C3.3 Differentiable Manifolds revision lecture, May 2025 To go over 2023 C3.3 paper

Dominic Joyce

These slides available on course website

C3.3 2023 question 1

(a)[6 marks] Define a *chart*, an *atlas*, and a *maximal atlas* on a topological space X. Define (*smooth*) *manifolds*.

All bookwork.

Don't forget Hausdorff and second countable conditions on X.

(b)[3 marks] Define X to be the set of unoriented affine real lines in \mathbb{R}^3 , made into a topological space in the natural way. One way to do this is to note that

$$X \cong \{(u, v) : u, v \in \mathbb{R}^3 : |u| = 1, u \cdot v = 0\}/(u, v) \sim (-u, v),$$

where $(\pm u, v)$ corresponds to the line $\{tu + v : t \in \mathbb{R}\}$. Prove that X has the properties required of the topological space of a manifold.

Need to show that X is Hausdorff and second countable. The space $\{(\boldsymbol{u},\boldsymbol{v}):\boldsymbol{u},\boldsymbol{v}\in\mathbb{R}^3:|\boldsymbol{u}|=1,\;\boldsymbol{u}\cdot\boldsymbol{v}=0\}$ is both as it is a subset of \mathbb{R}^6 with the subspace topology, and \mathbb{R}^6 is both. Hence X is both, as it is the quotient of a Hausdorff and second countable space by a finite group.

(c)[7 marks] Define three charts $(U_1,\varphi_1),(U_2,\varphi_2),(U_3,\varphi_3)$ on X by $U_1=U_2=U_3=\mathbb{R}^4$ and

$$\varphi_1: (a_1, b_1, c_1, d_1) \mapsto \{(x, y, z) \in \mathbb{R}^3 : y = a_1x + b_1, z = c_1x + d_1\},$$

$$\varphi_2: (a_2, b_2, c_2, d_2) \mapsto \{(x, y, z) \in \mathbb{R}^3 : z = a_2y + b_2, x = c_2y + d_2\},$$

$$\varphi_3: (a_3, b_3, c_3, d_3) \mapsto \{(x, y, z) \in \mathbb{R}^3 : x = a_3z + b_3, y = c_3z + d_3\}.$$

Prove that $\{(U_1, \varphi_1), (U_2, \varphi_2), (U_3, \varphi_3)\}$ is an atlas on X. Deduce that X is a smooth manifold.

[You may assume that $(U_1, \varphi_1), (U_2, \varphi_2), (U_3, \varphi_3)$ are charts.]

Need to show the (U_i, φ_i) are pairwise compatible, and cover X. The transition function $\varphi_2^{-1}\varphi_1$ maps

$$\varphi_2^{-1}\varphi_1: \{(a_1, b_1, c_1, d_1) \in \mathbb{R}^4: a_1 \neq 0\} \to \{(a_2, b_2, c_2, d_2) \in \mathbb{R}^4: c_2 \neq 0\},\$$

$$\varphi_2^{-1}\varphi_1: (a_1, b_1, c_1, d_1) \mapsto (\frac{c_1}{a_1}, d_1 - \frac{b_1c_1}{a_1}, \frac{1}{a_1}, \frac{-b_1}{a_1}),$$
(1)

as
$$y = a_1x + b_1$$
, $z = c_1x + d_1 \Leftrightarrow z = \frac{c_1}{a_1}y + (d_1 - \frac{b_1c_1}{a_1})$, $x = \frac{1}{a_1}y - \frac{b_1}{a_1}$.

This is smooth, with smooth inverse

$$\varphi_1^{-1}\varphi_2: \left\{ (a_2, b_2, c_2, d_2) \in \mathbb{R}^4 : c_2 \neq 0 \right\} \to \left\{ (a_1, b_1, c_1, d_1) \in \mathbb{R}^4 : a_1 \neq 0 \right\},
\varphi_1^{-1}\varphi_2: \left(a_2, b_2, c_2, d_2 \right) \mapsto \left(-\frac{1}{c_2}, -\frac{d_2}{c_2}, \frac{a_2}{c_2}, b_2 - \frac{a_2 d_2}{c_2} \right).$$

Hence (U_1, φ_1) and (U_2, φ_2) are compatible.

