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B3.3 2023 question 1

1(a)[6 marks] Let C be an algebraic curve in CP2. Define when a
point p € C is singular, and if it is nonsingular define the tangent
line T,C. State the strong form of Bézout's Theorem, involving
intersection multiplicities /,(C, D) (which you need not define).
Give a necessary and sufficient condition for when I,(C, D) = 1.

— All bookwork.
Let C be defined by polynomial P(x,y,z). Then p=[a, b,c] is a
singular point of C if

P(a,b,c) = Py(a, b,c) = Py(a,b,c) = P;(a,b,c) = 0.

Bézout’s Theorem: Let C, D be algebraic curves in CP? of
degrees m, n with no common component. Then

> pecnp Ip(C, D) = mn. Learn this.
I,(C,D) =1 if and only if p is a nonsingular point of C and D and
the tangent lines 7,C, T,D are distinct. Learn this.
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(b)[5 marks] Let C be an irreducible algebraic curve in CP? of
degree d, defined by a polynomial P(x,y, z). By considering the
intersection of C with the curve gp = 0, show that C has at most

3d(d — 1) singular points.

If d =1 then C = CP! is nonsingular, so suppose d > 1.

If P, =0 then P = P(y,z) is a product of linear factors Sy + ~z,
contradicting C irreducible. So Py is nonzero.

Let D be the curve P, = 0. Then D has degree d — 1.

Note that C, D have no common component as C is irreducible of
degree d, and deg D = d — 1 < d. So Bézout applies, and
ZpeCﬂD Ip(C,D) =d(d - 1).

Now any singular point p of C liesin D as P, = P, = P, =0 at
p. Also I,(C, D) > 2 by the criterion. Hence

2(#singular points of C) <>~ ccrp Ip(C, D) = d(d — 1),

and C has at most 2d(d — 1) singular points.
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(c)[5 marks] If d > 1, improve (b) to show that C has at most
2d(d — 1) — 1 singular points.

[Hint: apply a projective transformation so that [1,0,0] is a
nonsingular point of C.]

As C has only finitely many singular points by (b), it has a
nonsingular point. After a projective transformation, suppose
[1,0,0] is a nonsingular point of C. Euler’s relation gives

1.P.(1,0,0) = dP(1,0,0) = 0.
Thus [1,0,0] liesin CN D, and i1 90)(C,D) > 1, so as in (b)
2(##singular points of C) +1 <> ccrp Ip(C, D) = d(d —1).

C
As d(d — 1) is even, 2(#singular points of C) 4+ 2 < d(d — 1), so
C has at most 3d(d — 1) — 1 singular points.
Otherwise you'll get 3(d(d — 1) — 1), not what you want.
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(d)[5 marks] Now let C be any algebraic curve of degree d > 1 in
CP?, not necessarily irreducible, and write C = C; U - -- U C,
where the C; are the irreducible components of C. Show that C
has at most 3d(d — 1) singular points.

[Hint: observe that every singular point of C is either a singular
point of some C;, or an intersection point of two C;, C; for i # j.]

Let C; have degree d;. Then d = di + --- + dk. Each G has at
most 1d;(d; — 1) singular points by (b). Also C; N C; is at most
d;d; points (weak Bézout). So by the hint, C has at most

Yi(di—1)+ > didj=3(dh+- -+ d)(d+ -+ de— 1)

i=1 1<i<j<k

N

d(d —1)

singular points. Note: (b) does not apply as C is reducible.
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(e)[4 marks] Briefly explain how to find examples of degree d
curves C with exactly %d(d — 1) singular points for any d > 1.

)

Let C be the union of d generic projective lines Li,...,Ly. By
genericness, can assume the points L; N L; are distinct for
1<i<j<d ThenSing(C)={LiNL:1<i<j<d}is

(9) = 1d(d — 1) points.

Note: this is the only way to get %d(d — 1) singular points. If any
reducible component C; of C has degree > 1, can combine (c),(d)
to show that C has at most 3d(d — 1) — 1 singular points.
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B3.3 2023 question 2

(a)[6 marks] Let C be a nonsingular algebraic curve in CP? of
degree d. Define a point of inflection of C. What is the maximum
number of points of inflection that C can have, as a function of d?
Justify your answer briefly.

[You may assume that C and its Hessian curve have no common
component.]

— All bookwork. Let C be defined by polynomial P(x,y,z). Let D

'Dxx ny 'sz
be the Hessian curve defined by det | P,x P, P, | =0.A
sz sz Pzz

point of inflection is a (nonsingular) point of C which lies in D.

If d =1 then every point of C is a point of inflection, as P, = 0, etc.
If d =2 then the matrix above is constant and invertible (as C
nonsingular), so no points of inflection.

