Then
we call a subgroup H of G a Sylow p-subgroup if H has order pa. We denote by
np the number of Sylow p-subgroups of G and we shall write Sylp(G) for the set of
those subgroups.

We will state Sylow’s theorems below; in what follows we assume that G is a
finite group and p is a prime. We may then uniquely write |G| = pam with a ⩾ 0,
m ⩾ 1 and p ∤ m.

Theorem 88 (Sylow’s First Theorem) There is a Sylow p-subgroup of G.

Theorem 89 (Sylow’s Second Theorem) Two Sylow p-subgroups of G are con-
jugate – i.e. if P1, P2 ∈ Sylp(G) then there exists g ∈ G such that P2 = g−1P1g.

Theorem 90 (Sylow’s Third Theorem) np ≡ 1 mod p and np divides m.

Remark 91 In the proof we will show that any p-subgroup of G is contained in a
Sylow p-subgroup. Also, as two Sylow p-subgroups are conjugate they are isomorphic.

Remark 92 It is often possible to use Sylow’s Third Theorem to demonstrate that
there is a unique subgroup Sylow p-subgroup (for some p). As any conjugate of that
subgroup is also a Sylow p-subgroup then we see that this subgroup is normal.

Before proving the theorems we consider the following groups by way of examples.
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Example 93 � The Sylow subgroups of D10:

As |D10| = 10 = 2× 5 there are Sylow p-subgroups for p = 2 and p = 5.

Sylow 2-subgroups : ⟨s⟩, ⟨sr⟩, ⟨sr2⟩, ⟨sr3⟩, ⟨sr4⟩.
Sylow 5-subgroups : ⟨r⟩.

Being unique ⟨r⟩ must be normal.

We also note n5 = 1 ≡ 1 mod 5 and n2 = 5 ≡ 1 mod 2 as expected. Also n5

divides 2 = 10/5 and n2 divides 5 = 10/2,

� The Sylow subgroups of A5:

As |A5| = 60 = 22 × 3× 5 there are Sylow p-subgroups for p = 2, 3 and 5.

Sylow 2-subgroups : V4 ({a, b, c, d}) .
Sylow 3-subgroups : ⟨(abc)⟩
Sylow 5-subgroups : ⟨(abcde)⟩.

p = 2: these are of order 4 and are isomorphic to C2 × C2 (as A5 has no ele-
ments of order 4). A5 has 15 elements of order 2 which make 5 such subgroups
when combined with the identity (each subgroup fixes one of 1, 2, 3, 4, 5.) Note
n2 = 5 ≡ 1 mod 2 and n2 divides 15 = 60/22.

p = 3: these are cyclic of order 3. A5 has 20 3-cycles which pair up and
together with the identity make 10 such subgroups. So n3 = 10. Note that
n3 ≡ 1 mod 3 and that n3 divides 60/3 = 20.

p = 5: these are cyclic of order 5. There are 24 5-cycles; four of these and the
identity make 6 such subgroups so n5 = 6. Note that n5 ≡ 1 mod 5 and that
n5 divides 60/5 = 12.

We return to the proof of Sylow’s theorems.

Proof (First Theorem) Let P be a maximal p-subgroup of order pb for some b, so
that there does not exist a subgroup Q of G with P ⩽ Q and |Q| = pc for c > b.

Let H = NG(P ) = {g ∈ G | g−1Pg = P}, the normalizer of P , so that P ◁H,
and let m0 = |H/P |. Let m1 be the number of cosets of H in G. We then have

pam = |G| = |G : H||H| = m1p
bm0.

Our strategy will be to prove the following three steps:
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� STEP 1: p does not divide m0.

� STEP 2: P is precisely the set of elements of H whose order is a power of p.

� STEP 3: p does not divide m1.

It then follows that p does not divide m0m1 and hence a = b. (In due course –
for the Third Theorem – we shall see that np = m1.)

