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To go over 2023 B3.3 paper
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B3.3 2023 question 1

1(a)[6 marks] Let C be an algebraic curve in CP2. Define when a
point p ∈ C is singular, and if it is nonsingular define the tangent
line TpC . State the strong form of Bézout’s Theorem, involving
intersection multiplicities Ip(C ,D) (which you need not define).
Give a necessary and sufficient condition for when Ip(C ,D) = 1.

– All bookwork.

Let C be defined by polynomial P(x , y , z). Then p = [a, b, c] is a
singular point of C if

P(a, b, c) = Px(a, b, c) = Py (a, b, c) = Pz(a, b, c) = 0.

Bézout’s Theorem: Let C ,D be algebraic curves in CP2 of
degrees m, n with no common component. Then∑

p∈C∩D Ip(C ,D) = mn. Learn this.

Ip(C ,D) = 1 if and only if p is a nonsingular point of C and D and
the tangent lines TpC ,TpD are distinct. Learn this.
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(b)[5 marks] Let C be an irreducible algebraic curve in CP2 of
degree d , defined by a polynomial P(x , y , z). By considering the
intersection of C with the curve ∂P

∂x = 0, show that C has at most
1
2d(d − 1) singular points.

If d = 1 then C ∼= CP1 is nonsingular, so suppose d > 1.
If Px = 0 then P = P(y , z) is a product of linear factors βy + γz ,
contradicting C irreducible. So Px is nonzero.
Let D be the curve Px = 0. Then D has degree d − 1.
Note that C ,D have no common component as C is irreducible of
degree d , and degD = d − 1 < d . So Bézout applies, and∑

p∈C∩D Ip(C ,D) = d(d − 1).
Now any singular point p of C lies in D as Px = Py = Pz = 0 at
p. Also Ip(C ,D) ⩾ 2 by the criterion. Hence

2(#singular points of C ) ⩽
∑

p∈C∩D Ip(C ,D) = d(d − 1),

and C has at most 1
2d(d − 1) singular points.
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(c)[5 marks] If d > 1, improve (b) to show that C has at most
1
2d(d − 1)− 1 singular points.
[Hint: apply a projective transformation so that [1, 0, 0] is a
nonsingular point of C .]

As C has only finitely many singular points by (b), it has a
nonsingular point. After a projective transformation, suppose
[1, 0, 0] is a nonsingular point of C . Euler’s relation gives

1.Px(1, 0, 0) = dP(1, 0, 0) = 0.

Thus [1, 0, 0] lies in C ∩ D, and I[1,0,0](C ,D) ⩾ 1, so as in (b)

2(#singular points of C ) + 1 ⩽
∑

p∈C∩D Ip(C ,D) = d(d − 1).

As d(d − 1) is even, 2(#singular points of C ) + 2 ⩽ d(d − 1), so
C has at most 1

2d(d − 1)− 1 singular points.
Otherwise you’ll get 1

2(d(d − 1)− 1), not what you want.
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(d)[5 marks] Now let C be any algebraic curve of degree d ⩾ 1 in
CP2, not necessarily irreducible, and write C = C1 ∪ · · · ∪ Ck ,
where the Ci are the irreducible components of C . Show that C
has at most 1

2d(d − 1) singular points.
[Hint: observe that every singular point of C is either a singular
point of some Ci , or an intersection point of two Ci ,Cj for i ̸= j .]

Let Ci have degree di . Then d = d1 + · · ·+ dk . Each Ci has at
most 1

2di (di − 1) singular points by (b). Also Ci ∩ Cj is at most
didj points (weak Bézout). So by the hint, C has at most

k∑
i=1

1
2di (di − 1) +

∑
1⩽i<j⩽k

didj =
1
2(d1 + · · ·+ dk)(d1 + · · ·+ dk − 1)

= 1
2d(d − 1)

singular points. Note: (b) does not apply as C is reducible.
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(e)[4 marks] Briefly explain how to find examples of degree d
curves C with exactly 1

2d(d − 1) singular points for any d ⩾ 1.