If d > 2 then C has at most 3d(d — 2) points of inflection by weak
Bézout, as D has degree 3(d — 2). Remember to cover all 3 cases.
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(b)[5 marks] Let C be the nonsingular cubic curve in CPP? defined
by the equation
X3 +y3+3x22=0.

Find all the points of inflection of C.

Hessian curve is

6x 0 6z
O=det| 0 6y 0 | =216(x’y — yz%) =216y(x — z)(x + 2).
6z 0 ©6x

Inflection points are (i) y = 0 and x® + y3 + 3xz% = 0: [0,0,1],
[+4/3i,0,1] (3 points).

(i) x = z and x3 + y3 + 3xz? = 0: [1,3/—4,1] (3 points).

(iii) x = —z and x® + y® + 3xz% = 0: [1,3\/—4, —1] (3 points).
Sanity check: 9 points of inflection, consistent with (a). Every

nonsingular cubic has 9 points of inflection.
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(c)[7 marks] Show that C in part (b) can be taken by a projective
transformation to a cubic C, of the form

v2z — x(x — z)(x — \z) = 0, (1)

for some A € C\ {0,1} which you should determine.

Notes: partly bookwork, we follow the proof of the theorem in
lectures on normal form of a cubic. You have to start by choosing
an inflection point; life is easier if we choose the simplest [0, 0, 1].
Step 1. Choose a point of inflection, apply projective
transformation so it is [0, 1,0] with tangent line z = 0.

We know [0, 0, 1] is a point of inflection, with tangent line 3x = 0.
Apply projective transformation [x,y, z] — [x/, ¥y, Z'] with x = 2/,
y=x,z= —%y’ (factor \/j% gives nicer answer).

This gives P'(x,y',2') = 2® + x® — y"?2 = 0. So

y/2Z/ — (X/ + Z/)(X/ + e27ri/3z/)(xl + e—27ri/3z/) —

(x' —aZ)(x' — bZ)(x' —cZ'), a= —1, b= —e*™/3, c = —e=27/3,

Dominic Joyce B3.3 Algebraic Curves revision lecture, May 2024



Step 2. Apply projective transformation (standard from notes)
[X’,y',z’] — [X”,y”,z”] with x” = —aaz , y (b _ 3)73/2y/'
Z" =27 Then

P//(X//,y”, Z//) =(b— a)—3 (y//zz// _ X//(X// _ Z//)(X// _ )\Z//))

—2mi/3
for A\ === = ngl 2 + "[ This is what you want.
Answer is not unique; as in (d), couId have got several different

answers, depending on order chosen for a, b, c.
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(d)[7 marks] Show that, for general A € C\ {0,1}, the cubic C, in
(c) may be taken to a different curve C5 by a projective
transformation with matrix of the form

a 0 b
0 ¢ 0}, (2)
0 0 d

and find the possibilities for X as a function of A (there are six,
including A = ).

Let (2) map (%§2)7 to (xy z)7T, so that x = aX + b2, y = cy,
z = dZ. This turns the polynomial in (1) into

Ady?z — (% + L2)(x + b295) (% + b4 z),

To make this of the form (1), choose a, b, c, d so that c?d =1,
a®=1, and {2,529 b=Ady — (g 1, —X}. We can fix a=1 and
c=d1/2
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There are six possibilities, depending on the permutation of {0, — 1,—\}:

(i) (b,b—d,b—Ad)=(0,—1,-A): b=0,d =1,A=\.

(i) (b—d,b,b—Xd) = (0,—1,-)): b=—-1,d =—-1,A=1—- )\
(m)(b,b—)\d,b—d):(o,—l,—%):b:O,d:%,%:%

(iv) (b,b—d,b—/\d):(O,—l,—)\): b=d=+ 0= 2.
(v)(b—Ad,b,b—d):(O X) b=-ld=-3A=1-1.
(vi) (b—Ad,b—d,b) = (0,—1,-A): b= 2;,d = 3.0 = =

Note: these act as a group of Mébius transformations on A — X,
isomorphic to S3. Can check your calculations by composing
Mobius transformations and getting back one of the same 6.
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B3.3 2023 question 3

(a)[7 marks] Let C be a nonsingular algebraic curve in CP? of
genus g. Define divisors, the degree of a divisor, meromorphic
differentials, and canonical divisors on C. What is the degree of a
canonical divisor? State the Riemann—Roch Theorem.

[You may use the following notation without defining it: for a
meromorphic function f : C — CP* = C U {oo}, and for a
meromorphic differential fdh, we write (f) and (fdh) for the
associated divisors. For a divisor D on C we write L(D) for the set
of meromorphic f : C — CP' with (f) 4+ D > 0, together with

f =0. You may assume that L(D) is a finite-dimensional C-vector
space, and write {(D) = dim¢ £(D).]

