B3.3 Algebraic Curves revision lecture, May 2025 To go over 2023 B3.3 paper

Dominic Joyce

These slides available on course webpage.

B3.3 2023 question 1

1(a)[6 marks] Let C be an algebraic curve in \mathbb{CP}^2 . Define when a point $p \in C$ is *singular*, and if it is nonsingular define the *tangent* line T_pC . State the strong form of Bézout's Theorem, involving intersection multiplicities $I_p(C, D)$ (which you need not define). Give a necessary and sufficient condition for when $I_p(C, D) = 1$.

- All bookwork.

Let C be defined by polynomial P(x, y, z). Then p = [a, b, c] is a singular point of C if

$$P(a, b, c) = P_x(a, b, c) = P_y(a, b, c) = P_z(a, b, c) = 0.$$

Bézout's Theorem: Let C, D be algebraic curves in \mathbb{CP}^2 of degrees m, n with no common component. Then $\sum_{p \in C \cap D} l_p(C, D) = mn$. Learn this. $l_p(C, D) = 1$ if and only if p is a nonsingular point of C and D and the tangent lines T_pC, T_pD are distinct. Learn this.

(b)[5 marks] Let C be an irreducible algebraic curve in \mathbb{CP}^2 of degree d, defined by a polynomial P(x, y, z). By considering the intersection of C with the curve $\frac{\partial P}{\partial x} = 0$, show that C has at most $\frac{1}{2}d(d-1)$ singular points.

If d = 1 then $C \cong \mathbb{CP}^1$ is nonsingular, so suppose d > 1. If $P_x = 0$ then P = P(y, z) is a product of linear factors $\beta y + \gamma z$, contradicting C irreducible. So P_x is nonzero. Let D be the curve $P_x = 0$. Then D has degree d - 1. Note that C, D have no common component as C is irreducible of degree d, and deg D = d - 1 < d. So Bézout applies, and $\sum_{p \in C \cap D} I_p(C, D) = d(d - 1)$. Now any singular point p of C lies in D as $P_x = P_y = P_z = 0$ at p. Also $I_p(C, D) \ge 2$ by the criterion. Hence

2(#singular points of C) $\leq \sum_{p \in C \cap D} I_p(C, D) = d(d-1)$,

and C has at most $\frac{1}{2}d(d-1)$ singular points.

(c)[5 marks] If d > 1, improve (b) to show that C has at most $\frac{1}{2}d(d-1) - 1$ singular points. [*Hint: apply a projective transformation so that* [1,0,0] *is a nonsingular point of* C.]

As C has only finitely many singular points by (b), it has a nonsingular point. After a projective transformation, suppose [1,0,0] is a nonsingular point of C. Euler's relation gives

$$1.P_{x}(1,0,0) = dP(1,0,0) = 0.$$

Thus [1,0,0] lies in $C \cap D$, and $I_{[1,0,0]}(C,D) \ge 1$, so as in (b)

2(#singular points of C) + 1 $\leq \sum_{p \in C \cap D} I_p(C, D) = d(d-1).$

As d(d-1) is even, 2(#singular points of $C) + 2 \le d(d-1)$, so C has at most $\frac{1}{2}d(d-1) - 1$ singular points. Otherwise you'll get $\frac{1}{2}(d(d-1) - 1)$, not what you want. (d)[5 marks] Now let *C* be any algebraic curve of degree $d \ge 1$ in \mathbb{CP}^2 , not necessarily irreducible, and write $C = C_1 \cup \cdots \cup C_k$, where the C_i are the irreducible components of *C*. Show that *C* has at most $\frac{1}{2}d(d-1)$ singular points. [*Hint: observe that every singular point of C is either a singular point of some C_i, or an intersection point of two C_i, C_j for i \ne j.]*

Let C_i have degree d_i . Then $d = d_1 + \cdots + d_k$. Each C_i has at most $\frac{1}{2}d_i(d_i - 1)$ singular points by (b). Also $C_i \cap C_j$ is at most d_id_i points (weak Bézout). So by the hint, C has at most

$$\sum_{i=1}^k rac{1}{2} d_i (d_i-1) + \sum_{1\leqslant i < j \leqslant k} d_i d_j = rac{1}{2} (d_1 + \dots + d_k) (d_1 + \dots + d_k - 1)
onumber \ = rac{1}{2} d(d-1)$$

singular points. Note: (b) does not apply as C is reducible.

