
Geometric Group Theory

Problem Sheet 4

Section B

We use the notation from Lecture Notes, X ∼ Y , for two metric spaces
that are quasi-isometric.
1. i) Show that the relation of quasi-isometry of metric spaces ∼ is an

equivalence relation.
ii) Let S1, S2 be finite generating sets of a group G. Show that Γ(S1, G) ∼

Γ(S2, G).

Solution. i) Let f : X → Y a (K,A)-quasi-isometry. Define a ‘quasi-
inverse’ g : Y → X as follows: Given y ∈ Y pick x ∈ X such that
d(y, f(x)) ≤ A. Define g(y) = x. Then g is also a quasi-isometry: Let x ∈ X
and y = f(x) then g(y) = x1 for some x1 for which d(f(x), f(x1)) ≤ A. So
d(x, x1) ≤ KA+A.

ii) We consider the identity map on the vertices f : Γ(G,S1)→ Γ(G,S2).
We can write each element of S1 as a word on S2 and each element of S2 as
a word on S1. The maximum length of all these words controls the quasi-
isometry constants.

2. Given ε, δ > 0 a subset N of a metric space X is called an (ε, δ)-net (or
simply a net) if for every x ∈ X there is some n ∈ N such that d(x, n) ≤ ε
and for every n1, n2 ∈ N , d(n1, n2) ≥ δ.

A set N that satisfies only the second condition (i.e. for every n1, n2 ∈
N , d(n1, n2) ≥ δ) is called δ-separated.

i) Show that any metric space X has a (1, 1)-net.
ii) Show that if N ⊂ X is a net then X ∼ N .
iii) Show that X ∼ Y if and only if there are nets N1 ⊂ X,N2 ⊂ Y and

a bilipschitz map f : N1 → N2.
iv) Let G be a f.g. group. Show that H < G is a net in G if and only if

H is a finite index subgroup of G.

Solution. i) Let N be a maximal subset of X such that for any a, b ∈ N
d(a, b) ≥ 1. Such anN exists by Zorn’s lemma. Now if x ∈ X and d(x, a) ≥ 1
for any a ∈ N then N is not maximal. So there is some a ∈ N such that
d(a, x) ≤ 1.

ii) The inclusion N → X is a quasi-isometry.
iii) Let f : X → Y be a (K,A)-quasi-isometry. Pick N1 an (n, n)-net in

X with n = 2K(A+ 1) + A (sufficiently large). Then d(f(x), f(y)) ≥ 1 for
x 6= y so f is injective on N1. Also
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d(f(x), f(y)) ≤ Kd(x, y) +A ≤ KAd(x, y)

and

d(f(x), f(y)) ≥ d(x, y)

K
−A ≥ d(x, y)

K
− d(x, y)

2K
≥ d(x, y)

2K

Finally since for any y ∈ Y there is an x ∈ X such that d(y, f(x)) ≤ A
and there is an a ∈ N1 with d(a, x) ≤ n we have that

d(f(n), y) ≤ A+Kn+A.

so f(N1) = N2 is a net in Y .
iv) Clearly, if G = H t Hg1 t . . . Hgk, and n is the supremum of

d(1, gi), i = 1, 2, . . . , k, then H is an (n, 1) net in G. Assume that H is
an (n, 1) net in G. Let’s say that there are M words on the generating set
of G of length ≤ n. For every g ∈ G gw ∈ H for some word of length ≤ n.
So g ∈ Hw−1. It follows that the index of H in G is bounded by M .

3. Prove that for every K ≥ 1 and A ≥ 0 there exists λ ≥ 1, µ ≥ 0
and D ≥ 0 such that the following is true. Given a (K,A)-quasi-geodesic
q : I → X of endpoints x, y in a geodesic metric space X there exists a
(continuous) path α : I ′ → X of endpoints x, y such that:

1. for all t, s ∈ I,

length (α([t, s])) ≤ λd(α(t), α(s)) + µ;

2. for every x ∈ I, d(q(x), α(I ′)) ≤ D;

3. for every t ∈ I ′, d(α(t), q(I)) ≤ D.

Solution. Let t0, t1, ..., tn be points in the interval I such that t0, tn are
its endpoints, |ti+1 − ti| = 1 for all 0 ≤ i ≤ n− 1, |tn+1 − tn| ≤ 1. Consider
α to be the polygonal line with geodesic edges [x, q(t1)]∪ [q(t1), q(t2)]∪ · · ·∪
[q(tn−1), y], parametrized by its arc length.

The last two conditions are satisfied with D = K
2 +A and the first with

λ = K2 and µ = K(A+ 1) + 2A.