All bookwork. & canonical divisor, degxk = 2g — 2. Learn this.
Riemann—Roch: D divisor, k canonical divisor, then

D) —4(k —D)=degD+1—g. Learn this.

Dominic Joyce B3.3 Algebraic Curves revision lecture, May 2024



(b)[5 marks] Write HD(C) for the vector space of holomorphic
differentials (i.e. meromorphic differentials with no poles) on C.
Prove that dim HD(C) = g.

All bookwork. Let w be a meromorphic differential, and x = (w)
its canonical divisor. Any other meromorphic differential & may be
written & = fw for f meromorphic. Then & is holomorphic iff
(@)= (f)+ (w) = (f) + K =0, that is, iff f € L(k). (Something
is holomorphic iff its divisor is nonnegative, i.e. it has zeroes but
not poles.) So mapping f — fw gives an isomorphism

L(k) — HD(C), and dim HD(C) = ¢(k).

Riemann—Roch with D = 0 gives

00) — £(r) =1 — g.

But £(0) is the vector space of holomorphic functions f : C — C,
which are constant by the maximum principle, so £(0) =C- 1, and
¢(0) =1. (Learn this.) Hence dimHD(C) =/¥(r) =g.
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(c)[4 marks] Now let g = 1, so that HD(C) = (fdh)¢ by (b).
Prove that fdh has no zeroes.

Let (fdh) = k. Then k > 0 as fdh has no poles. But

degr =2g—2=2-2=0,s0 k=0 (as it can't have zeroes but
no poles and still have degree 0). Hence fdh has no zeroes.

Note: g = 1 means that as a Riemann surface C is a torus C/A.
Then dw is a nonvanishing holomorphic differential on C, where w
is the coordinate on C; here dw is invariant under translation by A,
so descends from C to C/A. So it is not surprising that a genus 1
curve should have nonvanishing holomorphic differentials.
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(d)[4 marks] Let A C C be a lattice, and p(w) be the associated
Weierstrass p-function. You may assume that p satisfies

02 = 4(p —e1)(p — e)(p — e3) for distinct e, €2, e3 € C \ {0},
and that the map

[p(w), o'(w), 1], w & A,

¢ : C/A — CP?, d:w+NA—
[0,1,0], w e A,

defines an isomorphism of Riemann surfaces from C/A to the
nonsingular cubic curve C with equation

v2z = 4(x — e12)(x — 2)(x — e32).

Write down an explicit nonzero holomorphic differential on C, in
terms of the homogeneous coordinates x, y, z on CP? O C, with
brief justification.
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We have p(w) = % and p/(w) = £. So try w = £ - d% as the
meromorphic differential. In terms of the local coordinate w on C
we have

<IN

w = (¢'(w)) " Hd(p(w)) = (¢'(w)) ™! - ¢/ (w)dw = dw,

which has no zeroes or poles.

This is motivated by the previous comment that dw is a
nonvanishing holomorphic differential on C/A. The trick for this
part was to work out how to write dw in terms of p(w) and
©'(w), as the x,y, z coordinates are p(w), p'(w), 1.
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(e)[5 marks] Suppose that g = 1. Show that for generic choices of
points p1,...,px and g1,...,qgx in C for k > 0, there does not
exist a meromorphic function f : C — CP! with degree 1 zeroes at
pi,---, Pk, degree 1 poles at qi, ..., gk, and no other zeroes or
poles.

[Hint: compute £(qy + - - - + qx).]

Riemann—Roch gives
U+ + @) —ls—q - —aq) =k+1-g =k

Now deg(k —q1 — -+ —qxk) =28 —2— k=—k <0.

Useful fact: if deg D < 0 then £(D) = ¢(D) = 0. This holds as if
0+# f € L(D) then deg f =0, so deg f + deg D < 0, which
contradicts (f)+ D > 0, condition for 0 # f € L(D).  Learn this.
Thus 6(k —q1 — - —qx) =0and ¢(g1 + -+ q«x) = k, for k > 0.
Hence P(L(q1 + - - - + q«)) = CP*~1, which has dimension k — 1.
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The set of zeroes of 0 # f € L(q1 + - - + qk) depends only on
[f] € P(L(q1 + - - + qk)). Thus there can only be a

(k — 1)-dimensional family of sets of points (pi,. .., px) that are
the zeroes of 0 # f € L(q1 + - - - + qk). But the family of all
choices of (p1, ..., pk) is k-dimensional, where k > k — 1, so a
generic choice of (p1, ..., px) cannot correspond to
0#FfeLl(qr+- -+ qx).
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