Honour School of Mathematics Part C: Paper C7.7 Honour School of Mathematical and Theoretical Physics Part C: Paper C7.7 Master of Science in Mathematical Sciences: Paper C7.7 Master of Science in Mathematical and Theoretical Physics: Paper C7.7

Random Matrix Theory Lecturer: Louis-Pierre Arguin Checked by: Christopher Couzens

28/03/2024

Do not turn this page until you are told that you may do so

1. Consider a $n \times n$ random symmetric matrix M where the entries M_{ij} , $1 \leq i \leq j \leq n$, are IID random variables with

$$\mathbf{P}(M_{ij} = 1) = \mathbf{P}(M_{ij} = -1) = 1/2.$$

We write \mathbf{E} for the expectation over the entries.

- (a) [7 marks] Let μ_n be the *empirical spectral measure* of M/\sqrt{n} , i.e., $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i/\sqrt{n}}$, where $(\lambda_i)_{i \leq n}$ are the eigenvalues of M.
 - (i) Let $k \in \mathbb{N}$. Show that the k-th moment of μ_n , denoted by $m_n^{(k)}$, satisfies

$$m_n^{(k)} = \int_{\mathbb{R}} x^k \, \mathrm{d}\mu_n(x) = \frac{1}{n^{k/2+1}} \sum_{\mathbf{i}} M_{i_1 i_2} M_{i_2 i_3} \dots M_{i_k i_1},\tag{1}$$

where the sum is over all the k-tuples $\mathbf{i} = (i_1, \ldots, i_k) \in \{1, \ldots, n\}^k$. In particular, show that $m_n^{(2)} = 1$ for any $n \ge 1$.

- (ii) Prove that $\mathbf{E}[m_n^{(k)}] = 0$ for any $n \ge 1$ if k is odd.
- (iii) Briefly show that $\mathbf{E}[m_n^{(2k)}] \leq \frac{(2k)!}{2^k k!}$, for any $k \in \mathbb{N}$, and $n \geq 1$. [*Hint: Think in terms of pairings.*]
- (b) [10 marks] For the even moments, evaluate $\lim_{n\to\infty} \mathbf{E}[m_n^{(2k)}]$ proceeding as follows:
 - (i) Establish a correspondence between the 2k-tuples appearing in (1) and graphs with vertices labeled by elements of $\{1, \ldots, n\}$.
 - (ii) Show that only the 2k-tuples corresponding to graphs with exactly k + 1 distinct labels contribute to $\lim_{n\to\infty} \mathbf{E}[m_n^{(2k)}]$.
 - (iii) Define the notion of $Dyck \ path$ of length 2k. Prove that

$$\lim_{n \to \infty} \mathbf{E}[m_n^{(2k)}] = \#\{\text{Dyck paths of length } 2k\}.$$

[Hint: The relation $\#V - \#E + \#F \leq 1$ for a connected graph with vertex set V, edge set E and faces F (or loops) might be useful.]

(c) [8 marks] Consider now the *variance* of the *k*-th moment of the empirical spectral measure:

$$v_n^{(k)} = \mathbf{E}\left[\left(m_n^{(k)} - \mathbf{E}[m_n^{(k)}]\right)^2\right], \ m \in \mathbb{N}$$

- (i) Argue that $v_n^{(2)} = 0$ for all n.
- (ii) Prove that $v_n^{(4)} \leq \frac{c}{n^2}$ for some constant c independent of n.
- (iii) Conclude that $\lim_{n\to\infty} m_n^{(4)} = 2$ almost surely. [You can use the Borel-Cantelli lemma without proof.]

2. Consider the *n* eigenvalues $\{e^{i\Theta_1}, \ldots, e^{i\Theta_n}\}$ of a $n \times n$ CUE matrix, i.e., sampled uniformly among the $n \times n$ unitary matrices. Recall that the joint probability density function of the random variables $(\Theta_1, \ldots, \Theta_n)$ is given by

$$\rho_n(\theta_1,\ldots,\theta_n) \,\mathrm{d}\theta_1 \ldots \,\mathrm{d}\theta_n = \frac{c_n}{(2\pi)^n} \prod_{1 \le j < k \le n} |e^{\mathrm{i}\theta_j} - e^{\mathrm{i}\theta_k}|^2 \,\mathrm{d}\theta_1 \ldots \,\mathrm{d}\theta_n,$$

for some normalization constant c_n .