Similarly (U_2, φ_2) , (U_3, φ_3) and (U_3, φ_3) , (U_1, φ_1) are compatible, by cyclic permutation of 1, 2, 3 and x, y, z.

A line in \mathbb{R}^3 lies in $\varphi_1(U_1), \varphi_2(U_2), \varphi_3(U_3)$ if it is not parallel to the (y, z) plane, or (x, z) plane, or (x, y) plane, respectively. As no line is parallel to all three,

$$X = \varphi_1(U_1) \cup \varphi_2(U_2) \cup \varphi_3(U_3).$$

Hence $\{(U_1, \varphi_1), (U_2, \varphi_2), (U_3, \varphi_3)\}$ is an atlas on X. It is contained in a unique maximal atlas.

We know X is Hausdorff and second countable by (b). Hence X is a smooth manifold.

(d)[6 marks] Prove that X is orientable.

[Hint: prove the transition functions are orientation-preserving.]

Differentiate $\varphi_2^{-1}\varphi_1$ in (1) at (a_1,b_1,c_1,d_1) . It acts with matrix

$$D(\varphi_2^{-1}\varphi_1) = \begin{pmatrix} -\frac{c_1}{a_1^2} & 0 & \frac{1}{a_1} & 0\\ \frac{b_1c_1}{a_1^2} & -\frac{c_1}{a_1} & -\frac{b_1}{a_1} & 1\\ -\frac{1}{a_1^2} & 0 & 0 & 0\\ \frac{b_1}{a_1^2} & -\frac{1}{a_1} & 0 & 0 \end{pmatrix}$$

This has determinant $\frac{1}{a_1^4}$, as the only nonzero term comes from the product of the four red terms.

As $D(\varphi_2^{-1}\varphi_1)$ has positive determinant everywhere, $\varphi_2^{-1}\varphi_1$ is orientation-preserving. Similarly, $\varphi_3^{-1}\varphi_2$ and $\varphi_1^{-1}\varphi_3$ are orientation-preserving, by cyclic permutation of 1,2,3 and x,y,z. Hence $\{(U_1,\varphi_1),(U_2,\varphi_2),(U_3,\varphi_3)\}$ is an oriented atlas, and defines an orientation on X.

Note: we have several different ways to define orientations:

- as an orientation on T_xX for $x \in X$, varying continuously with x.
- as an equivalence class $[\omega]$ of non-vanishing *n*-folds ω on X.
- as an atlas with orientation-preserving transition functions.

You can use any of these you like. This question uses the last.

(e)[3 marks] Now let Y be the set of (unoriented) affine real lines in \mathbb{R}^2 , made into a manifold in a similar way. Is Y orientable? Give brief justification.

No, Y is not orientable, as it is topologically the Möbius strip, or equivalently $\mathbb{RP}^2 \setminus \{[1,0,0]\}$. (Space of projective lines in \mathbb{RP}^2 is \mathbb{RP}^2 .) [You can repeat the above calculations with two charts

$$\varphi_1: (a_1, b_1) \mapsto \{(x, y) \in \mathbb{R}^2 : y = a_1 x + b_1\},
\varphi_2: (a_2, b_2) \mapsto \{(x, y) \in \mathbb{R}^2 : x = a_2 y + b_2\}.$$

The transition function $\varphi_2^{-1}\varphi_1$ maps

$$\varphi_2^{-1}\varphi_1: \{(a_1,b_1) \in \mathbb{R}^2: a_1 \neq 0\} \to \{(a_2,b_2) \in \mathbb{R}^2: a_2 \neq 0\},$$

$$\varphi_2^{-1}\varphi_1: (a_1,b_1) \mapsto (\frac{1}{a_1}, -\frac{b_1}{a_1}).$$

We have $\det D(\varphi_2^{-1}\varphi_1)=\frac{1}{a_1^3}$, which changes sign at $a_1=0$ and is not orientation-preserving. This in itself doesn't prove Y not orientable, but going round the circle $b_1=b_2=0$ in Y, you cross $a_1=0$ once, so orientations change sign around the circle. This much detail not required.]

