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1. Consider a n× n random symmetric matrix M where the entries Mij , 1 6 i 6 j 6 n, are IID
random variables with

P(Mij = 1) = P(Mij = −1) = 1/2.

We write E for the expectation over the entries.

(a) [7 marks] Let µn be the empirical spectral measure of M/
√
n, i.e., µn = 1

n

∑n
i=1 δλi/

√
n,

where (λi)i6n are the eigenvalues of M .

(i) Let k ∈ N. Show that the k-th moment of µn, denoted by m
(k)
n , satisfies

m(k)
n =

∫
R
xk dµn(x) =

1

nk/2+1

∑
i

Mi1i2Mi2i3 . . .Miki1 , (1)

where the sum is over all the k-tuples i = (i1, . . . , ik) ∈ {1, . . . , n}k. In particular,

show that m
(2)
n = 1 for any n > 1.

(ii) Prove that E[m
(k)
n ] = 0 for any n > 1 if k is odd.

(iii) Briefly show that E[m
(2k)
n ] 6 (2k)!

2kk!
, for any k ∈ N, and n > 1.

[Hint: Think in terms of pairings.]

(b) [10 marks] For the even moments, evaluate limn→∞E[m
(2k)
n ] proceeding as follows:

(i) Establish a correspondence between the 2k-tuples appearing in (1) and graphs with
vertices labeled by elements of {1, . . . , n}.

(ii) Show that only the 2k-tuples corresponding to graphs with exactly k + 1 distinct

labels contribute to limn→∞E[m
(2k)
n ].

(iii) Define the notion of Dyck path of length 2k. Prove that

lim
n→∞

E[m(2k)
n ] = #{Dyck paths of length 2k}.

[Hint: The relation #V − #E + #F 6 1 for a connected graph with vertex set V ,
edge set E and faces F (or loops) might be useful.]

(c) [8 marks] Consider now the variance of the k-th moment of the empirical spectral mea-
sure:

v(k)
n = E

[(
m(k)
n −E[m(k)

n ]
)2
]
, m ∈ N.

(i) Argue that v
(2)
n = 0 for all n.

(ii) Prove that v
(4)
n 6 c

n2 for some constant c independent of n.

(iii) Conclude that limn→∞m
(4)
n = 2 almost surely.

[You can use the Borel-Cantelli lemma without proof.]
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Solution. (a) (i) This is simply by opening the trace

m(k)
n =

1

n
Tr

(
M√
n

)k
=

1

nk/2+1

n∑
i1,...,ik=1

Mi1i2 . . .Miki1 .

In the case k = 2, since M is symmetric, we get m
(2)
n = 1

n2

∑n
i1,i2=1M

2
i1i2

= 1.

(ii) If we take the expectation, we get

E[m(k)
n ] =

1

nk/2+1

n∑
i1,...,ik=1

E[Mi1i2 . . .Miki1 ].

The product inside the expectation is 1 or −1. If k is odd, then one pair ijij+1 must
appear an odd number of times. The conclusion follows from the fact the the odd
moments of Mij are 0.

(iii) For E[m
(2k)
n ], we note that the E[Mi1i2 . . .Mi2ki1 ] = 0 if one pair ijij+1 appears only

once. Therefore, each pair must appear at least twice. Since the joint moment of
the entries is bounded by 1, we simply need to estimate the number of pairings of 2k
objects which is (2k− 1)(2k− 3) . . . (5)(3)(1). Note that the number of labelings can
be bounded by nk+1 canceling the prefactor.

Comments on marks (7 marks):

(i) 2=1B+1VB: is book work done in class several time, with a simple observation for
this particular distribution.

(ii) 3=3VB: is a variation of book work for this distribution.

(iii) 2=2N: is new. For this distribution the moments of the entries is easily bounded by
1 and it’s not too hard to estimate the pairings.

(b) (i) We associate to each i a graph G(i) where the vertices V (i) are labeled by the distinct
values in {i1, . . . , i2k}. An edge is placed between two labeled vertices ij and ij+1 if ij
and ij+1 appear consecutively in i. Note that the graph is connected by construction.

