Geometric Group Theory

Problem Sheet 4

Section B

We use the notation from Lecture Notes, X ~ Y, for two metric spaces
that are quasi-isometric.

1. i) Show that the relation of quasi-isometry of metric spaces ~ is an
equivalence relation.

ii) Let S1, S3 be finite generating sets of a group G. Show that I'(S1, G) ~
I'(S2,G).

Solution. i) Let f : X — Y a (K, A)-quasi-isometry. Define a ‘quasi-
inverse’ g : Y — X as follows: Given y € Y pick € X such that
d(y, f(z)) < A. Define g(y) = z. Then g is also a quasi-isometry: Let z € X
and y = f(z) then g(y) = z1 for some z; for which d(f(z), f(z1)) < A. So
d(z,z1) < KA+ A.

ii) We consider the identity map on the vertices f : I'(G, S1) — I'(G, S2).
We can write each element of S; as a word on S5 and each element of Sy as
a word on S;. The maximum length of all these words controls the quasi-
isometry constants.

2. Given €,0 > 0 a subset N of a metric space X is called an (€,0)-net (or
simply a net) if for every x € X there is some n € N such that d(z,n) < e
and for every ni,ng € N, d(n1,n2) > 0.

A set N that satisfies only the second condition (i.e. for every ni,ng €
N, d(ni,n2) > §) is called 0-separated.

i) Show that any metric space X has a (1, 1)-net.

ii) Show that if N C X is a net then X ~ N.

iii) Show that X ~ Y if and only if there are nets N1 C X, No C Y and
a bilipschitz map f : Ny — No.

iv) Let G be a f.g. group. Show that H < G is a net in G if and only if
H is a finite index subgroup of G.

Solution. i) Let N be a maximal subset of X such that for any a,b € N
d(a,b) > 1. Such an N exists by Zorn’s lemma. Now if x € X and d(z,a) > 1
for any @ € N then N is not maximal. So there is some a € N such that
d(a,z) < 1.

ii) The inclusion N — X is a quasi-isometry.

iii) Let f: X — Y be a (K, A)-quasi-isometry. Pick N7 an (n,n)-net in
X with n =2K(A+ 1) + A (sufficiently large). Then d(f(x), f(y)) > 1 for
x # y so f is injective on Ny. Also



d(f(z), f(y)) < Kd(x,y) + A < KAd(x,y)

and

d(z.y) > d(z,y) d(z,y) > d(z,y)

d(f(2). f(y) =2 = K 2K 2K

Finally since for any y € Y there is an © € X such that d(y, f(z)) < A
and there is an a € Ny with d(a,x) < n we have that

d(f(n),y) <A+ Kn+ A.

so f(N1) = Ny is anet in Y.

iv) Clearly, if G = HU Hg; U ...Hgg, and n is the supremum of
d(1,g;),i = 1,2,...,k, then H is an (n,1) net in G. Assume that H is
an (n,1) net in G. Let’s say that there are M words on the generating set
of G of length < n. For every g € G gw € H for some word of length < n.
So g € Hw™!. Tt follows that the index of H in G is bounded by M.

3. Prove that for every K > 1 and A > 0 there exists A > 1, u > 0
and D > 0 such that the following is true. Given a (K, A)-quasi-geodesic
q : I — X of endpoints z,y in a geodesic metric space X there exists a
(continuous) path « : I’ — X of endpoints x, y such that:

1. forallt,s eI,
length (a([t, s])) < Ad(a(t), a(s)) + p;

2. for every x € I, d(q(x),a(I")) < D;

3. for every t € I, d(a(t),q(I)) < D.

IN

Solution. Let tg,t1,...,t, be points in the interval I such that ty, ¢, are
its endpoints, |t;j1 —t;| =1 for all 0 < i <n—1, |t,41 — tn] < 1. Consider
a to be the polygonal line with geodesic edges [z, ¢(t1)]U[q(t1), q(t2)]U---U
[q(tn—1),y], parametrized by its arc length.

The last two conditions are satisfied with D = % + A and the first with
A=K%?and u=K(A+1)+2A.

4. Let X be a geodesic metric space.

If A = [z,y,z] is a geodesic triangle in X, then there is a metric tree
(a ‘tripod’ if A is not degenerate) Ta with vertices 2/,y/, 2’ (the endpoints
when Ta is not a segment) such that there is an onto map fa : A — T that
restricts to an isometry from each side [z, y], [y, 2], [z, 2] to the corresponding
segments [2/,y'], [y, 2], [«, Z’] in the tree. We denote by ca the point [2,y']N
[y, 2" N2, 2] of Th.



