
Part A Graph Theory
DRAFT NOTES

Trinity Term 2025, 8 lectures
Oliver Riordan

Last updated: 16/5/2025

These notes are to accompany the lectures in TT 2025 on the Part A short option
Graph Theory. They are in rough form, may contain errors1, and are not for distribu-
tion. I will update the notes shortly after (or maybe sometimes before) the lectures,
possibly stopping at some point when there are no further significant changes from
previous years.

You need to add figures!

You may also find the 2023 notes (Marc Lackenby) or 2024 notes (Richard Earl)
useful. The former are more compact, the latter expanded with figures etc (not as
many as in lectures). No significant changes of content are planned (the syllabus
is unchanged), but especially near the start of the course there will be some minor
changes in content, in the order of material, and in notation/definitions.

1 Introduction

We generally think of graphs as representing some notion of pairwise direct connec-
tions between objects. Formally the definition is as follows:

A graph G is an ordered pair (V,E), where V is a non-empty finite2 set and E is
a set of 2-element subsets of V . The elements of V are called the vertices of G and
the elements of E the edges of G. We define V (G) to be V , the vertex set of G, and
E(G) to be E, the edge set of E.

We often write xy for an edge {x, y} (so xy means the same as yx). We say that
x and y are adjacent in G, or neighbours, if xy is an edge of G. Graphically, we
represent vertices as points (or more often blobs) and edges as lines or curves joining
pairs of points (blobs); how a graph is drawn is irrelevant as far as the structure of
the graph itself is concerned: the graph is defined by V and E, the set of vertices
and the set of edges. The reason for using blobs is that it makes clear in the drawing
where the vertices are: we may have to draw the lines/curves for two edges so that
they cross even though the edges do not share a vertex.

Often, graphs represent physical or abstract networks, but they don’t have to.
Graphs can encode any yes/no relationship between pairs of objects (as long as it is

1If you find any errors, please first check the website to see if the error has already been corrected,
and if not, e-mail riordan@maths.ox.ac.uk.

2In this course; there is a theory of infinite graphs also.

1

symmetric). For example taking V = {1, 2, . . . , n} and xy ∈ E if and only if x and y
are coprime defines a graph.

Graphs G and H are isomorphic if there exists a bijection φ : V (G) → V (H) such
that, for each x, y ∈ V (G), we have xy ∈ E(G) iff φ(x)φ(y) ∈ E(H). Often we do
not make a distinction between isomorphic graphs, treating them as the same.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).

For an edge e, we write G−e 3 for the subgraph (V,E \{e}), obtained by deleting
the edge e from G.

For a vertex v, we write G − v for the subgraph obtained from G by deleting v
and (as we must) all edges incident with v.

Examples

The complete graph on n vertices is Kn, n ⩾ 1, with vertex set V = {1, 2, . . . , n}
and E the set of all

(
n
2

)
possible edges.

The empty graph on n vertices is En, n ⩾ 1, with n vertices and no edges.

The path of length n, for n ⩾ 0, has V = {0, 1, . . . , n} and E = {01, 12, . . . , (n−
1)n}. Note that a path of length n has n + 1 vertices and n edges. Some people
denote it by Pn, others by Pn+1, so best to say ‘path of length n’. (I prefer Pn.) Note
that a single vertex forms a path of length 0.

Finally, the cycle Cn of length n, for n ⩾ 3, has V = {1, 2, . . . , n} and E =
{12, 23, . . . , (n− 1)n, n1}.

Paths, cycles and walks in graphs

A walk W in a graph G is a sequence v0v1 · · · vt of (not necessarily distinct) vertices
of G such that vivi+1 ∈ E for each i = 0, 1, . . . , t − 1. The length of a walk is the
number of steps, here t. A path in G is a walk in which v0, . . . , vt are distinct. This
is essentially4 equivalent to a subgraph of G which is (isomorphic to) a path.

If x = v0 and y = vt then we speak of a walk from x to y, or an x–y walk; an x–y
path is defined similarly. A walk v0v1 · · · vt is closed if vt = v0.

A cycle of length t in G is a subgraph isomorphic to Ct. We usually just list the
vertices to describe a cycle. Thus v1v2 · · · vt is a cycle in G if and only if t ⩾ 3,
v1, . . . , vt are distinct vertices of G, and v1v2, . . . , vt−1vt, vtv1 are edges of G. A graph
is acyclic if it contains no cycles.

Lemma 1.1. Let G be a graph and x, y ∈ V (G). Then G contains an x–y walk if
and only if G contains an x–y path.

3Some people write G \ e for G− e. I will avoid this as it looks too much like G/e, which means
something completely different.

4The two definitions of path in G are not quite the same: for existence, they are equivalent, but
for counting paths, they differ by a factor of 2 for t ⩾ 1. A similar comment applies to cycles with
a different factor.

2

In other words, if we want to get from x to y, then allowing ourselves to revisit
vertices does not help. This simple observation is useful, allowing us to switch back
and forth between using paths and walks to define connectedness, at any point using
whichever definition is easiest to work with.

Proof. Any path is a walk, so one direction is trivial. For the converse, suppose that
G contains an x–y walk, and let v0 · · · vt be a shortest x–y walk in G. If vi = vj for
some i < j, we can construct a shorter x–y walk, namely v0 · · · vivj+1 · · · vt (or just
v0 . . . vi if j = t). Therefore all the vertices in the walk are distinct, and hence it is in
fact a path.

Remark. This trick of considering a shortest or in general minimal or sometimes
maximal structure in a graph is very useful, especially in making sure that the struc-
ture ‘looks like the (simple) picture’, which isn’t always necessarily the case. E.g.,
walks can be very complicated.

Two vertices x, y of G are connected (in G) if G contains an x–y walk/path. A
graph G is connected if this holds for all x, y ∈ V (G).

Note that x ∼ y if x and y are connected in G defines an equivalence relation (use
walks to see this most simply). The equivalence classes partition V (G), and so divide
G up into disjoint connected subgraphs, called the components of G.

2 Trees

A tree is simply an acyclic connected graph.5

A minimal connected graph is a graph G such that G is connected, but G − e is
not connected for any e ∈ E(G). In other words, keeping the same set of vertices, all
the edges are required for connectivity.

Lemma 2.1. G is a tree if and only if G is a minimal connected graph.

Proof. For the forward implication, suppose T is a tree. Then T is connected by
definition. If T − xy were connected for some edge xy of T then there would exist
an x–y path x = v0v1 · · · vt in T − xy. Since t ⩾ 2 (we can’t use the edge xy) then
v0v1 · · · vt forms a cycle in T , contradicting T being a acyclic.

