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1. Consider a n× n random symmetric matrix M where the entries Mij , 1 6 i 6 j 6 n, are IID
random variables with

P(Mij = 1) = P(Mij = −1) = 1/2.

We write E for the expectation over the entries.

(a) [7 marks] Let µn be the empirical spectral measure of M/
√
n, i.e., µn = 1

n

∑n
i=1 δλi/

√
n,

where (λi)i6n are the eigenvalues of M .

(i) Let k ∈ N. Show that the k-th moment of µn, denoted by m
(k)
n , satisfies

m(k)
n =

∫
R
xk dµn(x) =

1

nk/2+1

∑
i

Mi1i2Mi2i3 . . .Miki1 , (1)

where the sum is over all the k-tuples i = (i1, . . . , ik) ∈ {1, . . . , n}k. In particular,

show that m
(2)
n = 1 for any n > 1.

(ii) Prove that E[m
(k)
n ] = 0 for any n > 1 if k is odd.

(iii) Briefly show that E[m
(2k)
n ] 6 (2k)!

2kk!
, for any k ∈ N, and n > 1.

[Hint: Think in terms of pairings.]

(b) [10 marks] For the even moments, evaluate limn→∞E[m
(2k)
n ] proceeding as follows:

(i) Establish a correspondence between the 2k-tuples appearing in (1) and graphs with
vertices labeled by elements of {1, . . . , n}.

(ii) Show that only the 2k-tuples corresponding to graphs with exactly k + 1 distinct

labels contribute to limn→∞E[m
(2k)
n ].

(iii) Define the notion of Dyck path of length 2k. Prove that

lim
n→∞

E[m(2k)
n ] = #{Dyck paths of length 2k}.

[Hint: The relation #V − #E + #F 6 1 for a connected graph with vertex set V ,
edge set E and faces F (or loops) might be useful.]

(c) [8 marks] Consider now the variance of the k-th moment of the empirical spectral mea-
sure:

v(k)
n = E

[(
m(k)
n −E[m(k)

n ]
)2
]
, m ∈ N.

(i) Argue that v
(2)
n = 0 for all n.

(ii) Prove that v
(4)
n 6 c

n2 for some constant c independent of n.

(iii) Conclude that limn→∞m
(4)
n = 2 almost surely.

[You can use the Borel-Cantelli lemma without proof.]
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2. Consider the n eigenvalues {eiΘ1 , . . . , eiΘn} of a n × n CUE matrix, i.e., sampled uniformly
among the n × n unitary matrices. Recall that the joint probability density function of the
random variables (Θ1, . . . ,Θn) is given by

ρn(θ1, . . . , θn) dθ1 . . . dθn =
cn

(2π)n

∏
16j<k6n

|eiθj − eiθk |2 dθ1 . . . dθn,

for some normalization constant cn.

(a) [12 marks] In this question, we find the marginal distributions of the eigenvalues proceed-
ing as follows:

(i) Write ρn in terms of a Vandermonde determinant.

(ii) Consider the functions φj(θ) = 1√
2π
eijθ, 0 6 j 6 n− 1. Verify that {φj}06j6n−1 form

an orthonormal set of functions for the Lebesgue measure dθ on [0, 2π]. Show that
ρn can be written as

ρn(θ1, . . . , θn) = cn det
(
{Kn(θi, θj)}i,j6n

)
,

for the projection kernel Kn(θ, θ′) =
∑n−1

j=0 φj(θ)φj(θ
′).

(iii) State Gaudin’s Lemma. Use it to prove that cn = n! and that the joint marginal
distribution of (Θ1, . . . ,Θk), 1 6 k 6 n, is given by

ρ(k)
n (θ1, . . . , θk) =

(n− k)!

n!
det
(
{Kn(θi, θj)}i,j6k

)
.

(b) [5 marks] Write the k-point correlation function R
(k)
n (θ1, . . . , θk) in terms of Kn. In par-

ticular, find a simple expression for R
(1)
n (θ, θ). What is the expected number of eigenvalues

in an interval [a, b], 0 6 a < b 6 2π, for fixed n?

(c) [8 marks] Compute the distribution of the spacings between non-consecutive eigenvalues
as follows:

(i) Write an expression for R
(2)
n (θ, θ′). For an appropriate choice of scaling sn, show that

4π2

n2
R(2)
n (snx, sny)→ 1−

(sin(π(x− y))

π(x− y)

)2
.

(ii) Prove that for −1 6 a < b 6 1

lim
n→∞

1

n
E
[
#{j 6= k : a 6

n

2π
(Θk −Θj) 6 b}

]
=

∫ b

a

(
1−

(sin(πx)

πx

)2)
dx.

How does the density in the integral above behave as x → 0? Consider only the
non-trivial leading order.
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3. We consider the matrix-valued process (M(t), t > 0) where M(t) is a 2× 2 symmetric matrix

M(t) =

(
X(t) Z(t)
Z(t) Y (t)

)
.

The processes X(t), Y (t) and Z(t) have initial values X(0) = x0, Y (0) = y0, Z(0) = z0. Their
evolution satisfies the following stochastic differential equations (SDEs):

dX(t) =
√

2 dB1(t)−1

2
X(t) dt dY (t) =

√
2 dB2(t)−1

2
Y (t) dt dZ(t) = dB3(t)−1

2
Z(t) dt.

Here (B1(t), B2(t), B3(t)) are IID standard Brownian motions starting at 0.

(a) [5 marks] Let Λ1(t) and Λ2(t), t > 0, be the largest and smallest eigenvalues of M(t).
Write Λ1(t) and Λ2(t) as a function of X(t), Y (t) and Z(t).

(b) [10 marks] (i) Use Itô’s formula and the rules of stochastic calculus to derive an SDE
for the gap process G(t) = Λ1(t)− Λ2(t).

(ii) Is the SDE well-defined for any initial value x0, y0, z0? Discuss.

(c) [10 marks] (i) Compute the expected gap E[G(t)] at all time t > 0 for the initial condi-
tion x0 = y0 = 1 and z0 = 0.

(ii) Find the probability density function (PDF) of G(t) for any fixed time t > 0 for the
same initial conditions.

(iii) Discuss the results obtained in c(i) and c(ii) when t→∞ and when t is close to 0.

[Hint: If (O(t), t > 0) is an Ornstein-Uhlenbeck process with SDE

dO(t) = σ dB(t)− kO(t) dt

starting at O(0), then O(t) is distributed like a Gaussian random variable of mean O(0)e−kt

and variance σ2

2k

(
1− e−2kt

)
.]
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