Let C be the union of d generic projective lines L1, . . . , Ld . By
genericness, can assume the points Li ∩ Lj are distinct for
1 ⩽ i < j ⩽ d . Then Sing(C ) = {Li ∩ Lj : 1 ⩽ i < j ⩽ d} is(d
2

)
= 1

2d(d − 1) points.

Note: this is the only way to get 1
2d(d − 1) singular points. If any

reducible component Ci of C has degree > 1, can combine (c),(d)
to show that C has at most 1

2d(d − 1)− 1 singular points.
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B3.3 2023 question 2

(a)[6 marks] Let C be a nonsingular algebraic curve in CP2 of
degree d . Define a point of inflection of C . What is the maximum
number of points of inflection that C can have, as a function of d?
Justify your answer briefly.
[You may assume that C and its Hessian curve have no common
component.]

– All bookwork. Let C be defined by polynomial P(x , y , z). Let D

be the Hessian curve defined by det

Pxx Pxy Pxz

Pyx Pyy Pyz

Pzx Pzy Pzz

 = 0. A

point of inflection is a (nonsingular) point of C which lies in D.
If d = 1 then every point of C is a point of inflection, as Pxx = 0, etc.
If d = 2 then the matrix above is constant and invertible (as C
nonsingular), so no points of inflection.
If d > 2 then C has at most 3d(d − 2) points of inflection by weak
Bézout, as D has degree 3(d − 2). Remember to cover all 3 cases.
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(b)[5 marks] Let C be the nonsingular cubic curve in CP2 defined
by the equation

x3 + y3 + 3xz2 = 0.

Find all the points of inflection of C .

Hessian curve is

0 = det

6x 0 6z
0 6y 0
6z 0 6x

 = 216(x2y − yz2) = 216y(x − z)(x + z).

Inflection points are (i) y = 0 and x3 + y3 + 3xz2 = 0: [0,0,1],
[±

√
3i , 0, 1] (3 points).

(ii) x = z and x3 + y3 + 3xz2 = 0: [1, 3
√
−4, 1] (3 points).

(iii) x = −z and x3 + y3 + 3xz2 = 0: [1, 3
√
−4,−1] (3 points).

Sanity check: 9 points of inflection, consistent with (a). Every
nonsingular cubic has 9 points of inflection.
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(c)[7 marks] Show that C in part (b) can be taken by a projective
transformation to a cubic Cλ of the form

y2z − x(x − z)(x − λz) = 0, (1)

for some λ ∈ C \ {0, 1} which you should determine.

Notes: partly bookwork, we follow the proof of the theorem in
lectures on normal form of a cubic. You have to start by choosing
an inflection point; life is easier if we choose the simplest [0, 0, 1].
Step 1. Choose a point of inflection, apply projective
transformation so it is [0, 1, 0] with tangent line z = 0.
We know [0, 0, 1] is a point of inflection, with tangent line 3x = 0.
Apply projective transformation [x , y , z ] 7→ [x ′, y ′, z ′] with x = z ′,

y = x ′, z =
√

−1
3y

′ (factor
√

−1
3 gives nicer answer).

This gives P ′(x ′, y ′, z ′) = z ′3 + x ′3 − y ′2z ′ = 0. So
y ′2z ′ = (x ′ + z ′)(x ′ + e2πi/3z ′)(x ′ + e−2πi/3z ′) =
(x ′ − az ′)(x ′ − bz ′)(x ′ − cz ′), a = −1, b = −e2πi/3, c = −e−2πi/3.
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Step 2. Apply projective transformation (standard from notes)
[x ′, y ′, z ′] 7→ [x ′′, y ′′, z ′′] with x ′′ = x ′−az ′

b−a , y ′′ = (b − a)−3/2y ′,
z ′′ = z ′. Then

P ′′(x ′′, y ′′, z ′′) = (b − a)−3
(
y ′′2z ′′ − x ′′(x ′′ − z ′′)(x ′′ − λz ′′)

)
for λ = c−a

b−a = e−2πi/3−1
e2πi/3−1

= 1
2 + i

√
3

2 . This is what you want.