(e)[4 marks] Briefly explain how to find examples of degree d curves C with exactly $\frac{1}{2}d(d-1)$ singular points for any $d \ge 1$.

Let *C* be the union of *d* generic projective lines L_1, \ldots, L_d . By genericness, can assume the points $L_i \cap L_j$ are distinct for $1 \le i < j \le d$. Then $\text{Sing}(C) = \{L_i \cap L_j : 1 \le i < j \le d\}$ is $\binom{d}{2} = \frac{1}{2}d(d-1)$ points.

Note: this is the **only** way to get $\frac{1}{2}d(d-1)$ singular points. If any reducible component C_i of C has degree > 1, can combine (c),(d) to show that C has at most $\frac{1}{2}d(d-1) - 1$ singular points.

B3.3 2023 question 2

(a)[6 marks] Let C be a nonsingular algebraic curve in \mathbb{CP}^2 of degree d. Define a *point of inflection* of C. What is the maximum number of points of inflection that C can have, as a function of d? Justify your answer briefly.

[You may assume that C and its Hessian curve have no common component.]

- All bookwork. Let *C* be defined by polynomial P(x, y, z). Let *D* be the Hessian curve defined by det $\begin{pmatrix} P_{xx} & P_{xy} & P_{xz} \\ P_{yx} & P_{yy} & P_{yz} \\ P_{zx} & P_{zy} & P_{zz} \end{pmatrix} = 0$. A

point of inflection is a (nonsingular) point of C which lies in D. If d = 1 then every point of C is a point of inflection, as $P_{xx} = 0$, etc. If d = 2 then the matrix above is constant and invertible (as C nonsingular), so no points of inflection. If d > 2 then C has at most 3d(d-2) points of inflection by weak Bézout, as D has degree 3(d-2). Remember to cover all 3 cases. (b)[5 marks] Let C be the nonsingular cubic curve in \mathbb{CP}^2 defined by the equation

$$x^3 + y^3 + 3xz^2 = 0.$$

Find all the points of inflection of C.

Hessian curve is

$$0 = \det \begin{pmatrix} 6x & 0 & 6z \\ 0 & 6y & 0 \\ 6z & 0 & 6x \end{pmatrix} = 216(x^2y - yz^2) = 216y(x - z)(x + z).$$

Inflection points are (i) y = 0 and $x^3 + y^3 + 3xz^2 = 0$: [0,0,1], [$\pm\sqrt{3}i$,0,1] (3 points). (ii) x = z and $x^3 + y^3 + 3xz^2 = 0$: [1, $\sqrt[3]{-4}$,1] (3 points). (iii) x = -z and $x^3 + y^3 + 3xz^2 = 0$: [1, $\sqrt[3]{-4}$,-1] (3 points). Sanity check: 9 points of inflection, consistent with (a). Every nonsingular cubic has 9 points of inflection. (c)[7 marks] Show that C in part (b) can be taken by a projective transformation to a cubic C_{λ} of the form

$$y^2z - x(x-z)(x-\lambda z) = 0, \qquad (1)$$

for some $\lambda \in \mathbb{C} \setminus \{0,1\}$ which you should determine.