(ii) When taking the expectation, E[Mi1i2 . . .Mi2ki1 ] is non-zero only if each edge appears
at least twice. Therefore the number of edges in the graph #E(i) 6 k. Since the
graph is connected, we have #V (i) 6 k + 1. The number of possible labeling is
∼ n#V (i). In particular, if #V (i) < k + 1, and we have

lim
n→∞

E[m(2k)
n ] = lim

n→∞

1

nk+1
n#V (i) = 0,

since |E[Mi1i2 . . .Mi2ki1 ]| 6 1.

(iii) A Dyck path of length 2k is a function π : {0, 1, . . . , 2k} → {0, 1, . . . , k} such that
π(0) = π(2k) = 0 and the increments are ±1, i.e., |π(j + 1)− π(j)| = 1 for all j > 0.
Note that π is positive. Going back to part (i), only the i with #V (i) = k + 1
will contribute in the limit. But such i’s must have k edges by the Euler relation.
Moreover, there can’t be no faces, so G(i) must be a tree. Since every edge must then
appear twice in i, we have that the limit is exactly the number of excursions on a
tree with k vertices from the root to the root, with the trees labeled by the order of
visit. (There are ∼ nk+1 possible labeling of the vertices, canceling the pre-factor.)
But such an excursion correspond to a Dyck path where π(k) is the distance from the
root at time k.

Comments on marks (12 marks):

(i) 3=3B: Done several in lectures and classes
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(ii) 4=2B+2VB: Same. One difference is that it is easier here to bound the moment of
the entries.

(iii) 3=3B: This sort of computation appeared in lectures and tutorials.

(c) (i) This is clear since by part (a)i., m
(2)
n = 1 for all n with probability 1.

(ii) If we write out the variance and the traces, one gets

v(4)
n =

1

n4+2

∑
i j

E[Mi1i2 . . .Mi4i1Mj1j2 . . .Mj4j1 ]−E[Mi1i2 . . .Mi4i1 ]E[Mj1j2 . . .Mj4j1 ]

where the sum is over 4-tuples i and j. We construct a graph G(i, j) as before. Each
edge must appear at least twice, so there are at most 5 vertices. Moreover the graph
must be connected between the i and the j vertices otherwise the first expectation
factors yielding a zero contribution. In particular, the number of labelings of vertices
is 6 n4. This shows that the variance is O(1/n). To improve this to 1/n2, suppose
that one has exactly 5 vertices. As before, this means that there are exactly 4 edges,
and that the underlying graph G(i, j) is a tree. In particular, the subgraphs G(i) is
also a tree. This is a contradiction, since it is possible to start at i1 and going back
to i1 by passing one edge only once (since there is one edge that must be in G(i) and
G(j)).

(iii) Part (c)ii, implies that m
(4)
n converges almost surely to its expectation by the Borel-

Cantelli lemma, since by Chebyshev’s inequality, P(|m(4)
n −E[m

(4)
n ]| > δ) are summable

for every δ. The expectation converges by (b)(ii) to the number of Dyck paths of
length 4. This is easy to check that there are only two such paths (or use the con-
nection with the Catalan numbers).

Comments on marks (8 marks):

(i) 1=1VB: Simple understanding of variance using part a.

(ii) 5=5N: This was sketched in class for the general case. But coming up with the whole
reasoning is new.

(iii) 2=2VB: Similar reasoning was done in class. Here they need to connect to the number
of Dyck path of length 4 which they can explicitly count.

Marking of the question: 25=9B+9VB+7N
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2. Consider the n eigenvalues {eiΘ1 , . . . , eiΘn} of a n × n CUE matrix, i.e., sampled uniformly
among the n × n unitary matrices. Recall that the joint probability density function of the
random variables (Θ1, . . . ,Θn) is given by

ρn(θ1, . . . , θn) dθ1 . . . dθn =
cn

(2π)n

∏
16j<k6n

|eiθj − eiθk |2 dθ1 . . . dθn,

for some normalization constant cn.

(a) [12 marks] In this question, we find the marginal distributions of the eigenvalues proceed-
ing as follows:

(i) Write ρn in terms of a Vandermonde determinant.

(ii) Consider the functions φj(θ) = 1√
2π
eijθ, 0 6 j 6 n− 1. Verify that {φj}06j6n−1 form

an orthonormal set of functions for the Lebesgue measure dθ on [0, 2π]. Show that
ρn can be written as

ρn(θ1, . . . , θn) = cn det
(
{Kn(θi, θj)}i,j6n

)
,

for the projection kernel Kn(θ, θ′) =
∑n−1

j=0 φj(θ)φj(θ
′).