We say that a geodesic triangle A = [z,y, z] in a geodesic metric space
is 0-thin if for every t € Ta = [y, 2], diam(fx*(t)) < 4.

Prove that the following are equivalent:

1. There is a § > 0 such that all geodesic triangles in X are §-slim.

2. There is a 0’ > 0 such that all geodesic triangles in X are §’-thin.

Solution. This appears as Theorem 6.4, with proof, in the Lecture
Notes.

5. Let X be a d-hyperbolic geodesic metric space (with the definition using
d-thin triangles). If L is a geodesic in X and a € X we say that b € L is a
projection of a to L if

d(a,b) = inf{d(a,z) : x € L}.
Show that if by, be are projections of a to L then d(by,by) < 26.

Solution. This follows easily by considering the geodesic triangle [a, by, bo]
and noting that for the tripod T'(a/, b}, b,) we compare it with, the legs end-
ing in b}, respectively b, must be of length at most §. This is because, given
c1 € [a,b1], e € [a,ba], c5 € [b1,be] the three points mapped onto the centre
of the tripod,

d(a,by) <d(a,c1) +d(c1,c3) < d(a,c1)+ 0,
whence d(c1,b1) < 9. Likewise, d(ca,b2) < 9.
6. Let G = (S) be d-hyperbolic for some 6 € N, § > 1.

1. Assume that for some g € G,z € I'(S,G) with d(z, gxz) > 100§ we
have that d(z, g*r) > 2d(z, gx) — 120.

Prove that
d(z,g"z) > nd(x, gzr) — 16nd

for all n € N.

2. Assume that g is an element of infinite order in G. Prove that there
are constants ¢ > 0,d > 0 such that

d(1,g") >cn—d

for all n € N.

3. Show that G has no subgroup isomorphic to < z,t[tzt~! = 2% >.



Solution. 1. This is Lemma 6.4 in the Lecture Notes.
2. This is Proposition 6.4 in the Lecture Notes.
3. t"xt™™ = 22" which contradicts the fact that 2" is a quasi-geodesic.

Section C

7. Let G =< S|R > be a Dehn presentation of a of a J-hyperbolic group.
Show that we can decide whether a word w on S represents an infinite order
element.

Solution. To clarify, our input for the algorithm is the finite presentation
< S|R > and 6.

1st solution: We use a Dehn presentation and using the solution to the
conjugacy problem we check successively for the powers of w, w*, whether
they are conjugate to an element of length < max{|r| + 2} where r ranges
over all relations of the Dehn presentation. Eventually we will either find
that w* = 1 or we will find two powers w”, w™ which are conjugate to the
same element a. It follows that these are conjugate so there is some ¢ such
that tw*t~! = w™. However this contradicts the fact that < w > is a quasi-
geodesic as in exercise 8. So either some power is equal to 1 or some power
is not conjugate to any element of length < max{|r|+ 2} (and hence w is of
infinite order).

2nd solution: Enumerate powers w” and check if they are equal to 1.
In parallel try to find a vertex m of the Cayley graph and a power w” such
that d(w**m,w*m) > 2d(m,w"m) — 12§ and d(e,w*) > 1006. If w is of
finite order the first procedure will terminate. If w is of infinite order then
by the proof of the proposition 6.4 in the notes showing that < w > is a
quasi-geodesic w* and m with the above properties exist and we can detect
them since the word problem is solvable in G.

8. Let G =< S|R > be a Dehn presentation of a d-hyperbolic group. Show
that we can decide whether a word w on S lies in the subgroup < v >.

Solution. To clarify, our input for the algorithm is the finite presentation
< S|R >, 6 and the words v, w.

The proof of proposition 6.4 shows that there is some vertex m in the
Cayley graph and some power v¥ such that d(v?*m,v*m) > 2d(vFm,m) —
125. However since we can solve the word problem we can find v*,m just
by calculating multiplication tables for larger and larger balls and powers
of v. Once those are found we get an estimate, as in proposition 6.4, of the
form d(v™,e) > cn — d for some ¢,d > 0. So it is enough to check whether
" = w for all n for which cn — d < |w|.