STEP 1: If p divides m0 then by Cauchy’s theorem there exists a subgroup
Ā ⩽ H/P of order p. As a consequence of the Third Isomorphism Theorem, there
then exists A ⩽ H such that Ā = A/P and P ⩽ A ⩽ H. Now |A| = |A : P | |P | =∣∣Ā∣∣ |P | = pb+1 but this contradicts the maximality of P . So p cannot divide m0 and
|H| = pbm0 with p ∤ m0.

STEP 2: Now P is a p-subgroup of G and hence of H, so that every element
of P has order a power of p. In fact, P must be exactly the elements of H having
order a power of p, as any such element in H but not in P would give rise to a
subgroup of H/P with order divisible by p, but p ∤ |H/P | = m0. In particular, if Q
is a p-subgroup of H we must have Q ⩽ P .

STEP 3: Now let Σ denote the set of right cosets of H in G, with G acting
naturally on the right. We defined m1 = |Σ|. Denote by α the coset He = H ∈ Σ so
that Stab (α) = H. Consider now the action of P on Σ. Since P ⩽ H, P fixes α, so
that there is at least one P -orbit of size 1, namely {α}. Let {β} be any other P -orbit
of size 1. Then since the action of any group on one of its coset spaces is transitive,
there exists x ∈ G such that β = α·x. Thus P ⩽ Stab (β) = x−1Stab (α)x = x−1Hx.
So, xPx−1 ⩽ H. The elements of P have order a power of p and so this is also true of
elements of xPx−1. Thus by STEP 2 xPx−1 ⩽ P and, comparing orders, xPx−1 = P
and so x ∈ NG(P ) = H. But then α · x = H · x = H so β = α · x = α, and we have
shown that there is a unique P -orbit of size 1, namely {α}, for the action of P on
Σ.

We now make use of the following lemma:

Lemma 94 Let G be a finite group having order |G| = pr for some prime p and
suppose G acts on a set Σ. Define FixG (Σ)={ω ∈ Σ : ω · g = ω for all g ∈ G} (i.e.
the set of singleton orbits). Then

|FixG (Σ)| ≡ |Σ| mod p.
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Proof All orbits have a size divides pr. Hence the sizes of the non-singleton orbits
are multiples of p. As the orbits partition Σ the result follows.

Proof (of STEP 3 continued) Using this lemma for the p-group P acting on Σ, we
see that

|Σ| = m1 ≡ |FixP (Σ)| ≡ 1 mod p.

But then p ∤ m1 completing the proof of Step 3.

Proof (Second Theorem) We will show the stronger claim that for any Sylow p-
subgroup P and any (not necessarily maximal) p-subgroup Q of G, there exists an
element x ∈ G such that Q ⩽ x−1Px. For if Q is in fact maximal (i.e. Sylow) then
Q = x−1Px, hence the Second Theorem.

We consider the action of Q by right multiplication on Σ. By the above lemma
again, |Σ| ≡ |FixQ (Σ)| mod p where |FixQ (Σ)| is the number of Q-orbits of size 1.
But p ∤ |Σ| so |FixQ (Σ)| ̸≡ 0 mod p and there exists at least one Q-orbit of size 1,
{β} say. The action of G on Σ is transitive so as before there exists x ∈ G such that
β · x = α. Thus Stab (β) = x−1Hx, also as before. Since {β} is a Q-orbit of size 1,
we see that Q ⩽ Stab (β) = x−1Hx so xQx−1 is a p-subgroup of H, and therefore
of P, so Q ⩽ x−1Px as required. This proves our claim, from which we deduce the
Second Theorem.

Proof (Third Theorem) The conjugates of a subgroup are in 1-1 correspondence
with the cosets of its normalizer: here x−1Px ←→ NG(P )x = Hx. As the Sylow
p-subgroups are conjugate to one another np = |G : H| = |Σ| = m1 divides m and
np ≡ 1 mod p from STEP 3 above. This proves the Third Theorem.

12 Applications

The classification up to isomorphism of finite groups is one of the hardest problems
in mathematics. In Prelims we were able to handle the following special cases.

� If p is prime and |G| = p then G is cyclic.

