Geometric Group Theory

Problem Sheet 4

Section B

We use the notation from Lecture Notes, $X \sim Y$, for two metric spaces that are quasi-isometric.

- 1. i) Show that the relation of quasi-isometry of metric spaces \sim is an equivalence relation.
- ii) Let S_1, S_2 be finite generating sets of a group G. Show that $\Gamma(S_1, G) \sim \Gamma(S_2, G)$.

Solution. i) Let $f: X \to Y$ a (K, A)-quasi-isometry. Define a 'quasi-inverse' $g: Y \to X$ as follows: Given $y \in Y$ pick $x \in X$ such that $d(y, f(x)) \leq A$. Define g(y) = x. Then g is also a quasi-isometry: Let $x \in X$ and y = f(x) then $g(y) = x_1$ for some x_1 for which $d(f(x), f(x_1)) \leq A$. So $d(x, x_1) \leq KA + A$.

- ii) We consider the identity map on the vertices $f: \Gamma(G, S_1) \to \Gamma(G, S_2)$. We can write each element of S_1 as a word on S_2 and each element of S_2 as a word on S_1 . The maximum length of all these words controls the quasi-isometry constants.
- **2.** Given $\epsilon, \delta > 0$ a subset N of a metric space X is called an (ϵ, δ) -net (or simply a net) if for every $x \in X$ there is some $n \in N$ such that $d(x, n) \leq \epsilon$ and for every $n_1, n_2 \in N$, $d(n_1, n_2) \geq \delta$.

A set N that satisfies only the second condition (i.e. for every $n_1, n_2 \in N$, $d(n_1, n_2) > \delta$) is called δ -separated.

- i) Show that any metric space X has a (1,1)-net.
- ii) Show that if $N \subset X$ is a net then $X \sim N$.
- iii) Show that $X \sim Y$ if and only if there are nets $N_1 \subset X, N_2 \subset Y$ and a bilipschitz map $f: N_1 \to N_2$.
- iv) Let G be a f.g. group. Show that H < G is a net in G if and only if H is a finite index subgroup of G.

Solution. i) Let N be a maximal subset of X such that for any $a, b \in N$ $d(a,b) \ge 1$. Such an N exists by Zorn's lemma. Now if $x \in X$ and $d(x,a) \ge 1$ for any $a \in N$ then N is not maximal. So there is some $a \in N$ such that $d(a,x) \le 1$.

- ii) The inclusion $N \to X$ is a quasi-isometry.
- iii) Let $f: X \to Y$ be a (K, A)-quasi-isometry. Pick N_1 an (n, n)-net in X with n = 2K(A+1) + A (sufficiently large). Then $d(f(x), f(y)) \ge 1$ for $x \ne y$ so f is injective on N_1 . Also

$$d(f(x), f(y)) \le Kd(x, y) + A \le KAd(x, y)$$

and

$$d(f(x),f(y)) \geq \frac{d(x,y)}{K} - A \geq \frac{d(x,y)}{K} - \frac{d(x,y)}{2K} \geq \frac{d(x,y)}{2K}$$

Finally since for any $y \in Y$ there is an $x \in X$ such that $d(y, f(x)) \leq A$ and there is an $a \in N_1$ with $d(a, x) \leq n$ we have that

$$d(f(n), y) \le A + Kn + A.$$

so $f(N_1) = N_2$ is a net in Y.

- iv) Clearly, if $G = H \sqcup Hg_1 \sqcup ... Hg_k$, and n is the supremum of $d(1,g_i), i = 1,2,...,k$, then H is an (n,1) net in G. Assume that H is an (n,1) net in G. Let's say that there are M words on the generating set of G of length $\leq n$. For every $g \in G$ $gw \in H$ for some word of length $\leq n$. So $g \in Hw^{-1}$. It follows that the index of H in G is bounded by M.
- **3.** Prove that for every $K \geq 1$ and $A \geq 0$ there exists $\lambda \geq 1$, $\mu \geq 0$ and $D \geq 0$ such that the following is true. Given a (K, A)-quasi-geodesic $q: I \to X$ of endpoints x, y in a geodesic metric space X there exists a (continuous) path $\alpha: I' \to X$ of endpoints x, y such that:
 - 1. for all $t, s \in I$,

$$length(\alpha([t,s])) \leq \lambda d(\alpha(t), \alpha(s)) + \mu;$$

- 2. for every $x \in I$, $d(q(x), \alpha(I')) < D$;
- 3. for every $t \in I'$, $d(\alpha(t), q(I)) \leq D$.

Solution. Let $t_0, t_1, ..., t_n$ be points in the interval I such that t_0, t_n are its endpoints, $|t_{i+1} - t_i| = 1$ for all $0 \le i \le n-1$, $|t_{n+1} - t_n| \le 1$. Consider α to be the polygonal line with geodesic edges $[x, q(t_1)] \cup [q(t_1), q(t_2)] \cup \cdots \cup [q(t_{n-1}), y]$, parametrized by its arc length.

The last two conditions are satisfied with $D = \frac{K}{2} + A$ and the first with $\lambda = K^2$ and $\mu = K(A+1) + 2A$.