Conversely, suppose that T is a minimal connected graph. If T contains a cycle
v1v2 · · · vt, then removing the edge e = v1vt from T leaves T − e connected: for any
two vertices x and y, there is an x–y path in T , and if that path uses e, we can replace
it with v1v2 · · · vt or vt · · · v2v1 to obtain an x–y walk T − e. So T − e is connected, a
contradiction to T being minimal connected. Thus T is acyclic and hence a tree.

5This is the most standard definition. In previous years, the lecturer used minimal connected
graph instead; it doesn’t matter as the two are equivalent.

3

Remark. More generally, the second argument above shows that deleting an edge in
a cycle cannot affect connectivity.

Another basic fact about trees is that within them, any two vertices are joined by
a unique path.

Lemma 2.2. Let x and y be vertices of a tree T . Then T contains a unique x–y
path.

Proof. Exercise! A (brief) proof is in the older notes, but do try it yourself first. And
if you do look up the proof, expand it and fill in the details.

In much of the following, unless otherwise indicated, the implicitly assumed setting
is an arbitrary graph G = (V,E).

A vertex w is a neighbour of v if v and w are adjacent, i.e., vw ∈ E. The
neighbourhood of v is Γ(v) = ΓG(v) = {w ∈ V : vw ∈ E}, i.e., the set of neighbours
of v. The degree of a vertex v is d(v) = |Γ(v)|, i.e., the number of neighbours of v.
Or, equivalently, the number of edges incident to v. We write dG(v) if we want to
specify the graph.

A leaf in a graph G simply means a vertex v with d(v) = 1. A basic fact is that
trees (with one silly exception) have leaves.

Lemma 2.3. Let T be a tree with at least two vertices. Then T has at least two
leaves.

Proof. Let P = v0v1 · · · vt be a longest path in T , which exists because T is finite.
Note that t ⩾ 1 since T has at least one edge. Suppose that v0 has a neighbour
x /∈ {v0, . . . , vt}. Then xv0 · · · vt would be a longer path, a contradiction. Suppose
instead that v0 has a neighbour vi on P , where i ⩾ 2. Then v0 · · · vi would form a
cycle in T , a contradiction. Thus v0 has exactly one neighbour, namely v1, so v0 is a
leaf. Similarly vt ̸= v0 is a leaf.

Notation. If G is a graph we write |G| (or v(G)) for |V (G)|, i.e., the number of
vertices of G. Write write e(G) for |E(G)|, the number of edges.

Recall that we write G − v for the graph formed from G by deleting the vertex
v and also any edges containing v. Thus e(G− v) = e(G)− d(v). A key property of
leaves in trees is the following.

Lemma 2.4. Let v be a leaf of a tree T . Then T − v is a tree.

Proof. Since T is acyclic, so is any subgraph of T , in particular, T −v. We must show
that T − v is connected. So let x, y ∈ V (T − v). Since T is connected, T contains
an x–y path x = v0v1 · · · vt. Now v is not an endpoint of this path (since x, y ̸= v).
But it also is not an interior vertex, i.e., vi for 1 ⩽ i ⩽ t − 1, because otherwise it
would have two distinct neighbours in T , namely vi−1 and vi+1. So P is also a path
in T − v, and T − v is indeed connected.

4

The above lemma is extremely important for induction on trees. Note the lemma
works by shrinking T , not by growing it. This is exactly what we want for induction:
when we prove something about objects of size n by induction, the proof always
involves forming a smaller object from a larger one. Indeed, we have to start with an
arbitrary large object, and are allowed to assume the result for smaller objects.

Lemma 2.5. Let T be a tree with |T | = n. Then e(T) = n− 1.

Proof. Induction on n. The base case is n = 1, when T has no edges. So suppose
|T | = n ⩾ 2, and the result holds for smaller trees. Then T has a leaf v, and T − v
is a tree with n− 1 vertices. So by induction T − v has n− 2 edges. But we deleted
exactly one edge, so T has n− 1 edges.

A spanning subgraph of a graph G is a subgraph H with V (H) = V (G), i.e.,
including all the vertices. A spanning tree of G is a spanning subgraph which is a
tree.

Observation. Any connected graph G has at least one spanning tree. Indeed, we
can just remove edges one by one keeping the graph connected until there is no edge
that can be removed. What remains is minimal connected, so a tree.

Lemma 2.6. Suppose |G| = n. Then G is a tree if and only if G is connected and
e(G) = n− 1.

Proof. If G is a tree then it is connected by definition, and has n − 1 edges by
Lemma 2.5. Conversely, suppose G is connected and e(G) = n − 1. Since G is
connected, it has a spanning tree T . T is a tree with n vertices, so it has n− 1 edges.
Thus T = G: it is a subgraph with all the vertices, and n−1 out of n−1 of the edges
of G. So G is a tree.

Notation. We write G + e for the graph formed from G by adding the edge e,
whenever this makes sense. Thus if G = (V,E), then G + e = (V,E ∪ {e}), and we
must have that e = xy for distinct vertices x, y of G, and that e /∈ E(G).

A maximal acyclic graph G is an acyclic graph G such that there does not exist e
with G+ e acyclic, i.e., it is impossible to add an edge (keeping the same vertex set)
while preserving acyclicity.

Exercise. Show that G is a tree if and only if G is maximal acyclic.

Exercise. Let G be a graph with n vertices. Show that G is a tree if and only if G is
acyclic and e(G) = n− 1

These results together with what we already show that any two out of ‘connected’,
‘acyclic’ and ‘exactly n− 1 edges’ imply the third.

5

3 Minimum Cost Spanning Trees

Suppose we wish to build a rail network connecting all the cities in a country, by
building a number of direct routes between pairs of cities. Not every route is plausible,
so we may form a graph G with V the set of cities, and xy an edge if it is plausible to
build a direct route between x and y. Of course, each such route will have a cost. The
question is how to minimize the total cost while connecting all the cities (ignoring
travel times and other considerations, just saving money).

Mathematically, we can phrase this question as follows. Let G be a graph with a
cost function c on the edges, i.e., a real number c(e) > 0 for each edge e of G. (These
costs do not have to be distinct.) We would like to find a spanning subgraph H with
minimum cost, where c(H) =

∑
e∈E(H) c(e).

Of course, any such cheapest H will be minimally connected, i.e., H will be a
spanning tree. This motivates the following definition.

Definition. Let G = (V,E) be a connected graph with a cost function c : E →
(0,∞). A minimum cost spanning tree, or MCST in G is a spanning tree T such that
c(T) =

∑
e∈E(T) c(e) is minimum.

Every connected graph has at least one spanning tree and hence (by finiteness)
at least one MCST. But how do we find one? One approach is just to consider all
possible spanning trees, but in general there can be many of these, in fact even more
than exponentially many.6 Instead we will try to find a MCST by a greedy algorithm,
an algorithm that proceeds step by step, in each step making the ‘locally best’ choice.
In general there is no reason that such an algorithm should work, and in this case it
is far from obvious, and will be our first substantial result.