� If p ⩾ 3 is prime and |G| = 2p then G ∼= C2p or G ∼= D2p.

� If p is a prime and |G| = p2 then G ∼= Cp2 or G ∼= Cp × Cp.
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On Exercise Sheet 2 it was left as an exercise to show that the groups of order
8 are, up to isomorphism,

C8, C4 × C2, C2 × C2 × C2, D8, Q8.

For groups of order less than 16 this leaves only the orders 12 and 15 unresolved.
The following general result shows, in particular, that groups of order 15 are cyclic.

Proposition 95 Let G be a group of order pq with p, q prime, p > q and q ∤ p− 1.
Then G is cyclic.

Proof By Cauchy’s theorem, G has subgroups of orders p and q. Consider the
subgroup of order p, i.e. for the larger prime. If P1 and P2 were distinct subgroups
of order p then their intersection would be trivial, so P1P2 would contain p2 elements.
This cannot happen, since |G| = pq < p2. Hence there is a unique subgroup of order
p, which must therefore be normal. Denoting the p-subgroup by P and letting Q
be any q-subgroup, P ∩ Q = {e} and PQ = G so G is a semi-direct product of P
by Q. (Note that what we have so far proven applies to any group whose order is a
product of two distinct primes.)

Observe that P ∼= Cp and Q ∼= Cq. If there is only one q-subgroup Q, then Q is
also normal and G is a direct product of P and Q and is therefore cyclic of order pq.
Given G = P ⋊Q (possibly a direct product), it remains to determine the action of
Q on P by conjugation.

As q ∤ p − 1 then since any q-subgroup is a Sylow q-subgroup (q is the highest
power of q dividing pq), nq = 1 + mq ̸= p so we have only one q-subgroup and
G = Cp×Cq

∼= Cpq. Alternatively we might have noted that the only homomorphism
Cq → Aut(Cp) ∼= Cp−1 is the one with kernel Cq.

Remark 96 A semi-direct product N ⋊ H is in fact direct when N and H are
normal. To see this recall that each element can be uniquely written nh where n ∈ N
and h ∈ H. Then note

(n1h1)(n2h2) = (n1h1n2h
−1
1 )(h1h2) = (n1n2)(n

−1
2 h1n2h2).

By uniqueness n1h1n2h
−1
1 = n1n2 so that h1n2 = n2h1 and hence the product is in

fact direct.

Remark 97 Similar arguments can be used to show that:
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� Let G be a group of order pq where p > q and q | p − 1. Then G ∼= Cpq

or G ∼= Cp · Cq where Cp · Cq is the semi-direct product of Cp by Cq with
ϕ(b)(a) = ar, where ⟨b⟩ = Cq, ⟨a⟩ = Cp and r ∈ N, 1 < r < p such that
rq ≡ 1 mod p. (Compare this with the first year result of groups of order 2p.)

� Let G be a group of order pqr with p, q and r primes and p > q > r. Then G
is not simple.

We now look to classify the groups of order 12. The abelian groups are C12,
C2 × C6, so suppose that G is a non-abelian group of order 12.

From Sylow’s theorems, we have that n2 is odd and divides 3, so is 1 or 3 and
similarly n3 ≡ 1 mod 3 and divides 4, so is 1 or 4. It is not possible to have n2 = 3
and n3 = 4, as this would require at least 4 elements of order 2 and 8 elements of
order 3, as well as the identity, totalling more than 12. Hence there is exactly one
Sylow 2-subgroup or exactly one Sylow 3-subgroup.

Now let p denote the prime for which there is exactly one Sylow p-subgroup, and
q the other prime dividing 12. Then the unique Sylow p-subgroup must be normal,
its intersection with any Sylow q-subgroup must be trivial and its product with any
Sylow q-subgroup must be the whole of G. Hence G is a semi-direct product.

A Sylow 2-subgroup, being of order 4, is isomorphic to either C4 or C2 × C2. A
Sylow 3-subgroup must be isomorphic to C3. Therefore, to classify the groups of
order 12, we must find all possible semi-direct products involving these groups. For
this, we need to know their automorphism groups: these are as follows.