- (a) [12 marks] In this question, we find the marginal distributions of the eigenvalues proceeding as follows:
 - (i) Write ρ_n in terms of a Vandermonde determinant.
 - (ii) Consider the functions $\phi_j(\theta) = \frac{1}{\sqrt{2\pi}} e^{ij\theta}$, $0 \leq j \leq n-1$. Verify that $\{\phi_j\}_{0 \leq j \leq n-1}$ form an orthonormal set of functions for the Lebesgue measure $d\theta$ on $[0, 2\pi]$. Show that ρ_n can be written as

$$\rho_n(\theta_1,\ldots,\theta_n) = c_n \det\left(\{K_n(\theta_i,\theta_j)\}_{i,j\leqslant n}\right),$$

for the projection kernel $K_n(\theta, \theta') = \sum_{j=0}^{n-1} \phi_j(\theta) \phi_j(\theta').$

(iii) State Gaudin's Lemma. Use it to prove that $c_n = n!$ and that the joint marginal distribution of $(\Theta_1, \ldots, \Theta_k)$, $1 \le k \le n$, is given by

$$\rho_n^{(k)}(\theta_1,\ldots,\theta_k) = \frac{(n-k)!}{n!} \det\left(\{K_n(\theta_i,\theta_j)\}_{i,j\leqslant k}\right).$$

- (b) [5 marks] Write the *k*-point correlation function $R_n^{(k)}(\theta_1, \ldots, \theta_k)$ in terms of K_n . In particular, find a simple expression for $R_n^{(1)}(\theta, \theta)$. What is the expected number of eigenvalues in an interval $[a, b], 0 \leq a < b \leq 2\pi$, for fixed *n*?
- (c) [8 marks] Compute the distribution of the spacings between non-consecutive eigenvalues as follows:
 - (i) Write an expression for $R_n^{(2)}(\theta, \theta')$. For an appropriate choice of scaling s_n , show that

$$\frac{4\pi^2}{n^2} R_n^{(2)}(s_n x, s_n y) \to 1 - \left(\frac{\sin(\pi(x-y))}{\pi(x-y)}\right)^2.$$

(ii) Prove that for $-1 \leq a < b \leq 1$

$$\lim_{n \to \infty} \frac{1}{n} \mathbf{E} \Big[\# \{ j \neq k : a \leqslant \frac{n}{2\pi} (\Theta_k - \Theta_j) \leqslant b \} \Big] = \int_a^b \left(1 - \left(\frac{\sin(\pi x)}{\pi x} \right)^2 \right) \mathrm{d}x.$$

How does the density in the integral above behave as $x \to 0$? Consider only the non-trivial leading order.

3. We consider the matrix-valued process $(M(t), t \ge 0)$ where M(t) is a 2 × 2 symmetric matrix

$$M(t) = \begin{pmatrix} X(t) & Z(t) \\ Z(t) & Y(t) \end{pmatrix}$$

The processes X(t), Y(t) and Z(t) have initial values $X(0) = x_0, Y(0) = y_0, Z(0) = z_0$. Their evolution satisfies the following stochastic differential equations (SDEs):

$$dX(t) = \sqrt{2} dB_1(t) - \frac{1}{2}X(t) dt \qquad dY(t) = \sqrt{2} dB_2(t) - \frac{1}{2}Y(t) dt \qquad dZ(t) = dB_3(t) - \frac{1}{2}Z(t) dt.$$

Here $(B_1(t), B_2(t), B_3(t))$ are IID standard Brownian motions starting at 0.

- (a) [5 marks] Let $\Lambda_1(t)$ and $\Lambda_2(t)$, $t \ge 0$, be the largest and smallest eigenvalues of M(t). Write $\Lambda_1(t)$ and $\Lambda_2(t)$ as a function of X(t), Y(t) and Z(t).
- (b) [10 marks] (i) Use Itô's formula and the rules of stochastic calculus to derive an SDE for the gap process $G(t) = \Lambda_1(t) \Lambda_2(t)$.
 - (ii) Is the SDE well-defined for any initial value x_0, y_0, z_0 ? Discuss.
- (c) [10 marks] (i) Compute the expected gap $\mathbf{E}[G(t)]$ at all time t > 0 for the initial condition $x_0 = y_0 = 1$ and $z_0 = 0$.
 - (ii) Find the probability density function (PDF) of G(t) for any fixed time t > 0 for the same initial conditions.
 - (iii) Discuss the results obtained in c(i) and c(ii) when $t \to \infty$ and when t is close to 0.
 - [*Hint:* If $(O(t), t \ge 0)$ is an Ornstein-Uhlenbeck process with SDE

$$\mathrm{d}O(t) = \sigma \,\mathrm{d}B(t) - kO(t) \,\mathrm{d}t$$

starting at O(0), then O(t) is distributed like a Gaussian random variable of mean $O(0)e^{-kt}$ and variance $\frac{\sigma^2}{2k}(1-e^{-2kt})$.]