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SECOND PUBLIC EXAMINATION

Honour School of Mathematics Part C: Paper C5.2
Master of Science in Mathematical Sciences: Paper C5.2

Elasticity and Plasticity

TRINITY TERM 2024
Thursday 06 June, 14:30pm to 16:15pm

You may submit answers to as many questions as you wish but only the best two will count for
the total mark. All questions are worth 25 marks.
You should ensure that you observe the following points:
e start a new answer booklet for each question which you attempt.

e indicate on the front page of the answer booklet which question you have attempted in that
booklet.

e cross out all rough working and any working you do not want to be marked. If you have used
separate answer booklets for rough work please cross through the front of each such booklet
and attach these answer booklets at the back of your work.

e hand in your answers in numerical order.

If you do not attempt any questions, you should still hand in an answer booklet with the front
sheet completed.

Do not turn this page until you are told that you may do so
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1. An elastic beam of length L and bending stiffness E'I undergoes two-dimensional deformations
in the (z,z)-plane subject to negligible body force. The centre-line of the beam makes an
angle 0(s) with the z-axis, where s is arc-length. A horizontal compressive force P is applied
at either end of the beam. The end at s = 0 is simply supported, while a bending moment M,
about the y-axis is applied at the other end at s = L.

(a) [8 marks| Show that in equilibrium the tension 7', normal shear force N and bending
moment M about the y-axis satisfy

d d dM
—(Tcos@—Nsin@):(), —(Tsin@—I—NcosH):O, — =N
S s ds
Assuming the constitutive relation M = —FEIdf/ds, derive the beam equation
d26
By scaling s = L derive the dimensionless model
d26 oy . de de
@ + m°Asin(f) = 0, d—g(O) =0, dif(l) =, ()

where the normalised compressive load A and the normalised moment -~ should be defined.

(b) [7 marks] Assuming that |y| < 1 and that 6 remains small enough for the problem (x) in
part (a) to be linearised, obtain the approximate solution

0(&) ~ Acos (W&\F/\) ;

and derive an expression for the amplitude A in terms of A and ~.

Show that the linearisation fails as the applied load A approaches n?, where n is a positive
integer.

Explain why nonlinearity becomes important when A—n? = O (|7]?/?) and 6 = O (||/3).

(¢) [10 marks] Now suppose that A is close to one of the critical values with
A =n?+ e\, 7263/2717 9:61/2u,

where A1, 71 and u are of order unity as € — 0+.

Show that
u(§) ~ Aj cos(nmf)
as € = 0+, where
8\1 16(—1)"
A3 = -
1 n2 1 n2m2 m

For n =1 and v, > 0, sketch a bifurcation diagram of A; versus A;, and hence describe
qualitatively how the beam responds as A is gradually increased through 1.
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2. A uniform cylindrical bar of linear isotropic elastic material is subject to a steady torsional
displacement of the form u = Q(—yz,zz,¢(x,y))" for (z,y) € D and 0 < z < L, where
the twist €2 is a positive constant, D is the simply connected cross-section of the bar in the
(x,y)-plane and L is the length of the bar.

(a) [10 marks] Write down the linear elastic constitutive relation and hence find the nonzero
stress components in terms of ¥(x,y). Assuming that there are no body forces, explain
why there exists a stress potential ¢(x,y) such that

Toy = W= and Tyz = —MQ%

ox’
where 1 is the shear modulus. Deduce that V?¢ = —2 in D.

Assuming that the curved boundary of the bar is stress free, show that ¢ may be chosen
so that ¢ = 0 on the boundary 9D of D.

Show that the moment about the z-axis applied at the end of the bar at z = L is given
by M = RS, where the torsional rigidity is

R= 2“//17 ¢ dzdy.

(b) [15 marks] Suppose that the cross-section D of the bar is a disk of radius a and centre
the origin, but with the negative z-axis removed, forming a Mode III crack. The surface
of the crack is stress free and ¢ is bounded at the crack tip as r — 0.