4. Let X be a geodesic metric space.

If $\Delta = [x, y, z]$ is a geodesic triangle in X, then there is a metric tree (a 'tripod' if Δ is not degenerate) T_{Δ} with vertices x', y', z' (the endpoints when T_{Δ} is not a segment) such that there is an onto map $f_{\Delta} : \Delta \to T_{\Delta}$ that restricts to an isometry from each side [x, y], [y, z], [x, z] to the corresponding segments [x', y'], [y', z'], [x', z'] in the tree. We denote by c_{Δ} the point $[x', y'] \cap [y', z'] \cap [x', z']$ of T_{Δ} .

We say that a geodesic triangle $\Delta = [x, y, z]$ in a geodesic metric space is δ -thin if for every $t \in T_{\Delta} = [x', y', z']$, $diam(f_{\Delta}^{-1}(t)) \leq \delta$.

Prove that the following are equivalent:

- 1. There is a $\delta \geq 0$ such that all geodesic triangles in X are δ -slim.
- 2. There is a $\delta' \geq 0$ such that all geodesic triangles in X are δ' -thin.

Solution. This appears as Theorem 6.4, with proof, in the Lecture Notes.

5. Let X be a δ -hyperbolic geodesic metric space (with the definition using δ -thin triangles). If L is a geodesic in X and $a \in X$ we say that $b \in L$ is a projection of a to L if

$$d(a,b) = \inf\{d(a,x) : x \in L\}.$$

Show that if b_1, b_2 are projections of a to L then $d(b_1, b_2) \leq 2\delta$.

Solution. This follows easily by considering the geodesic triangle $[a, b_1, b_2]$ and noting that for the tripod $T(a', b'_1, b'_2)$ we compare it with, the legs ending in b'_1 , respectively b'_2 must be of length at most δ . This is because, given $c_1 \in [a, b_1], c_2 \in [a, b_2], c_3 \in [b_1, b_2]$ the three points mapped onto the centre of the tripod,

$$d(a, b_1) \le d(a, c_1) + d(c_1, c_3) \le d(a, c_1) + \delta,$$

whence $d(c_1, b_1) \leq \delta$. Likewise, $d(c_2, b_2) \leq \delta$.

- **6.** Let $G = \langle S \rangle$ be δ -hyperbolic for some $\delta \in \mathbb{N}$, $\delta \geq 1$.
 - 1. Assume that for some $g \in G, x \in \Gamma(S, G)$ with $d(x, gx) > 100\delta$ we have that $d(x, g^2x) \ge 2d(x, gx) 12\delta$.

Prove that

$$d(x, q^n x) > nd(x, qx) - 16n\delta$$

for all $n \in \mathbb{N}$.

2. Assume that g is an element of infinite order in G. Prove that there are constants $c > 0, d \ge 0$ such that

$$d(1, g^n) \ge cn - d$$

for all $n \in \mathbb{N}$.

3. Show that G has no subgroup isomorphic to $\langle x, t | txt^{-1} = x^2 \rangle$.

Solution. 1. This is Lemma 6.4 in the Lecture Notes.

- 2. This is Proposition 6.4 in the Lecture Notes.
- 3. $t^n x t^{-n} = x^{2^n}$ which contradicts the fact that x^n is a quasi-geodesic.

Section C

7. Let $G = \langle S|R \rangle$ be a Dehn presentation of a of a δ -hyperbolic group. Show that we can decide whether a word w on S represents an infinite order element.

Solution. To clarify, our input for the algorithm is the finite presentation $\langle S|R \rangle$ and δ .

1st solution: We use a Dehn presentation and using the solution to the conjugacy problem we check successively for the powers of w, w^k , whether they are conjugate to an element of length $\leq \max\{|r|+2\}$ where r ranges over all relations of the Dehn presentation. Eventually we will either find that $w^k = 1$ or we will find two powers w^k , w^m which are conjugate to the same element a. It follows that these are conjugate so there is some t such that $tw^kt^{-1} = w^m$. However this contradicts the fact that < w > is a quasi-geodesic as in exercise 8. So either some power is equal to 1 or some power is not conjugate to any element of length $\leq \max\{|r|+2\}$ (and hence w is of infinite order).

2nd solution: Enumerate powers w^n and check if they are equal to 1. In parallel try to find a vertex m of the Cayley graph and a power w^k such that $d(w^{2k}m, w^k m) > 2d(m, w^k m) - 12\delta$ and $d(e, w^k) > 100\delta$. If w is of finite order the first procedure will terminate. If w is of infinite order then by the proof of the proposition 6.4 in the notes showing that < w > is a quasi-geodesic w^k and m with the above properties exist and we can detect them since the word problem is solvable in G.

8. Let $G = \langle S|R \rangle$ be a Dehn presentation of a δ -hyperbolic group. Show that we can decide whether a word w on S lies in the subgroup $\langle v \rangle$.

Solution. To clarify, our input for the algorithm is the finite presentation $\langle S|R \rangle$, δ and the words v, w.

The proof of proposition 6.4 shows that there is some vertex m in the Cayley graph and some power v^k such that $d(v^{2k}m, v^km) \geq 2d(v^km, m) - 12\delta$. However since we can solve the word problem we can find v^k, m just by calculating multiplication tables for larger and larger balls and powers of v. Once those are found we get an estimate, as in proposition 6.4, of the form $d(v^n, e) \geq cn - d$ for some c, d > 0. So it is enough to check whether $c^n = w$ for all n for which $cn - d \leq |w|$.