4. Let X be a geodesic metric space.
If ∆ = [x, y, z] is a geodesic triangle in X, then there is a metric tree

(a ‘tripod’ if ∆ is not degenerate) T∆ with vertices x′, y′, z′ (the endpoints
when T∆ is not a segment) such that there is an onto map f∆ : ∆→ T∆ that
restricts to an isometry from each side [x, y], [y, z], [x, z] to the corresponding
segments [x′, y′], [y′, z′], [x′, z′] in the tree. We denote by c∆ the point [x′, y′]∩
[y′, z′] ∩ [x′, z′] of T∆.
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We say that a geodesic triangle ∆ = [x, y, z] in a geodesic metric space
is δ-thin if for every t ∈ T∆ = [x′, y′, z′], diam(f−1

∆ (t)) ≤ δ.
Prove that the following are equivalent:
1. There is a δ ≥ 0 such that all geodesic triangles in X are δ-slim.
2. There is a δ′ ≥ 0 such that all geodesic triangles in X are δ′-thin.

Solution. This appears as Theorem 6.4, with proof, in the Lecture
Notes.

5. Let X be a δ-hyperbolic geodesic metric space (with the definition using
δ-thin triangles). If L is a geodesic in X and a ∈ X we say that b ∈ L is a
projection of a to L if

d(a, b) = inf{d(a, x) : x ∈ L}.

Show that if b1, b2 are projections of a to L then d(b1, b2) ≤ 2δ.

Solution. This follows easily by considering the geodesic triangle [a, b1, b2]
and noting that for the tripod T (a′, b′1, b

′
2) we compare it with, the legs end-

ing in b′1, respectively b′2 must be of length at most δ. This is because, given
c1 ∈ [a, b1], c2 ∈ [a, b2], c3 ∈ [b1, b2] the three points mapped onto the centre
of the tripod,

d(a, b1) ≤ d(a, c1) + d(c1, c3) ≤ d(a, c1) + δ,

whence d(c1, b1) ≤ δ. Likewise, d(c2, b2) ≤ δ.

6. Let G = 〈S〉 be δ-hyperbolic for some δ ∈ N, δ ≥ 1.

1. Assume that for some g ∈ G, x ∈ Γ(S,G) with d(x, gx) > 100δ we
have that d(x, g2x) ≥ 2d(x, gx)− 12δ.

Prove that
d(x, gnx) ≥ nd(x, gx)− 16nδ

for all n ∈ N.

2. Assume that g is an element of infinite order in G. Prove that there
are constants c > 0, d ≥ 0 such that

d(1, gn) ≥ cn− d

for all n ∈ N.

3. Show that G has no subgroup isomorphic to < x, t|txt−1 = x2 >.
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Solution. 1. This is Lemma 6.4 in the Lecture Notes.
2. This is Proposition 6.4 in the Lecture Notes.
3. tnxt−n = x2n which contradicts the fact that xn is a quasi-geodesic.

Section C

7. Let G =< S|R > be a Dehn presentation of a of a δ-hyperbolic group.
Show that we can decide whether a word w on S represents an infinite order
element.

Solution. To clarify, our input for the algorithm is the finite presentation
< S|R > and δ.

1st solution: We use a Dehn presentation and using the solution to the
conjugacy problem we check successively for the powers of w, wk, whether
they are conjugate to an element of length ≤ max{|r| + 2} where r ranges
over all relations of the Dehn presentation. Eventually we will either find
that wk = 1 or we will find two powers wk, wm which are conjugate to the
same element a. It follows that these are conjugate so there is some t such
that twkt−1 = wm. However this contradicts the fact that < w > is a quasi-
geodesic as in exercise 8. So either some power is equal to 1 or some power
is not conjugate to any element of length ≤ max{|r|+ 2} (and hence w is of
infinite order).

2nd solution: Enumerate powers wn and check if they are equal to 1.
In parallel try to find a vertex m of the Cayley graph and a power wk such
that d(w2km,wkm) > 2d(m,wkm) − 12δ and d(e, wk) > 100δ. If w is of
finite order the first procedure will terminate. If w is of infinite order then
by the proof of the proposition 6.4 in the notes showing that < w > is a
quasi-geodesic wk and m with the above properties exist and we can detect
them since the word problem is solvable in G.

8. Let G =< S|R > be a Dehn presentation of a δ-hyperbolic group. Show
that we can decide whether a word w on S lies in the subgroup < v >.

Solution. To clarify, our input for the algorithm is the finite presentation
< S|R >, δ and the words v, w.

The proof of proposition 6.4 shows that there is some vertex m in the
Cayley graph and some power vk such that d(v2km, vkm) ≥ 2d(vkm,m) −
12δ. However since we can solve the word problem we can find vk,m just
by calculating multiplication tables for larger and larger balls and powers
of v. Once those are found we get an estimate, as in proposition 6.4, of the
form d(vn, e) ≥ cn − d for some c, d > 0. So it is enough to check whether
cn = w for all n for which cn− d ≤ |w|.
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