Notes: partly bookwork, we follow the proof of the theorem in lectures on normal form of a cubic. You have to start by choosing an inflection point; life is easier if we choose the simplest [0, 0, 1]. Step 1. Choose a point of inflection, apply projective transformation so it is [0, 1, 0] with tangent line z = 0. We know [0, 0, 1] is a point of inflection, with tangent line 3x = 0. Apply projective transformation $[x, y, z] \mapsto [x', y', z']$ with x = z'. y = x', $z = \sqrt{-\frac{1}{3}}y'$ (factor $\sqrt{-\frac{1}{3}}$ gives nicer answer). This gives $P'(x', y', z') = z'^3 + x'^3 - y'^2 z' = 0$. So $y'^{2}z' = (x' + z')(x' + e^{2\pi i/3}z')(x' + e^{-2\pi i/3}z') =$ $(x'-az')(x'-bz')(x'-cz'), a = -1, b = -e^{2\pi i/3}, c = -e^{-2\pi i/3}.$ Step 2. Apply projective transformation (standard from notes) $[x', y', z'] \mapsto [x'', y'', z'']$ with $x'' = \frac{x'-az'}{b-a}$, $y'' = (b-a)^{-3/2}y'$, z'' = z'. Then

$$P''(x'',y'',z'') = (b-a)^{-3} (y''^2 z'' - x''(x'' - z'')(x'' - \lambda z''))$$

for $\lambda = \frac{c-a}{b-a} = \frac{e^{-2\pi i/3}-1}{e^{2\pi i/3}-1} = \frac{1}{2} + \frac{i\sqrt{3}}{2}$. This is what you want. Answer is not unique; as in (d), could have got several different answers, depending on order chosen for a, b, c. (d)[7 marks] Show that, for general $\lambda \in \mathbb{C} \setminus \{0, 1\}$, the cubic C_{λ} in (c) may be taken to a different curve $C_{\tilde{\lambda}}$ by a projective transformation with matrix of the form

$$\begin{pmatrix} a & 0 & b \\ 0 & c & 0 \\ 0 & 0 & d \end{pmatrix},$$
 (2)

and find the possibilities for $\tilde{\lambda}$ as a function of λ (there are six, including $\tilde{\lambda} = \lambda$).

Let (2) map $(\tilde{x} \, \tilde{y} \, \tilde{z})^T$ to $(x \, y \, z)^T$, so that $x = a\tilde{x} + b\tilde{z}$, $y = c\tilde{y}$, $z = d\tilde{z}$. This turns the polynomial in (1) into

$$c^2 d\tilde{y}^2 \tilde{z} - a^3 (\tilde{x} + \frac{b}{a}\tilde{z})(\tilde{x} + \frac{b-d}{a}\tilde{z})(\tilde{x} + \frac{b-\lambda d}{a}\tilde{z}).$$

To make this of the form (1), choose a, b, c, d so that $c^2d = 1$, $a^3 = 1$, and $\{\frac{b}{a}, \frac{b-d}{a}, \frac{b-\lambda d}{a}\} = \{0, -1, -\tilde{\lambda}\}$. We can fix a = 1 and $c = d^{-1/2}$.

There are six possibilities, depending on the permutation of $\{0, -1, -\tilde{\lambda}\}$: (i) $(b, b - d, b - \lambda d) = (0, -1, -\tilde{\lambda})$: $b = 0, d = 1, \tilde{\lambda} = \lambda$. (ii) $(b - d, b, b - \lambda d) = (0, -1, -\tilde{\lambda})$: $b = -1, d = -1, \tilde{\lambda} = 1 - \lambda$. (iii) $(b, b - \lambda d, b - d) = (0, -1, -\tilde{\lambda})$: $b = 0, d = \frac{1}{\lambda}, \tilde{\lambda} = \frac{1}{\lambda}$. (iv) $(b, b - d, b - \lambda d) = (0, -1, -\tilde{\lambda})$: $b = d = \frac{1}{\lambda - 1}, \tilde{\lambda} = \frac{1}{1 - \lambda}$. (v) $(b - \lambda d, b, b - d) = (0, -1, -\tilde{\lambda})$: $b = -1, d = -\frac{1}{\lambda}, \tilde{\lambda} = 1 - \frac{1}{\lambda}$. (vi) $(b - \lambda d, b, b - d, b) = (0, -1, -\tilde{\lambda})$: $b = \frac{\lambda}{1 - \lambda}, d = \frac{1}{1 - \lambda}, \tilde{\lambda} = \frac{-\lambda}{1 - \lambda}$.