There is more than one possible greedy algorithm to consider. Perhaps the most
natural is the following: starting with all the vertices and no edges, just add edges
of G one by one always choosing the cheapest new edge that keeps the current graph
acyclic, until we can’t add any more. Here is a formal description.

Kruskal’s Algorithm. Let G = (V,E) be a graph with a cost function c : E →
(0,∞). Start with H0 = (V, ∅). Given Hi, if there is any edge e of G not included in
Hi such that Hi + e is acyclic, then let e be a cheapest such edge, set Hi+1 = Hi + e,
and continue. Otherwise, stop, writing Ht for the final graph H.

Theorem 3.1. Let G be a connected graph with a positive cost c(e) for each edge.
Then Kruskal’s Algorithm ends with a MCST for G.

In the course of the proof we will use the simple observation that adding an edge
e = xy to a graph H creates a cycle if and only if H contains an x–y path.

6By Cayley’s Formula, the complete graphKn has nn−2 spanning trees, though this is not obvious
and we will not prove it in this course; for a proof see the Part B notes.

6

Proof. First we claim that Ht is a spanning tree of G. It spanning since V (Ht) =
V (H0) = V . It is acyclic by construction. Suppose Ht is not connected, and let C be
a component of Ht. Then C does not contain all vertices, so we can pick a vertex v
inside C and a vertex w outside. Now G contains a v–w path, and at some point this
path must leave C. So there is an edge e = xy of G with x inside C and y outside.
Thus x and y are not connected in Ht, and Ht + e is acyclic. This contradicts the
stopping rule in the algorithm. Hence Ht is connected, and is indeed a spanning tree.
In particular t = n− 1, where n = |G|, since trees have n− 1 edges.

It remains to show that Hn−1 is a MCST. Let Pi be the proposition that there is
some MCST T of G with Hi ⊆ T . We shall show that Pi holds for all 0 ⩽ i ⩽ n− 1
by induction on i. Certainly P0 holds, since H0 has no edges. If Pn−1 holds, then
Hn−1 ⊆ T but both have n− 1 edges, so Hn−1 = T and Hn−1 is a MCST as required.
So it remains to prove the induction step.

Suppose that i < n− 1, and that Pi holds, so Hi ⊆ T for a MCST T of G. Let e
be the next edge added by the algorithm, so Hi+1 = Hi + e. If e is an edge of T then
Hi+1 ⊆ T and we are done. So suppose not.

Let e = xy. Then T contains a (unique) x–y path, so T + e contains a (unique)
cycle C. Since Hi+1 is acyclic, there is some edge f of H not contained in Hi+1. Let
T ′ = T + e − f . To establish Pi+1 we will show that Hi+1 ⊆ T ′, and that T ′ is a
MCST of G.

Now Hi+1 ⊆ T ′ by construction: Hi+1 = Hi + e ⊂ T + e, and the edge f we
remove is not in Hi+1. To show that T ′ is a tree observe that it is obtained from the
connected graph T + e by deleting an edge in a cycle, so it is definitely connected. It
has n−1 edges, so by Lemma 2.6 it is a tree. So T ′ is indeed a spanning tree of G. To
see that T ′ has minimum cost, note that Hi + f ⊆ T (since Hi ⊂ T and f is an edge
of C ⊂ T + e distinct from e) which is a tree and so acyclic. Thus f was a possible
edge to add at step i, and by the definition of the algorithm c(e) ⩽ c(f). Hence
c(T ′) ⩽ c(T) and as T has minimum cost, so does T ′, completing the rpoof.

How fast is Kruskal’s algorithm? Making this mathematically precise would take
us far afield (we would need to define a model of computation). Instead, we will take
an intuitive approach, estimating the number of ’steps’ taken by an algorithm, where
a ‘step’ should be a ‘simple’ operation.

If G has n vertices and m edges, then in each iteration of the algorithm we add
one edge, so there are n− 1 iterations. If at each stage of the algorithm, we naively
find the next edge by checking every edge then there will be m steps in each iteration,
giving about nm steps in total.7

We say that the running time is O(nm), where the ‘big O’ notation means that
there a positive constant C so that for any graph G the running time is at most Cnm,

7I’m cheating a bit here, because we should also think about how many simple operations it takes
to check whether adding the edge forms a cycle. This can be done quite quickly, however.

7

where n = |G| and m = e(G). Here ‘running time’ could be measured in any units,
say milliseconds on your favourite computer, as changing the units or using a different
computer will just replace C by a different constant.

A smarter implementation is to start by making a list of all edges ordered by cost,
cheapest first. Then at each step we go through the list from the start, discarding
edges that make a cycle until we find the first edge which can be added. This gives
a running time that is ‘roughly comparable’ with the number of edges, which is
essentially the best possible.

At a crude level, the key thing is that the running time in poynomial (in the size of
the input), meaning bounded by Cmk (or Cnk; it doesn’t matter) for some constants
C and k. This is in sharp contrast to the exhaustive search algorithm that tries every
possible spanning tree.

Remark. There is a variant of Kruskal’s Algorithm called Prim’s Algorithm. This
builds a subtree of T working out from an arbitrary vertex v, each time adding the
cheapest edge of G connecting any vertex currently included in T to any vertex not
yet included. This alternative greedy algorithm also constructs a MCST of G.

4 Euler Tours

One of the most famous questions in graph theory concerns the bridges of Königsberg.
At that time (1736) there were seven bridges in the city, and a puzzle was whether
it is possible to walk around the city, ending back where you started, crossing each
bridge exactly once. This can easily be abstracted to a graph theory question, asking
whether a certain (multi)-graph contains a closed walk using each edge exactly once.
Here we will stick to simple graphs, which makes no difference (by subdividing any
repeated edges).

Definition. An Euler trail in a graph G is a walk W = v0 · · · vt in G which uses
each edge of G exactly once. We call W an Euler tour or Euler circuit if in addition
v0 = vt (as in the original question above).

An isolated vertex in G is a vertex v with dG(v) = 0.

Suppose G has an Euler tour. What can we say about G? Firstly, after deleting
any isolated vertices, G is connected (because the tour now visits all vertices). But
also, each time W visits a vertex v ̸= v0, vt it uses two edges incident with V , one to
enter and one to leave. This is also true of v = v0vt, thinking of one visit which enters
v at the end of W and leaves it at the start. (Or consider the walk written around a
circle, rather than in a line; there is nothing special about the starting vertex then.)
Since every edge is used exactly once, every vertex has even degree. Such a graph is
sometimes called Eulerian.