(iii) State Gaudin’s Lemma. Use it to prove that cn = n! and that the joint marginal
distribution of (Θ1, . . . ,Θk), 1 6 k 6 n, is given by

ρ(k)
n (θ1, . . . , θk) =

(n− k)!

n!
det
(
{Kn(θi, θj)}i,j6k

)
.

(b) [5 marks] Write the k-point correlation function R
(k)
n (θ1, . . . , θk) in terms of Kn. In par-

ticular, find a simple expression for R
(1)
n (θ, θ). What is the expected number of eigenvalues

in an interval [a, b], 0 6 a < b 6 2π, for fixed n?

(c) [8 marks] Compute the distribution of the spacings between non-consecutive eigenvalues
as follows:

(i) Write an expression for R
(2)
n (θ, θ′). For an appropriate choice of scaling sn, show that

4π2

n2
R(2)
n (snx, sny)→ 1−

(sin(π(x− y))

π(x− y)

)2
.

(ii) Prove that for −1 6 a < b 6 1

lim
n→∞

1

n
E
[
#{j 6= k : a 6

n

2π
(Θk −Θj) 6 b}

]
=

∫ b

a

(
1−

(sin(πx)

πx

)2)
dx.

How does the density in the integral above behave as x → 0? Consider only the
non-trivial leading order.

Page 5 of 10 Turn Over



Solution. (a) (i) By definition of the Vandermonde determinant
∏

16j<k6n(eiθk − eiθj ) =

det({eikθj , 1 6 j 6 n, 0 6 k 6 n− 1}).
(ii) We have ∫ 2π

0
φj(θ)φk(θ) dθ =

1

2π

∫ 2π

0
ei(k−j)θ dθ = δjk

as claimed. Using the fact that det(A†A) = |detA|2, we get that

|eiθj − eiθk |2 = det({Kn(θj , θk)}j,k6n),

where Kn(θ, θ′) =
∑n−1

k=0 φk(θ)φk(θ
′). One can note (though it is not necessary at this

point) that Kn depends only on θ − θ′.
(iii) Gaudin’s lemma states that if a kernel K is such that

∫
K(x, y)(y, z) dy = K(x, z)

then ∫
det({K(xi, xj)}i,j6n) dxn = (r − n+ 1) det({K(xi, xj)}i,j6n−1),

where r =
∫
K(x, x) dx. In the setting of the problem r =

∫ 2π
0 Kn(x, x) dx = n.

By integrating ρn(x1, . . . , xn) over all x’s, we get n!cn = 1 giving the claim. If we
integrate xn up to xn−k+1, we get by Gaudin’s lemma

ρ(k)
n (θ1, . . . , θk) =

(n− k)!

n!
det
(
{Kn(θi, θj)}i,j6k

)
.

Comments on marks (12 marks):

(i) 2=2B: Done in lectures.

(ii) 5=5B: Done in lectures.

(iii) 5=5B: Done in lectures.

(b) The k-point correlation function is defined by n!
(n−k)!ρ

(k)
n (θ1, . . . , θk) so it is exactlyR

(k)
n (θ1, θk) =

det
(
{Kn(θi, θj)}i,j6k

)
. In the case k = 1, it is simply

R(1)
n (θ) = Kn(θ, θ) =

n

2π
.

It is independent of θ. So the eigenvalues are uniformly distributed on the unit circle as
expected. In particular, we get∫ b

a
R(1)
n (θ) dθ = E[#{j : Θj ∈ [a, b]}] =

n

2π
(b− a).

Comments on marks (5 marks):

(i) 3=3B: Done in lectures.

(ii) 2=2VB: The second part is a variant of an example done in class, but good students

should see it as a simple application from the understanding of R
(1)
n .