(i) Formulate the boundary value problem for ®(r,0) = y? + ¢(x,y) on the rectangle
0<r<a, —m <60 <m, where (r,0) denote plane polar coordinates. Use the method
of separation of variables to derive the series solution for ®.

(ii) Deduce that the torsional rigidity is given by

8\’ s
R e 1 — —_— 7rlu/a .
3T
(iii) The crack propagates if Kjjy > K*, where K* is a positive constant and the stress

intensity factor is
K= xlg&r ’Tyz(ﬂf,O)’ 2.

Show that the crack propagates if {2 exceeds a critical value that should be determined
in terms of K*, 4 and a.
[In (b) you may assume without proof the identities

2 106 1
or2  ror r206?%’

/0” sin* 6 cos ((” * ;> 9) W = Gz 31?2(; %zzn +5)

V3p =

i 1 128 — 2772
~(2n-3)2n+1)22n+5)?2 9322

where n is a non-negative integer.)
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3. (a) [10 marks| Show that the normal stress N and shear stress F' on a line element with unit
normal n = (cosf,sin#)7 in a two-dimensional granular material lie on the Mohr circle

2 1 ? (Tax — Tyy)2 2
B N_i(TM"‘Tyy) :f""%ya

where 7., T2y and 7y, denote the stress components.

Hence show that the Coulomb yield condition |F| < —N tan ¢, where ¢ € (0,7/2) is the
angle of friction, leads to the condition

\/(Tm — Tyy)2 + 472, < — (Tax + Tyy) sin G

State the conditions under which the material is either (i) elastic or (ii) plastic in the
resulting perfectly plastic model.

(b) [15 marks] Granular material undergoes quasi-steady radially symmetric strain in the
region a < r < b, with displacement field given by u(r) = u(r)e,, where (r,0) denote
plane polar coordinates and e, is a unit vector in the r-direction. The inner boundary
at r = a is subject to a non-negative pressure P,,, while the outer boundary at r = b is
subject to a non-negative pressure P,y. In plane polar coordinates the stress tensor is
diagonal with entries 7. and 799 that satisfy the Navier equation

dTrr + Trr — T60

=0.

dr r

(i) Show that, while the material remains elastic, the stress components satisfy the com-
patibility condition

d
@ (Trr + TH@) =0.

Explain why 7, = =Py on r = a and 7,, = —Fyyt on r = b.
Hence show that, as P, is increased gradually from a starting value of Py, yield
first occurs at r = @ when Py, reaches the critical value P.; given by

1+ sing
PC - P N, BT POU‘
' (1+<a/b>2sm¢> '

(ii) Show that, as Py, is increased further, the material yields in a region a < r < s in
which 799 = (1 — )7y, where s is given by

as? P.

1+/832 B Pout

and the constants «, 8 and -y should be determined in terms of a, b and ¢. Using a
diagram explain why there is a unique solution for s until Py, reaches a second critical
value Py that you should determine in terms of Py, a, b and ¢. Is the material under
compression throughout? Justify your answer.

[In (b) you may assume the linear elastic constitutive relations

du U
= (A4 20) — + A, =\
T ( -+ N) dr + , THO

du

u
A+ 2) —
dr+( + M)T,

where X\ and p are the Lamé constants.]
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($.2/102\] a1

(a) The forces and moments act on o short section as indicated :

N (g+§5)
T(S+ &)
M(‘) 9(‘) M(J*&)
Tl

NLs)
Force balance : _( (osd -{wmo ‘+&(_ (O)

| {in 0) + N cosd - \0

S
Moment balance: ML) + §¢ N(s+§s) - M(s+dg) = O
80 j‘__(('rco.sa— N,;(Ma) =0, %‘(T.ﬁmﬂ-c— NCOU&):OJ N= od(—lj:
Bl

Iv\tecjro\tc and a.ﬂsl.g boum{or’ conditiony
= Tewso-Nsing = -P, Tsind « Newosd = O