8

Theorem 4.1. Let G be a connected graph. Then G has an Euler tour if and only if
dG(v) is even for every vertex v of G

This result is sometimes attributed to Euler in 1736, but if you look at his paper,
he only really proved the ‘easy’ part above. The other direction is not too hard,
however. There are different ways to show it (including a fairly simple inductive
proof). We will give an algorithmic proof due to Fleury.

Fleury’s Algorithm. We construct a walk v0v1 · · · in G step by step as follows.
Start with v0 an arbitrary vertex, and let H = G. Each time we add a step vivi+1 to
the walk, we delete the edge vivi+1 from H, and if vi then becomes isolated, we also
delete vi. Choose the next vertex to add as follows: if vi is isolated in H, stop. If not,
pick any neighbour vi+1 of vi in H such that, after the update, H is still connected;
if there is no such neighbour, the algorithm fails.

In other words, we build the walk, picking up the track behind us that does not
need to be revisited, which includes any vertex we have already left which has no
further edges. So H is the graph of what we still have to visit in the walk. It is not
obvious that this algorithm works, but we will show that it does. First we make an
observation.

Observation. Let W = v0v1 · · · vt be a walk. For a vertex v let dW (v) be the number
of edges in the walk (counted with multiplicity if there are repeats) incident with v.
Then dW (v) is even, unless v0 ̸= vt and v ∈ {v0, vt}, in which case dW (v) is odd.

This is a slight extension of the comment above about Euler tours. We see that
dW (v) counts two for every 1 ⩽ j ⩽ t − 1 such that vj = v (the edges vj−1vj and
vjvj+1), and one if v0 = v, and one if vt = v.

We also need perhaps the most basic (but important) result in graph theory.

Lemma 4.2. Let G be a graph. Then
∑

v∈V (G) d(v) = 2e(G).

Proof. Each edge e = xy contributes one to the degree of each of its ends, in this case
x and y.

Corollary 4.3. In any graph G, the number of vertices with odd degree is even.

Proof. The sum of the degrees is zero mod 2 by Lemma 4.2.

This (either the lemma or the corollary) is sometimes called the handshaking
lemma, since it solves the following puzzle: at a party, some of the participants shake
hands with each other. Must the number of people who have shaken hands with an
odd number of people be even?

With these easy preliminaries out of the way, we proof ‘Euler’s Theorem’.

9

Proof of Theorem 4.1. If G has an Euler tour v0 · · · vt then (recalling that v0 = vt by
definition), by the observation above all degrees are even.

Conversely, suppose that G is connected and all degrees are even. We run Fleury’s
algorithm, updating the graph H of remaining edges as we go. Note that initially
H = G is connected, and that by definition of the algorithm, after every step H
remains connected.

We delete one edge in every step, so the algorithm certainly stops at some point,
say having built the walk v0 · · · vi. We consider the following cases.

1) dH(vi) = 0. Then, since H is connected, H has one vertex and no edges, so
W = v0 · · · vi includes all edges of G and is an Euler trail. If v0 ̸= vi then by the
observation above, v0 and vi would have odd degree in G, a contradiction. Thus W
is an Euler tour as required.

2) dH(vi) = 1. Then vi is a leaf of H, so H − vi is connected. But this means that
the walk can continue to the unique neighbour of vi+1 of vi, and the algorithm would
not have stopped.

3) dH(vi) = d ⩾ 2. If vi has a neighbour w in H such that H − viw is connected,
then the walk could have continued to w. Thus, for every neighbour w, H − viw is
disconnected. It follows that H − vi has d components C1, . . . , Cd, and that vi has
exactly one neighbour wj in each. (Draw a picture!) With W = v0 · · · vi the walk we
have followed so far, for any v /∈ {v0, vi} we have dW (v) even and hence (since dG(v)
is even), dH(v) is even. Let C be one of the Cj not containing v0 (which exists since
d ⩾ 2). Then all vertices of C have even degree in H. But exactly one vertex (the
relevant wj) has a neighbour outside C. So within the graph C, all vertices have even
degree except for wj, which has odd degree. This contradicts Corollary 4.3.

We see that the only case not leading to a contradiction is 1), in which case we
obtain the required Euler tour.

We note that the running time of this algorithm is polynomial: there arem = e(G)
steps in building the walk, and in each step we only have to check whether certain
graphs (at most d(v) ⩽ n − 1) are connected or not, something that can be done
quickly.

5 Hamilton cycles

A Hamilton cycle in a graph G is simply a cycle C ⊆ G including all the vertices, so
|C| = |G|. A graph G is Hamiltonian if it contains a Hamilton cycle.

Here are two superficially similar questions:

Q1) given a graph G, does G contain an Euler tour, i.e., a closed walk using each
edge of G exactly once?

10

Q2) given a graph G, does G contain a Hamilton cycle, i.e., a closed walk using
each vertex of G exactly once?

We have seen that Q1 is ‘easy’: there is a polynomial time algorithm to decide
whether the answer is yes or no. (Indeed, we simply check connectivity and the vertex
degrees and use Theorem 4.1.) On the other hand Q2 appears to be ‘hard’ – there is
no known polynomial time algorithm, and it seems very unlikely that there is one.8

Given this, we can’t hope for a simple necessary and sufficient condition. So we will
look just for sufficient conditions.

Given a graph G, let δ(G) denote its minimum degree, i.e., min{d(v) : v ∈ V (G)},
and similarly ∆(G) its maximum degree.

Theorem 5.1 (Dirac). If |G| = n ⩾ 3 and δ(G) ⩾ n/2 then G is Hamiltonian.

Note that n/2 is ‘sharp’ here, in that if n is even, then the disjoint union of two
copies of Kn/2 is a non-Hamiltonian graph with δ(G) = n/2 − 1. Of course, some
graphs with smaller minimum degree are Hamiltonian, but not all.

There is a slight strengthening of Dirac’s Theorem, due to Ore.

Theorem 5.2 (Ore). Suppose that |G| = n ⩾ 3 and every pair x, y of distinct non-
adjacent vertices of G satisfies d(x) + d(y) ⩾ n. Then G is Hamiltonian.

Note that Theorem 5.2 implies Theorem 5.1.

The rough plan of the proof is to show that given a path P in G, we can either
find a longer path, or a cycle C with |C| = |P | and e(C) = e(P) + 1, and that (if the
graph is not Hamiltonian), given a cycle C in G we can find a path with |P | = |C|+1
and e(P) = e(C). This will lead to a contradiction.

We start with the easy part, going from a cycle to a path, assuming connectivity.

Lemma 5.3. Let G be a connected non-Hamiltonian graph. Then the length of the
longest path in G is at least the length of the longest cycle.