(c) (i) For the 2-point correlation function, note first that

Kn(θ, θ′) =
1

2π

n−1∑
j=0

eij(θ−θ′) =
1

2π

ein(θ−θ′) − 1

ei(θ−θ′) − 1
=
e(n−1)(θ−θ′)/2

2π

sin(n(θ − θ′)/2)

n sin((θ − θ′)/2)

Therefore, we get

R(2)
n (θ, θ′) =

n2

4π2

∣∣∣∣∣ 1 sin(n(θ−θ′)/2)
n sin(θ−θ′)/2)

sin(n(θ−θ′)/2)
n sin((θ−θ′)/2) 1

∣∣∣∣∣ =
n2

4π2

(
1−

( sin(n(θ − θ′)/2)

n sin((θ − θ′)/2)

)2
)
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Part (b) suggests the scaling θ → 2π
n x. Under that scaling, we have

lim
n→∞

4π2

n2
R(2)
n (

2π

n
x,

2π

n
y) = 1−

(sin(π(x− y))

π(x− y)

)2

(ii) By definition of the two-point correlation function we have for any function f on
[0, 2π]2,

E
[∑
j 6=k

f(Θj ,Θk)
]

=

∫ 2π

0

∫ 2π

0
f(θ, θ′)R(2)

n (θ, θ′) dθ dθ′.

If the function f depends only on the difference, since it is also the case for the
correlation function, the above reduces to

E
[∑
j 6=k

f(Θj −Θk)
]

= 2π

∫ 2π

−2π
f(u)R(2)

n (u) du

Applying the change of variable u = 2π
n x as in (ii), one gets

4π2

n

∫ n

−n
f(2πx/n)R(2)

n (2πx/n) dx

We apply the above with the indicator function 1[a,b](ny/2π) to get

lim
n→∞

1

n
E
[
#{j 6= k : a 6

n

2π
(Θk −Θj) 6 b}

]
=

∫ b

a

(
1−

(sin(πx)

πx

)2)
dx,

where we used the asymptotics of (ii). For small x, the density is π2x2

3 .

Comments on marks (8 marks):

(i) 4=4 VB: The first part was done in detail for GUE.

(ii) 4=4N: The second part is new, where they have to apply the appropriate scaling
using part (i) and understand the meaning of the 2-point correlation function.

Marking of the question: 25=15B+6VB+4N
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3. We consider the matrix-valued process (M(t), t > 0) where M(t) is a 2× 2 symmetric matrix

M(t) =

(
X(t) Z(t)
Z(t) Y (t)

)
.

The processes X(t), Y (t) and Z(t) have initial values X(0) = x0, Y (0) = y0, Z(0) = z0 and
their evolution satisfies the following stochastic differential equations (SDEs):

dX(t) =
√

2 dB1(t)−1

2
X(t) dt dY (t) =

√
2 dB2(t)−1

2
Y (t) dt dZ(t) = dB3(t)−1

2
Z(t) dt.

Here (B1(t), B2(t), B3(t)) are IID standard Brownian motions starting at 0.

(a) [5 marks] Let Λ1(t) and Λ2(t), t > 0, be the largest and smallest eigenvalues of M(t).
Write Λ1(t) and Λ2(t) as a function of X(t), Y (t) and Z(t).

(b) [10 marks] (i) Use Itô’s formula and the rules of stochastic calculus to derive an SDE
for the gap process G(t) = Λ1(t)− Λ2(t).

(ii) Is the SDE well-defined for any initial value x0, y0, z0? Discuss.

(c) [10 marks] (i) Compute the expected gap E[G(t)] at all time t > 0 for the initial condi-
tion x0 = y0 = 1 and z0 = 0.

(ii) Find the probability density function (PDF) of G(t) for any fixed time t > 0 for the
same initial conditions.

(iii) Discuss the results obtained in c(i) and c(ii) when t→∞ and when t is close to 0.

[Hint: If (O(t), t > 0) is an Ornstein-Uhlenbeck process with SDE

dO(t) = σ dB(t)− kO(t) dt

starting at O(0), then O(t) is distributed like a Gaussian random variable of mean O(0)e−kt

and variance σ2

2k

(
1− e−2kt

)
.]
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Solutions. (a) This is straightforward linear algebra. The characteristic polynomial of M(t)
is λ2 − (X(t) + Y (t))λ+XY − Z2. Therefore the eigenvalues are

Λ1,2(t) =
X(t) + Y (t)±

√
(X(t) + Y (t))2 − 4(X(t)Y (t)− Z(t)2)

2

=
X(t) + Y (t)±

√
(X(t)− Y (t))2 + 4Z(t)2)

2

Comments on marks (5 marks): 5=5B: Basic linear algebra. Also reviewed in PS1.

(b) (i) The gap process from part (a) is

G(t) = 2

√(X(t)− Y (t)

2

)2
+ Z(t)2.