=2 T =-Pcosd, N = Pycnd

i)
das

Now wge M-—'—EI% = ET + Pewnd = 0O

Bowndary conditions = ‘%’ )=0 , -ex¥ (1) =mu)=M,

- A0 | ¢ th A (=0 01
Scale& LI:D Mt-kn'}\;mo wtth 3 ()= 0, d_t(l)—-r

_PL LM
wkefc \ = “.\-EI ) T = E—I* . BIM




(B) Lineariziv\g .I—ov' Becec)| = 8”... m\ = O
= 6 = Acos(n[N3)« Bsin(n/>2), with A,BelR

9'(0) = 0,0'(N =-F = B=0, -ArNsin(nf¥)=-7

8~ cos(an%)
nIx sin(n)

t-e.

for 8,¥ ¢ Pravid.ed AN ¢ 7°

Pwmplitude A = @ avd linearcation fails as \ = n* for eachn ¢ 27
B|S2

Naw e, Acel = sin(AfF) = sin(wa[TE) ~ gim(wm o 1)~ ()0 1A
S Iyl
wal-g"oA = O(Z)
p MY
Beam ea'uutiow = " + n\(n\'-fA)(O—-‘;Oz) = 0(0‘) fo- 8 <c|
=2 0" + wa'0 ~ -1'/l6 + év[’n‘&z
$o v\ovtl,\'.nea.rltj balances excesy loadt whew AN = O(P\z),

But A= 0(T) , 0 N-wp = 00vP®), A= O(19"), a requived.
S
7

(¢) Plug in L B PN T L) 2 )
¢) 9" 2 W +mm (vx < .) I
= u'+ rr"[n‘ﬂ\,)(u-%u.‘) = 0(¢)
wibh \4‘("): o, Ul'[l) = ’i“l

Now expand h~ no+<su, as ¢ 0, substitute into BVP and eguate

powers of €.



Bt 0(s°): W'+ wrtuo =0 with wlo)= wily) =
= wo = M cos(nmZ) | where N ¢ R
BE Ole') :  w'sntmd'u,=-m*Nuwo + Lwintu) with w9 = 0, ultn=-y,
B3

To derive the solvrability conelition for N, note thak since w(¥)= cos(un3)

L & solution o4 bhe homogeneows problem,

S (W' + n'aw)vdT = S { (ulertn'n)v- (Vienatv)ud dp = [ wiv- u.vn];
= o.\'( "N By ost(wa3) « 20" ‘l\ i (wid)d3 = - ("7,
Buk OS' g (WaT)dr = 3% lre canlana)) oy = §

) t a 1
A st (nrg) d3 =.j L(atn3))ds = J1obad(iaat)dy = £ oL =%

so -Lm'\M\, *7—nn"'\ ==(-)"7, o B - l\, ___ll.l |) r, 34
J/Nu

To sRetc &ty (5 "

o sRefch note "‘-A'-E»Q_h,( ) lh.e——o*o N=-82¢c0o asngy

and T, ,>0,

Y

- s.lls [ A'

Hence beam buckles wekh M, > o, l.e. WPWAJ'OL( o3 N wnereagel tk.«-ou?lq ).
N2

10
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(o) Linear constitutive relatiou : T; = )(divy)I-fM(?,—:;. + :,_::)
Plu, My =D nonzew slrey ¢0hpoueub ave Xy, = o =}\-(|43 + w,) anel

ond T,' :Ta, =M(~r!4 v.,) 2 ;a2 =/v\.n(-',4 :;:)’ 1,’,: =,‘_0(a -+ )

. 3
Steaalv (.M(.h7 e,m(‘ion with no b,47 foree is ";;"a -0 = D_‘:.n -
= dpley) st 1, -.-,m%;- T =2

Combo = "‘]"’aa—t -.=%; awol 3*% ='¥
vy ¥ D¢ o 2/
o PHe BB L) beR) -2

Parametrize 30 = § (208), Y02, where s U arclingtl, in

asnticlock wite diveckion, Eiatm 8= (y',-3',0) s putward wnik
wormal to curved boundary of bar

Bou.mo‘-u"j strey .f.v-ec = (T\'.j)v_/_\ = © on 9D%I[oL]
>

=
:7 ‘%—aoan K174
= = tomstant = 0 wlo?ouap

as ¢ & a potenticl Bé6

-
-

Twe strey (i) ez (%3, Ty3, )T on plane 2 = cowstant gcucf&le-l
o pomest M about Ehe 2-cans:

%

[ 4

me = | (“) (?")