Proof. Let C be a longest cycle, with length ℓ, noting that ℓ < n by assumption.
Since G is connected there is some xy ∈ E(G) with x a vertex of C and y a vertex
not on C. But then C and the edge xy together contain a path of length ℓ.

8For those interested: we write P for the class of ‘decision problems’ (where there is some input,
here a graph G, and the output is always yes or no) for which there is a polynomial time algorithm.
We write NP for, roughly speaking, the class of decision problems where there is a polynomial time
algorithm for verifying a proposed solution. This includes all the problems we consider here, in
particular whether H is Hamiltonian – we just check whether the vertices of a proposed Hamilton
cycle match those of G, the edges are all present. It is an extremely important open question whether
in fact P = NP , i.e., allNP problems can be solved in polynomial time. Most mathematicians firmly
believe that the answer is no. Within NP there is large subclass of problems called ‘NP -complete’,
meaning that if you can solve (find a polynomial time algorithm for) any one such problem, then
you can find one for any problem in NP , so P = NP . Q2 is an example of such a problem.

11

We are now ready to prove Ore’s Theorem (and hence Dirac’s Theorem).

Proof of Theorem 5.2. First we show that G is connected. If not, there are vertices
x and y not joined by a path in G. But then x and y are certainly distinct and non-
adjacent, so d(x) + d(y) ⩾ n. The neighbours of x and of y all lie in V (G) \ {x, y}, a
set of size n − 2 < n. Thus there is at least one vertex w (in fact at least two) that
is a neighour of both. So x and y are joined by the path xwy.

Suppose that G is not Hamiltonian. Let P = v0v1 · · · vℓ be a longest path in G.
Note that ℓ ⩾ 2 since G is connected and |G| ⩾ 3.

If G contains a cycle of length ℓ+ 1 then either G is Hamiltonian, or Lemma 5.3
applies giving a path of length at least ℓ+1, a contradiction. So G contains no cycle
of length ℓ+ 1, and in particular v0vℓ /∈ E(G).

By assumption d(v0) + d(vℓ) ⩾ n. Since P is a longest path, all neighbours of v0
and of vℓ are on P . Let A = {i : v0vi ∈ E(G)}, and let B = {i : vi−1vℓ ∈ E(G)}.
Clearly |A| = d(v0). Also, |B| = d(vℓ), since there is one element (j + 1) for each j
such that vj is a neighbour of vℓ. So |A|+ |B| ⩾ n.

Now A and B are subsets of {1, 2, . . . , ℓ}, a set of size ℓ < n (recall that P has
ℓ+ 1 vertices). Thus they cannot be disjoint, and there is some i such that v0vi and
vi−1vℓ are edges of G. But now v0vivi+1 · · · vℓvi−1vi−2 · · · v1 is a cycle in G with ℓ+ 1
vertices, a contradiction.

A question for you to think about: is the proof above algorithmic? We can’t hope
for a (polynomial time) algorithm for finding a Hamilton cycle in any graph that has
one, but that is not the situation here: we are looking at a very restricted class of
graphs, namely those with δ(G) ⩾ n/2.

6 Shortest Paths

Let G be a graph. For x, y vertices of G, the graph distance dG(x, y) between x and
y is simply the length of a shortest x–y path in G, or ∞ if there is no such path.

Certainly d(x, x) = 0 and d(x, y) > 0 if x ̸= y. Also, d(x, y) = d(y, x). Further-
more, dG satisfies the triangle inequality: dG(x, z) ⩽ dG(x, y) + dG(y, z), since (if the
right-hand side is finite) there are x–y and y–z paths of lengths dG(x, y) and dG(y, z),
and combining them gives an x–z walk of length dG(x, y)+dG(y, z). But the shortest
x–z walk is a path, so there is an x–z path of at most this length. Thus dG is a metric
on VG. Although we will not use this here, in general these examples (V (G), dG) are
an important class of metric spaces.

How do we actually find the graph distance between x and y? The answer is
simple: working outwards from x we can easily find the graph distance from x to
every other vertex: x itself is the unique vertex at distance 0, the neighbours of x are

12

at distance 1. A vertex v is at distance 2 if and only if v is a neighbour of some w at
distance 1, and v itself is not at distance 0 or 1.

More generally, dG(x, v) = d + 1 if and only if (i) v has a neighbour w with
dG(x,w) = d and (ii) it is not the case that dG(x, v) ⩽ d. This gives us an easy
algorithm: start with D(x) = 0 and D(y) ‘unassigned’ for all other vertices. In round
d ⩾ 0, for each vertex v with D(y) = d, for each neighbour w of v with D(w) not
assigned, set D(w) = d + 1. The algorithm stops if in the entire round no vertex is
assigned d+ 1. At the end, D(v) = dG(x, v), or is unassigned if there is no x–v path.

In particular, this algorithm efficiently finds all vertices reachable from x (the
component containing x), and so tests whether G is connected.

What about the following more general question: let G be a connected (for sim-
plicity) graph in which each edge e has a length ℓ(e) > 0. We will call this a length
function.9 For a path P in G, the ℓ-length of P is just ℓ(P) =

∑
e∈E(P) ℓ(e). We write

dℓ(x, y) for min{ℓ(P) : P is an x–y path}, and say that P is an ℓ-shortest x–y path
if it achieves the minimum.

It’s easy to see that dℓ is a metric on V (G). How do we find dℓ(x, y) for two
vertices of G? The answer is Dijkstra’s Algorithm. To understand this algorithm I
personally think about a huge number of ants that start at vertex x at time zero and
wander along all possible edges at rate 1. R will be the set of vertices the ants have
already reached. For each v ∈ U , D(v) will be a ‘projected ant arrival time’ at v,
based on ants that are already crawling along an edge to v.

Dijkstra’s Algorithm. Initially let R = ∅ and U = V (G). Let D(x) = 0 and for
each vertex y ̸= x let D(y) = ∞.

While there is a vertex v ∈ U with D(v) finite, do the following: pick such a
vertex v with D(v) minimal. Move v from U to R, and then for each neighbour w of
v which is in U , if D(v) + ℓ(vw) < D(w), then set D(w) = D(v) + ℓ(vw).

When we change D(w) as above, we say that v updates w.

Theorem 6.1. Let G be a connected graph in which each edge has a positive length
ℓ(e), and let x ∈ V (G). Then after running Dijkstra’s algorithm we have D(v) =
dℓ(x, v) for every v ∈ V (G).

Proof. First note that during the algorithm, D(v) only ever decreases. Moreover,
if/when v is moved from U to R, than at this point D(v) is finite, and from this point
on D(v) does not change.