Note: these act as a group of Möbius transformations on $\lambda \mapsto \tilde{\lambda}$, isomorphic to S_3 . Can check your calculations by composing Möbius transformations and getting back one of the same 6.

B3.3 2023 question 3

(a) [7 marks] Let C be a nonsingular algebraic curve in \mathbb{CP}^2 of genus g. Define divisors, the degree of a divisor, meromorphic differentials, and canonical divisors on C. What is the degree of a canonical divisor? State the *Riemann–Roch Theorem*. You may use the following notation without defining it: for a meromorphic function $f: C \to \mathbb{CP}^1 = \mathbb{C} \cup \{\infty\}$, and for a meromorphic differential f dh, we write (f) and (f dh) for the associated divisors. For a divisor D on C we write $\mathcal{L}(D)$ for the set of meromorphic $f : C \to \mathbb{CP}^1$ with $(f) + D \ge 0$, together with f = 0. You may assume that $\mathcal{L}(D)$ is a finite-dimensional \mathbb{C} -vector space, and write $\ell(D) = \dim_{\mathbb{C}} \mathcal{L}(D)$.

All bookwork. κ canonical divisor, deg $\kappa = 2g - 2$. Learn this. **Riemann–Roch:** *D* divisor, κ canonical divisor, then

$$\ell(D) - \ell(\kappa - D) = \deg D + 1 - g.$$
 Learn this.

(b)[5 marks] Write HD(C) for the vector space of *holomorphic* differentials (i.e. meromorphic differentials with no poles) on C. Prove that dim HD(C) = g.

All bookwork. Let ω be a meromorphic differential, and $\kappa = (\omega)$ its canonical divisor. Any other meromorphic differential $\tilde{\omega}$ may be written $\tilde{\omega} = f\omega$ for f meromorphic. Then $\tilde{\omega}$ is holomorphic iff $(\tilde{\omega}) = (f) + (\omega) = (f) + \kappa \ge 0$, that is, iff $f \in \mathcal{L}(\kappa)$. (Something is holomorphic iff its divisor is nonnegative, i.e. it has zeroes but not poles.) So mapping $f \mapsto f\omega$ gives an isomorphism $\mathcal{L}(\kappa) \to \text{HD}(C)$, and dim HD(C) = $\ell(\kappa)$. Riemann-Roch with D = 0 gives

$$\ell(0)-\ell(\kappa)=1-g.$$

But $\mathcal{L}(0)$ is the vector space of holomorphic functions $f : C \to \mathbb{C}$, which are constant by the maximum principle, so $\mathcal{L}(0) = \mathbb{C} \cdot 1$, and $\ell(0) = 1$. (Learn this.) Hence dim HD(C) = $\ell(\kappa) = g$.

(c)[4 marks] Now let g = 1, so that $HD(C) = \langle f dh \rangle_{\mathbb{C}}$ by (b). Prove that f dh has no zeroes.

Let $(f dh) = \kappa$. Then $\kappa \ge 0$ as f dh has no poles. But deg $\kappa = 2g - 2 = 2 - 2 = 0$, so $\kappa = 0$ (as it can't have zeroes but no poles and still have degree 0). Hence f dh has no zeroes. Note: g = 1 means that as a Riemann surface C is a torus \mathbb{C}/Λ . Then dw is a nonvanishing holomorphic differential on C, where wis the coordinate on \mathbb{C} ; here dw is invariant under translation by Λ , so descends from \mathbb{C} to \mathbb{C}/Λ . So it is not surprising that a genus 1 curve should have nonvanishing holomorphic differentials. (d)[4 marks] Let $\Lambda \subset \mathbb{C}$ be a lattice, and $\wp(w)$ be the associated Weierstrass \wp -function. You may assume that \wp satisfies $\wp'^2 = 4(\wp - e_1)(\wp - e_2)(\wp - e_3)$ for distinct $e_1, e_2, e_3 \in \mathbb{C} \setminus \{0\}$, and that the map