Write U(t) for the process X(t)−Y (t)
2 . From the SDE of X(t) and Y (t) we get

dU(t) =
1√
2

( dB1(t)− dB2(t))− 1

2
U(t) dt.

Note that W (t) = 1√
2
(B1(t)− B2(t)) is a standard Brownian motion independent of

(B3(t), t > 0). Therefore, U(t) is independent of Z(t) and has the same distribution.
We have G(t) = F (U(t), Z(t)) where F (x, y) = 2

√
x2 + y2. We apply Itô’s formula

to F . The derivatives are

∇F (x, y) = (
2x√
x2 + y2

,
2y√
x2 + y2

) ∂2
1F (x, y) =

2y2

(x2 + y2)3/2

∂2
2F (x, y) =

2x2

(x2 + y2)3/2
∂1∂2F (x, y) =

−2xy

(x2 + y2)3/2
.

Itô’s formula then gives

dF (U(t), Z(t)) = ∂1F (U(t), Z(t)) dU(t)+∂2F (U(t), Z(t)) dZ(t)+
1

2
∆F (U(t), Z(t)) dt,

by the rules of stochastic calculus since dU(t) dZ(t) = 0, ( dU(t))2 = dt and ( dZ(t))2 =
dt. Therefore we get

dG(t) =
U(t)√

U(t)2 + Z(t)2
dW (t) +

Z(t)√
U(t)2 + Z(t)2

dB3(t) +

(
2

G(t)
− G(t)

2

)
dt.

Defining the process W ′(t) by

dW ′(t) =
U(t)√

U(t)2 + Z(t)2
dW (t) +

Z(t)√
U(t)2 + Z(t)2

dB3(t).

We get by the rules of stochastic calculus that ( dW ′(t))2 = dt. By Lévy’s theorem
(seen in lectures), it is also a standard Brownian motion. We finally get

dG(t) = dW ′(t) +

(
2

G(t)
− G(t)

2

)
dt.

where (W ′(t), t > 0) is a standard Brownian motion.
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(ii) There is an issue if G(t) = 0. This could only happen if U(t) = 0 and Z(t) = 0 for
the same time t. This does not happen with probability 1 since they are independent.
The only issue could occur if G(0) = 0, i.e., x0 = y0 and z0 = 0. However, the process
G(t) = 2

√
U(t)2 + Z(t)2 is well-defined for any t including t = 0. The SDE makes

sense then for t > 0.

Comments on marks (10 marks):

(i) 8=4B+4VB: Similar computations were done in PS1 (for fixed t) and also in PS4 for
other diffusions.

(ii) 2=2N: The student here has to reason a little bit and deduce from the properties
of Brownian motion seen in class that the singularity is never hit when z0 6= 0 and
x0 6= y0.

(c) (i) We know that U(t) and Z(t) are IID Ornstein-Uhlenbeck process with σ = 1 and
k = 1/2. With the given initial conditions, we have U(0) = Z(0) = 0. Since G(t) =
2
√

(U(t)2 + Z(t)2, we get

E[G(t)] =

∫
R

∫
R

2
√
u2 + v2

e
− u2+v2

2(1−e−t)

2π(1− e−t)
dudv,

using the hint. With polar coordinates, we get

E[G(t)] =
2

1− e−t

∫ ∞
0

r2e
− r2

2(1−e−t) dr =
1

1− e−t

∫ ∞
−∞

r2e
− r2

2(1−e−t) dr =
√

2π
√

1− e−t.

(ii) Proceeding similarly as in (i), we can write the CDF of G(t) as

P(G(t) 6 x) =
1

1− e−t

∫ x/2

0
re
− r2

2(1−e−t) dr.

Taking the derivative, we get fG(t)(x) = 1
1−e−t

x
4e
− x2

8(1−e−t) for x > 0.

(iii) We have

E[G(t)] =
√

2π
√

1− e−t,

For t→∞, we get E[G(t)]→
√

2π. For t close to 0, we get by expanding E[G(t)] =√
2π
√

1− e−t ∼
√

2π
√
t.

As t→∞, the PDF becomes x
4e
−x2

8 and as t→ 0, fG(t)(x) ∼ x
4te
−x2

8t .

Comments on marks (8 marks):

(i) 4=4B: Similar computation to PS1 using hint.

(ii) 4=4VB: Same

(iii) 2=2N: The good students should get that the square root behavior for small t is
related to the singularity noticed in part (b).

Marking of the question: 25=13B+8VB+4N
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