We first claim at at the end of the algorithm U = ∅. Suppose not. Then (since
x ∈ R) neither U nor R is empty, so these complementary sets partition V (G). Since
G is connected, there is an edge yy′ of G with y ∈ R and y′ ∈ U . But then at the

9It’s the same as a cost function; we just use a different word to guide our intuition in this
different context.

13

time y was moved to R we have that D(y) was finite, and D(y′) (if not already finite)
would have been updated to a finite value. So the final value of D(y′) is finite. But
then the algorithm would not have stopped.

We now claim that for any vertex v, when v is added to R, then D(v) = dℓ(x, v);
this implies the result since D(v) does not then change. We show this step-by-step,
considering the vertices in the order they are added to R.

Firstly, x is added right at the beginning, and D(x) = 0 = dℓ(x, x).

So now suppose we are about to add v ̸= x to R, and that for all y currently
in R we do have D(y) = dℓ(x, y). Since D(v) is finite, at least one other vertex has
updated v. Let y be the last vertex to have done so. Then y ∈ R, and we have

D(v) = D(y) + ℓ(yv) = dℓ(x, y) + ℓ(yv) ⩾ dℓ(x, v).

To see the reverse inequality, let P be an x–v path with ℓ(P) minimal. Since x ∈ R
and v ∈ U , going along P in order there is some pair of consecutive vertices yy′ with
y ∈ R and y′ ∈ U . Let P ′ be the initial segment of P up to y′. Then

ℓ(P) ⩾ ℓ(P ′) ⩾ dℓ(x, y) + ℓ(yy′) = D(y) + ℓ(yy′) ⩾ D(y′),

where the equality is because y ∈ R (i.e., our inductive assumption), and the last
inequality is because when y was added to R it would have updated D(y′) for its
neighbour y′ ∈ U to D(y) + ℓ(yy′), unless D(y′) was already at most this. And after
this update, D(y′) can only decrease.

By the choice of v, we have D(v) ⩽ D(y′), so it follows that D(v) ⩽ ℓ(P) =
dℓ(x, v), and hence D(v) = dℓ(x, v) as claimed.

The main point of Dijkstra’s algorithm is to find the distance between a given pair
of vertices. It so happens that at the same time it finds the distances from one given
vertex x to all others. More than that: it finds a tree structure within G containing
efficient routes between x and all other vertices.

Definition. An ℓ-shortest paths tree in G with root x is a spanning tree T of G such
that for each v ∈ V (G) the unique x–v path in T has length dℓ(x, v).

When we run Dijkstra’s algorithm every vertex w ̸= x is updated at least once
(otherwise we would have D(w) = ∞ and it would remain in U). The parent of w
is the last vertex v to update w. In particular, since D(v) was already final at the
point it updated w, and D(w) is not updated again, if v is the parent of w then we
have D(w) = D(v) + ℓ(vw) and hence, by Theorem 6.1,

dℓ(x,w) = dℓ(x, v) + ℓ(vw). (1)

Lemma 6.2. Let T be the graph on V (G) with an edge wv for each w ̸= x, where v
is the parent of w. Then T is an ℓ-shortest paths tree in T rooted at x.

14

Proof. Let TR correspond to T part way through the algorithm, so the vertex set is
the current set R, and there is an edge wv from each w ∈ R \ {x} to its parent. Note
that T{x} is a tree. When we add a new vertex w to TR its parent v is a vertex already
present, so we add a new vertex and one edge to an existing vertex, and it follows
that TR remains a tree; hence T is a tree.

Let Pw denote the unique x–w path in T . If v is the parent of w, then Pw is just
Pv with the edge vw added at the end. So ℓ(Pw) = ℓ(Pv)+ ℓ(vw). It follows from (1),
induction and the fact that ℓ(Px) = 0 = dℓ(x, x) that ℓ(Pv) = dℓ(x, v) for all v.

To comment briefly on complexity: Dijkstra’s algorithm runs for n = |G| steps
(as each vertex is moved from U to R). Within each step we consider at most n
vertices w to update, and choosing the next vertex takes at most n steps. This gives
a running time of O(n2). This can (with complications that we will not be consider)
be improved to something like O(m + n log n) where m = e(G). So the algorithm is
pretty efficient. For us all that matters is that it is polynomial, unlike ‘consider all
possible paths and find the shortest’, for example.

7 Matchings and coverings

A matching in a graph G is just a set M of vertex-disjoint edges of G, which we often
think of as a pairing up of some of the vertices of G. The matching is perfect if it
includes all vertices of G.

Definition. A graph G is bipartite if we can write V (G) = A ∪ B where A and B
are disjoint and every edge of G has one end in A and the other in B. In this case
we say that (A,B) is a bipartition for G.

Note that a bipartite graph may have more than one bipartition. But often the
bipartition is given in advance. For example, A may be a set of tasks that need
completing, and B a set of people, and an edge ab may represent the information
that person b is capable of doing task a. So it’s not that we start with the graph and
try to find A and B; rather we know the bipartition in advance from the situation,
and the only possible edges that make sense are ones joining A to B.

In a bipartite graph G, each edge of a matching M pairs some a ∈ A with some
b ∈ B, so a perfect matching is only potentially possible if |A| = |B|. In general,
it is an important question whether a perfect matching exists. More generally, we
may ask when G contains a matching of size |A|, noting that every such matching
necessarily includes every vertex in A. We call such a matching a complete matching
from A to B, noting that when |B| > |A|, the same matching is not complete from
B to A.

For S ⊂ A let

N(S) = {b ∈ B : ∃a ∈ S with ab ∈ E(G)}

15

be the neighbourhood of S, which is just
⋃

a∈S Γ(a). If G contains a complete matching
from A to B, then clearly

|N(S)| ⩾ |S| for every S ⊂ A.

Indeed the partners of the vertices in S are distinct vertices in N(S). This condition is
known as Hall’s Condition. It turns out that this simple, trivially necessary condition
is also sufficient.

Theorem 7.1 (Hall). Let G be a bipartite graph with bipartition (A,B). Then G
contains a complete matching from A to B if and only if Hall’s Condition holds in G.

Proof. We have already shown that Hall’s Condition is necessary. For sufficiency we
argue by induction on n = |A|.

If n = 1, the result is trivial. For the induction step, let n ⩾ 2 and suppose that
the result holds for all bipartite graphs with |A| < n. Consider a bipartite graph G
with |A| = n and assume that Hall’s condition holds in G. There are two cases.

(a) Suppose first that |N(S)| > |S| for each ∅ ≠ S ⊊ A. Let xy be any edge of G
with x ∈ A and y ∈ B. Form G′ by deleting the vertices x and y from G. Then G′

satisfies Hall’s condition (since if ∅ ≠ S ⊆ A \ {x} then |N ′(S)| ⩾ |N(S)| − 1 ⩾ |S|),
and so by induction G′ contains a complete matching from A \ {x} to B \ {y}. Now
adding the edge xy gives the required matching.