2 bl A dad

(R Unt, q,,' a)'l‘ ‘D 0 ‘g” ~7
[

/ = M = \J J'tyz- y?aa dl‘lj

v

L)
o
pV



P\,ug =

-

5 M =R, where toaiomal rdy&oli(*_,

R = /V‘“ DT+7 d.adj

v

b
J | 24 - a_a.(”‘* 2 (34’) dady

Lm H ¢|>d.>d7 o rca,u.(,v‘ed s ¢=0 on D,
Y

Bl
10
G ] L 0% | 2 rea
() =-9'+& = S5+ 2=+ 5051 = O frocrcaidian
with 1E(0,8)) ¢ e jor 18V e
f(';fﬂ) =0 jJor Oevcn
(o, 0) = atsin'0 Jo- 18l ¢ @7 5“\"(_

2
Separate variabley B=Fl)¢l) » L F"::'?";’ Fir) _ %’ll:)_) = w* e R

with w0 ulay for Gronknvial a8 (T a) =

(reneral olution is ((8) = A casws + Bsinwe ABelR.

¢lsa)=0 = Awswnt BsinW =0 = A = O anit Butmpg =0

But 2(e,8) U evem, only need the even modes. -\d’.h'.h, B=0 to eliminate
the odel movtes, vt need AD Jor G0 =D (03N =0 = wen+k . ne P

Then Flry=r" = wmlm-)+m -(vu-k)“ = wm=t= (m»l;)

But £ bownded at r=0 » oth Flr) « APt ad mistible




Swpdf\.mpo.smg = ; Zo (g)h-rm cu(wf%)g R whee o, & m

It

BLD“V“:ﬁ :)

N

. antos(nt+4)8 = a'sin®s S fo- 18) 41T

¢ 1
Buk OS tlneklocomtx)odo = L4, for vm e &F o

T '8 cosfw e 16(-n"" CE :
[ -rT J J\m 8 cos( *1')90‘9 M (3n-Blane)lm+5) bla hmk, ,wvn? solution
m
Wti) R= 1m.2- 2]
()i M Jaj Lriia® Z a

37
z ( )Mm cos(n+] )e} rdv de
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2o o n43p n e+ L
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R n ne- ?-?ﬂ‘}
- matd -0 _ R SF
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N2
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=2 %‘.%93 = T—la_u w a—p O+
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(o) "

- sind 038 Stress on Line element s
t:(ike) o= ()

< T \swmpd
'\é Tu - ('r» Yoy

cosd
't‘:, 197 Swnd
> a
n. (Tw) =

Tow ' & 11':7 §wd 030 + ‘t” Jtu’e
k-

. (Tv_\)

2
]|
=

<J
1
(L d

(.T-n —T.-n).ﬂ:nﬂ (o3d «+ Tg, (wl‘ﬂ -Jc“lO)

N - {'L'fu ""'9':) %L‘l’u—‘t.,,) oyl Ta., il
>

F

Tﬂ, LOSD - {-L?u-‘r”)ﬁﬂ'u

=2

—-—
—

i y L [ v Y
(N -3 ("l’av!'?-,,)) + F - (Tan -1'-79) + Yoy
(X rca,uiral, the wous termy Lnuoe.l.l.im7

So (N,F) Lie ow the Molv wivce with centre -¢
where (= -%l.’t'aa-t’t',,) amd R = ,I"G“:“"t’?r" 1'.\,;

4F

avd radiwg R,

By sketen, IFl ¢ - Ntand Vo

& Mol circle Lies in sector |Fl € -Nian

- N & (30 aud Rzcging ¢ cging
ohr circle
© ittt k% € —LToxt Tyy)sip @
IFl= ~Ntand B¢
Fimxl[«]' tYstrget incgual.i(? w @ =2 elastic , vhile Lii)eg.uali('y-_-) flo\l.;(l'-\'f-.