Aut(C3) ∼= C2 Aut(C2 × C2) ∼= S3 Aut(C4) ∼= C2

So we have the following possibilities:

C4 ⋊ C3: there can be no non-trivial homomorphisms from C3 to Aut(C4) ∼= C2,
as any non-trivial homomorphism would have non-trivial kernel and thus be injec-
tive, which is impossible since |C3| > |C2|. So the only semi-direct product of this
form is in fact direct, so we obtain C4 × C3 (which we already had in our Abelian
classification, since this is isomorphic to C12).

(C2×C2)⋊C3: since Aut(C2×C2) ∼= S3 has a unique subgroup of order 3, any two
non-trivial (hence injective) homomorphisms from C3 to S3 have the same image
and so define isomorphic semi-direct products. Now A4 has a unique Sylow 2-
subgroup isomorphic to C2 × C2 and hence is of the right form, so we must have
(C2 × C2)⋊ C3

∼= A4.
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C3 ⋊ (C2 × C2): since Aut(C3) ∼= C2 there are three non-trivial injective homomor-
phisms from C2 × C2 to Aut(C3) ∼= C2, each with the same image, so again they
define isomorphic semi-direct products. This time, the candidate D12 can be seen to
have a unique Sylow 3-subgroup isomorphic to C3 and thus C3 ⋊ (C2 × C2) ∼= D12.

C3 ⋊ C4: there is exactly one non-trivial homomorphism from C4 to Aut(C3) ∼= C2

(it is the natural projection onto the quotient of C4 by the subgroup ⟨x2⟩). This
semi-direct product is not isomorphic to A4 or D12 and completes our list of groups
of order 12. It may be realized as the subgroup ⟨(5 6 7), (1 2 3 4)(6 7)⟩ of S7.

Hence the non-Abelian groups of order 12 are A4, D12 and C3 ⋊ C4.

Remark 98 Note that all the above groups of order less than 16 are solvable. In
fact, the smallest non-solvable group is A5.

One might legitimately ask why we single out the finite simple groups for clas-
sification. This is because if we knew all finite simple groups and if we could solve
the extension problem for finite groups, then we would know all finite groups. As
hard as this approach may appear, it is considerably easier than the order-by-order
approach.

Example 99 Determine up to isomorphism the groups of order 99

Proof Let G be a group of order 99, and let H be a Sylow 3-subgroup of G and K
a Sylow 11-subgroup. Since the number of 11-subgroups is 1 mod 11 and divides 9
then K is unique and so normal. The number of Sylow 3-subgroups is 1 mod 3 and
divides 11. Hence H is also normal. Hence G is the direct product of H and K. Up
to isomorphism the groups of order 9 are C9 and C3 × C3. Hence G is isomorphic
to C9 × C11 or C3 × C3 × C11.

Example 100 Determine up to isomorphism the groups of order 66

Proof Let G be a group of order 66, let H be a Sylow 3-subgroup and K be a Sylow
11-subgroup. As the number of 11-subgroups is 1 mod 11 and divides 6 then it is
unique and hence K is normal. Hence HK is a subgroup of order 33 = 3× 11 and
so cyclic as 3 ∤ 10. Let x be a generator for HK and y be an element in G of order 2
(which exists by Cauchy’s Theorem). As HK is normal, being of index 2, we have
yxy−1 = xi for some 1 ⩽ i ⩽ 32 and (beyond x33 = e = y2) this relation entirely
determines the group structure.
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We claim that there are four possibilities for i. As x and xi are conjugate they
have the same order – thus i and 33 are coprime. Also since y has order 2 then

x = y−1xiy = (y−1xy)i = (yxy−1)i = (xi)i = xi2 .

Thus 33 divides i2 − 1. With a little working this shows i is one of 1, 10, 23, 32.
This shows that there can be at most 4 groups of order 66 and we note

C66, D66, D22 × C3, D6 × C11

are four non-isomorphic groups of order 66 and hence form a complete list.
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