(b) If case (a) does not hold then |N(S)| = |S| for some ∅ ≠ S ⊊ A. The bipartite
subgraph induced10 by S ∪N(S) still satisfies Hall’s condition, so by induction there
is a complete matching M1 from S to N(S).

Now consider T = A \ S and U = B \ N(S). We shall see that the bipartite
subgraph H induced by T ∪U also satisfies Hall’s condition. For each A ⊆ T we have

|NH(A)| = |N(A) ∩ U | = |N(A) \N(S)| = |N(A ∪ S) \N(S)|
= |N(A ∪ S)| − |N(S)| ⩾ |A ∪ S| − |S| = |A|,

since |N(A ∪ S)| ⩾ |A ∪ S| and |N(S)| = |S|. So Hall’s condition holds in H, and
by induction there is a complete matching M2 from T to U . Then M1 ∪ M2 is the
required complete matching from A to B.

This proof is very nice, but from an algorithmic point of view, it is not very
helpful, since there are 2|A| subsets S to check to even decide which case we are in.
Building matchings greedily also doesn’t not work very well in general, so we need
some other way of enlarging a matching. The key to this are the notions of alternating
and augmenting paths.

10The subgraph H of G induced by W has vertex set W , and the edge set is all edges of G with
both ends in W .

16

Definition. Let G be a graph, let M be matching in G, and let P be a path in G.

(a) We say P is M-alternating if every other edge of P is in M .

(b) We say P is M-augmenting if P has at least one edge, is M -alternating and
its end vertices are not in any edge of M .

To spell out the meaning of (a), P is M -alternating if, as we go along P , the next
edge is in M if and only if the previous edge is not in M . The first edge may or may
not be in M .

For convenience we call a vertex free or M-free if it is not in any edge of M .

Lemma 7.2. Let M be a matching in G. Then M is not of maximum size if and
only if there is an M-augmenting path in G.

Proof. Suppose P is an M -augmenting path. Since the first and last vertices are free,
the first and last edges are not in M , so P contains one more edge not in M than
edges in M . Thus we can find a larger matching by ‘flipping’ P : for each edge of P ,
if it is in M remove it from M , and if it is not in M , add it to M .

Conversely, suppose that M∗ is a matching in G with |M∗| > |M |. Let H =
M ∪ M∗. Every vertex has degree at most 2 in H, so each component of H is a
path (which might be a single edge) or a cycle. Except for single-edge components
corresponding to an edge e ∈ M ∩M∗, the edges in any component alternate between
M and M∗. In particular, any cycle has the same number of edges in M and in M∗.
Since |M∗| > |M |, we can find a component with more edges of M∗ than M (which
might just be a single edge in M∗\M); this is an M -augmenting path in G.

Lemma 7.2 reduces the algorithmic question of finding a maximum matching in
G to the following: given a matching M in G, find an M -augmenting path or show
that there is none. There is a general algorithm for this (Edmond’s Algorithm), but
it is quite tricky, so we will just consider the much easier bipartite case.

Let M be a matching in a bipartite graph with bipartition (A,B). Let A∗ and
B∗ be the sets of M -free vertices in A and B, respectively. Any M -augmenting path
P has odd length, so one end is in A, the other in B; the ends are free vertices by
definition, so (after reversing P if necessary) P is an ab-path for some a ∈ A∗ and
b ∈ B∗. As we follow P from a∗, we cross from A to B along an edge not in M .
Then we cross from B to A along an edge in M , and so on. This gives the following
alternate description of M -augmenting paths:

Put a direction on each edge of G, so that all edges in M are one-way from B to
A, and all edges not in M are one-way from A to B. Then an M -augmenting path is
equivalent to a directed path from A∗ to B∗, i.e., a path that respects directions of
edges. How do we find such a path, or check that none exists? Using the following
simple search algorithm; this works in any directed graph (where each edge has an
orientation); not just bipartite ones.

17

Search algorithm: let G be a graph in which each edge is one-way, and let S ⊂
V (G). Start with R = S. Repeat the following step: if there is any edge xy of G
directed from some x ∈ R to some y /∈ R then add y to R, otherwise stop.

Lemma 7.3. let G be a graph in which each edge is one-way, and let S ⊂ V (G). At
the end of the search algorithm above, R is precisely the set of vertices which can be
reached from S, i.e., R = {y : ∃ a directed x–y path}.

Proof. It’s easy to check by induction on when a vertex is added to R that y ∈ R
implies y reachable from S. On the other hand, if x = v0 → v1 → · · · vt = y is a
directed path with x ∈ S, then at the end of the algorithm v0 ∈ R (since it is in S),
and vi−1 ∈ R implies vi ∈ R (otherwise we would not have stopped). So vt ∈ R.

Note that during the search algorithm, we can remember the ‘parent’ x of each
vertex y added to R, so when we add y to R then working backwards step-by-step
(from y to its parent, to their parent etc) we can actually find a path from some s ∈ S
to y.

Putting the pieces together leads to the Hungarian Algorithm to find a largest
possible mathcing in a bipartite graph. [Actually, Kuhn’s Hungarian Algorithm is
more complicated, and deals with the weighted case.]

Hungarian Algorithm: Let G be a bipartite graph with bipartition (A,B). Start
with M = ∅. Repeat the following: let A∗ and B∗ be the M -free vertices in A and
B, and orient the edges from G as above (from A to B if e /∈ M and from B to A if
e ∈ M). Run the search algorithm with S = A∗. If R∩B∗ = ∅ then stop. Otherwise,
there is some y ∈ R ∩ B∗. Find a directed path from some x ∈ A∗ to y (from the
search algorithm). This is an augmenting path, which we use to augment M to a
larger matching, and repeat.

By the observation above concerning M -augmenting paths being equivalent to
directed paths from A∗ to B∗, and Lemma 7.2, when the algorithm stops M is a
matching of maximum size.

What is the running time of this algorithm? We won’t analyze it precisely, but
when |G| = n and e(G) = m, the main algorithm has at most n/2 steps, since M
gets larger in each step. Each step calls the search algorithm. This itself has at
most n steps (since R grows in each), and each step takes at most m simple checks,
checking all edges in the graph. So we obtain a crude bound of O(n2m), so certainly
polynomial.

Even if we aren’t concerned with algorithms, the theory behind this algorithm
will give us a nice non-algorithmic result, concerning matchings and covers.

Definition. A cover for a graph G is a subset C of the vertices such that every edge
contains at least one vertex of C.

18

If M is any matching and C is any cover, then |M | ⩽ |C|. To see this, define an
injective map f : M → C, where f(e) is any vertex of e ∩ C.