$$\Phi: \mathbb{C}/\Lambda \longrightarrow \mathbb{CP}^2, \qquad \Phi: w + \Lambda \longmapsto egin{cases} \left\{ \wp(w), \wp'(w), 1
ight\}, & w \notin \Lambda, \ [0, 1, 0], & w \in \Lambda, \end{cases}$$

defines an isomorphism of Riemann surfaces from \mathbb{C}/Λ to the nonsingular cubic curve C with equation

$$y^{2}z = 4(x - e_{1}z)(x - e_{2}z)(x - e_{3}z).$$

Write down an explicit nonzero holomorphic differential on C, in terms of the homogeneous coordinates x, y, z on $\mathbb{CP}^2 \supset C$, with brief justification.

We have $\wp(w) = \frac{x}{z}$ and $\wp'(w) = \frac{y}{z}$. So try $\omega = \frac{z}{y} \cdot d\frac{x}{z}$ as the meromorphic differential. In terms of the local coordinate w on C we have

$$\omega = (\wp'(w))^{-1} \mathrm{d}(\wp(w)) = (\wp'(w))^{-1} \cdot \wp'(w) \mathrm{d}w = \mathrm{d}w,$$

which has no zeroes or poles.

This is motivated by the previous comment that dw is a nonvanishing holomorphic differential on \mathbb{C}/Λ . The trick for this part was to work out how to write dw in terms of $\wp(w)$ and $\wp'(w)$, as the x, y, z coordinates are $\wp(w), \wp'(w), 1$.

(e)[5 marks] Suppose that g = 1. Show that for generic choices of points p_1, \ldots, p_k and q_1, \ldots, q_k in C for k > 0, there does not exist a meromorphic function $f : C \to \mathbb{CP}^1$ with degree 1 zeroes at p_1, \ldots, p_k , degree 1 poles at q_1, \ldots, q_k , and no other zeroes or poles. [*Hint: compute* $\ell(q_1 + \cdots + q_k)$.]

Riemann–Roch gives

$$\ell(q_1+\cdots+q_k)-\ell(\kappa-q_1-\cdots-q_k)=k+1-g=k.$$

Now deg $(\kappa - q_1 - \dots - q_k) = 2g - 2 - k = -k < 0$. Useful fact: if deg D < 0 then $\mathcal{L}(D) = \ell(D) = 0$. This holds as if $0 \neq f \in \mathcal{L}(D)$ then deg f = 0, so deg $f + \deg D < 0$, which contradicts $(f) + D \ge 0$, condition for $0 \neq f \in \mathcal{L}(D)$. Learn this. Thus $\ell(\kappa - q_1 - \dots - q_k) = 0$ and $\ell(q_1 + \dots + q_k) = k$, for k > 0. Hence $\mathbb{P}(\mathcal{L}(q_1 + \dots + q_k)) \cong \mathbb{CP}^{k-1}$, which has dimension k - 1. The set of zeroes of $0 \neq f \in \mathcal{L}(q_1 + \cdots + q_k)$ depends only on $[f] \in \mathbb{P}(\mathcal{L}(q_1 + \cdots + q_k))$. Thus there can only be a (k-1)-dimensional family of sets of points (p_1, \ldots, p_k) that are the zeroes of $0 \neq f \in \mathcal{L}(q_1 + \cdots + q_k)$. But the family of all choices of (p_1, \ldots, p_k) is k-dimensional, where k > k - 1, so a generic choice of (p_1, \ldots, p_k) cannot correspond to $0 \neq f \in \mathcal{L}(q_1 + \cdots + q_k)$.