Answer is not unique; as in (d), could have got several different
answers, depending on order chosen for a, b, c .
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(d)[7 marks] Show that, for general λ ∈ C \ {0, 1}, the cubic Cλ in
(c) may be taken to a different curve Cλ̃ by a projective
transformation with matrix of the forma 0 b

0 c 0
0 0 d

 , (2)

and find the possibilities for λ̃ as a function of λ (there are six,
including λ̃ = λ).

Let (2) map (x̃ ỹ z̃)T to (x y z)T , so that x = ax̃ + bz̃ , y = cỹ ,
z = dz̃ . This turns the polynomial in (1) into

c2dỹ2z̃ − a3(x̃ + b
a z̃)(x̃ + b−d

a z̃)(x̃ + b−λd
a z̃).

To make this of the form (1), choose a, b, c , d so that c2d = 1,
a3 = 1, and {b

a ,
b−d
a , b−λd

a } = {0,−1,−λ̃}. We can fix a = 1 and

c = d−1/2.
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There are six possibilities, depending on the permutation of {0,−1,−λ̃}:
(i) (b, b − d , b − λd) = (0,−1,−λ̃): b = 0, d = 1, λ̃ = λ.
(ii) (b − d , b, b − λd) = (0,−1,−λ̃): b = −1, d = −1, λ̃ = 1− λ.
(iii) (b, b − λd , b − d) = (0,−1,−λ̃): b = 0, d = 1

λ , λ̃ = 1
λ .

(iv) (b, b − d , b − λd) = (0,−1,−λ̃): b = d = 1
λ−1 , λ̃ = 1

1−λ .

(v) (b − λd , b, b − d) = (0,−1,−λ̃): b = −1, d = − 1
λ , λ̃ = 1− 1

λ .

(vi) (b − λd , b − d , b) = (0,−1,−λ̃): b = λ
1−λ , d = 1

1−λ , λ̃ = −λ
1−λ .

Note: these act as a group of Möbius transformations on λ 7→ λ̃,
isomorphic to S3. Can check your calculations by composing
Möbius transformations and getting back one of the same 6.
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B3.3 2023 question 3

(a)[7 marks] Let C be a nonsingular algebraic curve in CP2 of
genus g . Define divisors, the degree of a divisor, meromorphic
differentials, and canonical divisors on C . What is the degree of a
canonical divisor? State the Riemann–Roch Theorem.
[You may use the following notation without defining it: for a
meromorphic function f : C → CP1 = C ∪ {∞}, and for a
meromorphic differential f dh, we write (f ) and (f dh) for the
associated divisors. For a divisor D on C we write L(D) for the set
of meromorphic f : C → CP1 with (f ) + D ⩾ 0, together with
f = 0. You may assume that L(D) is a finite-dimensional C-vector
space, and write ℓ(D) = dimC L(D).]

All bookwork. κ canonical divisor, deg κ = 2g − 2. Learn this.
Riemann–Roch: D divisor, κ canonical divisor, then

ℓ(D)− ℓ(κ− D) = degD + 1− g . Learn this.
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(b)[5 marks] Write HD(C ) for the vector space of holomorphic
differentials (i.e. meromorphic differentials with no poles) on C .
Prove that dimHD(C ) = g .

All bookwork. Let ω be a meromorphic differential, and κ = (ω)
its canonical divisor. Any other meromorphic differential ω̃ may be
written ω̃ = f ω for f meromorphic. Then ω̃ is holomorphic iff
(ω̃) = (f ) + (ω) = (f ) + κ ⩾ 0, that is, iff f ∈ L(κ). (Something
is holomorphic iff its divisor is nonnegative, i.e. it has zeroes but
not poles.) So mapping f 7→ f ω gives an isomorphism
L(κ) → HD(C ), and dimHD(C ) = ℓ(κ).
Riemann–Roch with D = 0 gives

ℓ(0)− ℓ(κ) = 1− g .