Suppose that we had found a matching M and a cover C such that |M | = |C|.
Then we would know that M was a maximum size matching and C was a minimum
size cover. This is an example of ‘weak duality’ and suggests the question of whether
equality holds. The answer to the question is ‘no’ in general, just consider K3.

Theorem 7.4. (König’s Theorem (1931)) In any bipartite graph, the size of a
maximum matching equals the size of a minimum cover.

Proof. Let G be a bipartite graph, with parts A and B, and let M be a maximum
matching in G. It suffices to find a cover C with |C| = |M |.

Recall that we write A∗ and B∗ for the M -free vertices in A and B. Consider the
search algorithm for an M -augmenting path in G. The algorithm terminates with
some set R that consists of all vertices reachable by M -alternating paths starting in
A∗. As M is maximum there is no M -augmenting path, so R ∩B∗ = ∅.

Let C = (A \R) ∪ (B ∩R). We claim that C is a cover with |C| = |M |.
We start by showing that C is a cover. Suppose not. Then there is ab ∈ E(G)

with a ∈ A∩R and b ∈ B\R. If ab /∈ M then since we can reach a, we can reach b via
ab, a contradiction. On the other hand, if ab ∈ M then a /∈ A∗. Since a ∈ R we can
reach a from A∗ along some non-trivial directed path. The last edge of this path must
be of the from b′a (since G is bipartite). So from our direction rule b′a ∈ M . But
then b = b′ since ab ∈ M and M is a matching. Hence we reach a via b, contradicting
b /∈ R. Thus C is a cover.

It remains to show that |C| = |M |. It suffices to show that every vertex in C
is contained in some edge of M , and that no edge of M has both ends in C. (This
will show |C| ⩽ |M |, and we noted previously that |M | ⩽ |C| is immediate from the
definitions; alternatively, the f : M → C defined before is now a bijection.)

Recall that C = (A \ R) ∪ (B ∩ R). If a ∈ A \ R, then a /∈ A∗ (since A∗ ⊂ R) so
a is in some edge of M . And if b ∈ B ∩ R, then b is in an edge of M , as otherwise
b ∈ B∗ ∩R = ∅ which gives a contradiction.

Finally suppose for a contradiction that ab is an edge in M with both ends in C.
Then a ∈ A \R, b ∈ B ∩R. We can then reach a via b, contradicting a /∈ R.

We conclude |C| = |M |.

Although this is not the simplest route to Hall’s Theorem overall, having proved
König’s Theorem we can easily deduce Hall’s Theorem.

Proof of Theorem 7.1. As noted before that Hall’s condition is necessary is easy. For
sufficiency, suppose that every S ⊂ A satisfies |N(S)| ⩾ |S|. Let C be any cover of
G. By König’s Theorem, it suffices to show |C| ⩾ |A|; then the minimum size of a
cover is |A|, and so is the maximum size of a matching.

19

Let S = A \C. Note that by definition of a cover, we have N(S) ⊂ B ∩C. Then

|C| = |A ∩ C|+ |B ∩ C| = |A \ S|+ |B ∩ C| ⩾ |A| − |S|+ |N(S)| ⩾ |A|.

8 The Chinese Postman Problem

A postman collects a sack of letters from the sorting office, walks along every street
to deliver them, and returns to the office. How can they find the shortest route? (The
problem was first posed by the Chinese mathematician Kwan Mei-Ko in 1960 and is
named in his honour.)

Let G be a connected graph, and let W be a closed walk in G. We call W a
postman walk in G if it uses every edge of G at least once. For each e ∈ E(G), let
ℓ(e) > 0 be the length of e. The length of W is ℓ(W) =

∑
e∈W ℓ(e). We want to find

a shortest postman walk.

We can interpret a postman walk W as an Euler Tour in an extension of G, in
which we introduce parallel edges, so that the number of parallel edges joining vertices
x and y is the number of times that xy is used in W .

Thus an equivalent reformulation of the Chinese Postman Problem is to find a
minimum weight Eulerian extension G∗ of G, i.e. G∗ is obtained from G by copying
some edges, so that all degrees in G∗ are even, and ℓ(G∗) is as small as possible. Note
that such an extension is not a simple graph, but rather is a multigraph.

We now describe Edmonds’ algorithm (1973). We assume that we have access to
an algorithm for finding a minimum weight perfect matching in a weighted graph.
(An algorithm for this problem was also found by Edmonds, but it is beyond the
scope of this course).

Edmonds’ Postman Walk Algorithm.

1. Let X be the set of vertices with odd degree in G. Using Dijkstra’s Algorithm,
for each x ̸= y in X find an ℓ-shortest x–y path Pxy.

2. Let K be the complete graph with vertex set X. Define a weight function w
on the edges of K by w(xy) = ℓ(Pxy). Find a perfect matching M in K with
minimum w-weight. Note that this perfect matching step makes sense as |X| is
even, by the handshaking lemma.

3. Let G∗ be the Eulerian extension of G obtained by copying all edges of Pxy for
all xy ∈ M . Find an Euler Tour W in G∗. (Fleury’s algorithm yields such a
tour.) Interpret W as a postman walk in G.

To analyze this algorithm we need a simple lemma.

20

Lemma 8.1. Let H be a graph in which not all degrees are even. Then there is a
path in H such that both ends have odd degree.

Proof. Pick a vertex v of odd degree, and let C be the component of H containing v.
By the handshaking lemma, C contains another vertex w of odd degree, so C (and
hence H) contains a v–w path.

Theorem 8.2. Edmonds’ Algorithm finds a minimum length postman walk.

Proof. LetW ∗ be a minimum length postman walk. It suffices to show that Edmonds’
algorithm finds a postman walk that is no longer than W ∗.

Let G∗ be the Eulerian extension of G defined by W ∗. Let H be the graph of
repeated edges: E(H) = E(G∗)\E(G). Note that the set of vertices with odd degree
in H is X (i.e. the same set as for G).

We construct a set of paths in H by repeating the following procedure: if the
current graph has any vertices of odd degree, apply Lemma 8.1 to find a path P such
that both ends have odd degree, delete the edges of P and repeat. This procedure
pairs up the vertices in X, so that each pair is connected by a path in H. Let
P1, . . . , Pk be the paths found, noting that they are edge-disjoint by definition.

Writing ℓ(G) for the sum of the lengths of the edges in G, we have

ℓ(W ∗)− ℓ(G) = ℓ(H) ⩾
k∑

i=1

ℓ(Pi) ⩾
k∑

i=1

dℓ(xi, yi)

where xi and yi are the ends of Pi. But the final sum is just
∑

w(xy) over the edges
of a matching in K, and Edmonds’ Algorithm finds a walk with length ℓ(G) plus the
minimum weight of a matching in K.

21