|0




(b) (i) While waterial is elastic, pluy the constitutive relations
wnte the Naveer Q’Mn-tl:am to obtain

_ L)
v/
)

“\r

d dun 7
0O = 3( (7"!'1”); + )s?) + 2,«\(%

M

|
*

d duw  «
=) (0] = ;( ()flﬁ)(; 1'7))

d d d = -
$o ;(TN*T”)-—' an( (17~+2/‘)(d—:+ %» = © as reguived, BL
¢
The ontvard wuk wovmal i§ ~6, onv=m s e, ovr=b so
@f%. . T("f,) = Pl.h g,. onrz=a =) TN:'-—PC On V=t
r=
’rg, -_--abkg,OMf-abQ’i,'ﬂ. ='P°“-t°“ f"'-‘b

Ps Pi. increases 3radmtl7 from P°“|’, the materiel
intlially eleutic evervwlnm and the compatibiliby comolition
and Nawer ea,,ua\'\lw gve

AT 2 _ 28
av r r

Tpr + Tgo = WE'M-:)-'\ (.SAV_) vl

fo & (P20) 220 > Tw = hek 70 = A-E (REHD

AV ro r*
Thew Bl = (1 a7 \[A) _ [-Pu
| b>*\B) "\ —Powr
= A _ | b™* -a™* (" Yo
B8] v-ar\ -1 | = Pout

D p= a"P;u—-B‘Pout' B = u‘b"(pouk'&n)

k‘— “‘ b;- “‘

Tw ‘:DlMJJ @ with T =0 = "i‘.'w- -"lf'pal < '(’C’r.»-o‘(:gp)olw



| S
Note Vpr+Top = 1D 60 & Pu. & %Pm}) phile 8¢ 0

| o =Yos| = Ta0 =T = - P, 0 bLal @ & - 35 <-poieg

LHY poaximal ab v=a, 10 yield occnvs Ehese First M%: Asié

2 b* L Pout - Pi.) = (2P = b Pt )ving = P TR P

1+ &gimp ot [

(b)(ii) For Py, > Pu, malertal must :76&'.9{ wm a m&ohBOfluod of r=a
by ontinuity Jay acrc8 ¢ b, w-ith ¢ TED,

'.‘-Pu i

Inr 58 still have elastic solubion given by (4) vits B, 8 TBD

IV‘ PLMtC‘- fe,‘:’" mres, @ = Tes -Tpr = - L?f/‘ -OT”)JI:V\+ ity the
'“-'T Acke unel "7 how '1\&10‘ wmelilion was satosfied inil'iuuy.

Lsing
$o Yoo = (1-0)1,,, whewe V=770

. r
Then Nawier = 8%, X, =02 7, =-P.-,.(%) w T=-Poabr=a,

(pu(i.nu'tt'? of stress al r=3s = [‘\{" : :t =0, ¢ la(e.[o( covodation ol r=yg
DU, £ Too conbinuous acrour=5 = A +Bs* =- &u(%)v , b- Bs™ ="("7)?£~(%)7
> A=-40-NR(8)T, 2=-T 0 (8)

1
. 2 <$
i\n&a T~=-Pﬂwf‘=b=5 AQK"‘:’P”& = ﬁ—'—' 6"-‘)= 1 th

wihhert &= (l-fs\'.nﬂau'?' f= b"‘.sc'né, oS rctpvéreo!.

Calenlate 0'(3) =
ob;

ATV« 1.1)4"‘(’! g S0 for 68 ¢S, T‘

(t+ps?)? =0for §=8 ’ S‘i (-7 =b

LInNS
Diurm'a?!.s efa, ] s.t. C1) -.-.% for
Pint [\’u‘-' G-(ﬁ)P..J‘ Per= ‘flb,'o-ﬂ , §O veekit
wabil 05z Pam (§) Pt ws W2 ReO
=) wniler Compres (‘.kma,l-out', N1
\S

>5