But L(0) is the vector space of holomorphic functions f : C → C,
which are constant by the maximum principle, so L(0) = C · 1, and
ℓ(0) = 1. (Learn this.) Hence dimHD(C ) = ℓ(κ) = g .
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(c)[4 marks] Now let g = 1, so that HD(C ) = ⟨f dh⟩C by (b).
Prove that f dh has no zeroes.

Let (f dh) = κ. Then κ ⩾ 0 as f dh has no poles. But
deg κ = 2g − 2 = 2− 2 = 0, so κ = 0 (as it can’t have zeroes but
no poles and still have degree 0). Hence f dh has no zeroes.
Note: g = 1 means that as a Riemann surface C is a torus C/Λ.
Then dw is a nonvanishing holomorphic differential on C , where w
is the coordinate on C; here dw is invariant under translation by Λ,
so descends from C to C/Λ. So it is not surprising that a genus 1
curve should have nonvanishing holomorphic differentials.
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(d)[4 marks] Let Λ ⊂ C be a lattice, and ℘(w) be the associated
Weierstrass ℘-function. You may assume that ℘ satisfies
℘′2 = 4(℘− e1)(℘− e2)(℘− e3) for distinct e1, e2, e3 ∈ C \ {0},
and that the map

Φ : C/Λ −→ CP2, Φ : w + Λ 7−→

{
[℘(w), ℘′(w), 1], w /∈ Λ,

[0, 1, 0], w ∈ Λ,

defines an isomorphism of Riemann surfaces from C/Λ to the
nonsingular cubic curve C with equation

y2z = 4(x − e1z)(x − e2z)(x − e3z).

Write down an explicit nonzero holomorphic differential on C , in
terms of the homogeneous coordinates x , y , z on CP2 ⊃ C , with
brief justification.

16 / 19 Dominic Joyce B3.3 Algebraic Curves revision lecture, May 2024



We have ℘(w) = x
z and ℘′(w) = y

z . So try ω = z
y · d x

z as the
meromorphic differential. In terms of the local coordinate w on C
we have

ω = (℘′(w))−1d(℘(w)) = (℘′(w))−1 · ℘′(w)dw = dw ,

which has no zeroes or poles.
This is motivated by the previous comment that dw is a
nonvanishing holomorphic differential on C/Λ. The trick for this
part was to work out how to write dw in terms of ℘(w) and
℘′(w), as the x , y , z coordinates are ℘(w), ℘′(w), 1.
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(e)[5 marks] Suppose that g = 1. Show that for generic choices of
points p1, . . . , pk and q1, . . . , qk in C for k > 0, there does not
exist a meromorphic function f : C → CP1 with degree 1 zeroes at
p1, . . . , pk , degree 1 poles at q1, . . . , qk , and no other zeroes or
poles.
[Hint: compute ℓ(q1 + · · ·+ qk).]

Riemann–Roch gives

ℓ(q1 + · · ·+ qk)− ℓ(κ− q1 − · · · − qk) = k + 1− g = k .

Now deg(κ− q1 − · · · − qk) = 2g − 2− k = −k < 0.
Useful fact: if degD < 0 then L(D) = ℓ(D) = 0. This holds as if
0 ̸= f ∈ L(D) then deg f = 0, so deg f + degD < 0, which
contradicts (f )+D ⩾ 0, condition for 0 ̸= f ∈ L(D). Learn this.
Thus ℓ(κ− q1 − · · · − qk) = 0 and ℓ(q1 + · · ·+ qk) = k , for k > 0.
Hence P(L(q1 + · · ·+ qk)) ∼= CPk−1, which has dimension k − 1.
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The set of zeroes of 0 ̸= f ∈ L(q1 + · · ·+ qk) depends only on
[f ] ∈ P(L(q1 + · · ·+ qk)). Thus there can only be a
(k − 1)-dimensional family of sets of points (p1, . . . , pk) that are
the zeroes of 0 ̸= f ∈ L(q1 + · · ·+ qk). But the family of all
choices of (p1, . . . , pk) is k-dimensional, where k > k − 1, so a
generic choice of (p1, . . . , pk) cannot correspond to
0 ̸= f ∈ L(q1 + · · ·+ qk).
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