C3.3 2023 question 2

- (a)[11 marks] (i) Let X be a manifold and $v \in \Gamma^{\infty}(TX)$ a vector field on X. Define the *maximal integral curve* of v through a point $x \in X$. What is the domain of a maximal integral curve if X is compact?
- (ii) Define 1-parameter groups of diffeomorphisms $\varphi: \mathbb{R} \times X \to X$. In the case in which X is compact, describe the 1-1 correspondence between vector fields v and 1-parameter groups of diffeomorphisms φ , in terms of maximal integral curves.
- (iii) If v is a vector field and α a tensor on X, define the *Lie derivative* $\mathcal{L}_v \alpha$.

[You may assume the 1-1 correspondence in (ii) applies to v.]

All bookwork.

For (iii), define $\mathcal{L}_{v}\alpha=\frac{\mathrm{d}}{\mathrm{d}t}\big(\varphi_{t}^{*}(\alpha)\big)|_{t=0}$. If X is not compact then φ_{t} may not be defined if v is not complete – a 'local' definition is possible – but the question allows you to assume φ_{t} makes sense.

On \mathbb{R}^3 with coordinates (x_1, x_2, x_3) , define vector fields

$$u=x_1\frac{\partial}{\partial x_1}+x_2\frac{\partial}{\partial x_2}+x_3\frac{\partial}{\partial x_3}, \qquad v=x_1^2\frac{\partial}{\partial x_1}+x_2^2\frac{\partial}{\partial x_2}+x_3^2\frac{\partial}{\partial x_3}.$$

(b)[4 marks] Find the maximal integral curves of u, v through each $(x_1, x_2, x_3) \in \mathbb{R}^3$.

Write $\gamma(t)=(\gamma_1(t),\gamma_2(t),\gamma_3(t))$. For γ to be a flow-line of u, need

$$\dot{\gamma}_1 = \gamma_1, \quad \dot{\gamma}_2 = \gamma_2, \quad \dot{\gamma}_3 = \gamma_3,$$

so $\gamma_i(t) = x_i e^t$. Domain of maximal integral curve is \mathbb{R} .

For γ to be a flow-line of ν , need

$$\dot{\gamma}_1=\gamma_1^2,\quad \dot{\gamma}_2=\gamma_2^2,\quad \dot{\gamma}_3=\gamma_3^2,$$

so
$$\int \frac{d\gamma_i}{\gamma_i^2} = \int dt$$
, and $-\frac{1}{\gamma_i} = t - \frac{1}{x_i}$, giving $\gamma_i(t) = \frac{x_i}{1 - x_i t}$.

The domain of the maximal integral curve is (a, b), where

$$a = \begin{cases} -\infty, & \text{all } x_i \geqslant 0, \\ \max(\frac{1}{x_i} : x_i < 0), & \text{otherwise,} \end{cases}$$

$$b = \begin{cases} \infty, & \text{all } x_i \leqslant 0, \\ \min(\frac{1}{x_i} : x_i > 0), & \text{otherwise.} \end{cases}$$

(c)[6 marks] Prove that the only 2-form α on \mathbb{R}^3 with $\mathcal{L}_u\alpha=0$ is $\alpha=0$.

[Well known formulae may be used if clearly stated.]

Write
$$\alpha = \alpha_1 dx_2 \wedge dx_3 + \alpha_2 dx_3 \wedge dx_1 + \alpha_3 dx_1 \wedge dx_2$$
 for $\alpha_i : \mathbb{R}^3 \to \mathbb{R}$ smooth. Cartan's formula: $\mathcal{L}_u \alpha = i_u (d\alpha) + d(i_u \alpha)$. So $\mathcal{L}_u \alpha = i_u \left[\left(\frac{\partial \alpha_1}{\partial x_1} + \frac{\partial \alpha_2}{\partial x_2} + \frac{\partial \alpha_3}{\partial x_3} \right) dx_1 \wedge dx_2 \wedge dx_3 \right] + d \left[\alpha_1 x_2 dx_3 - \alpha_1 x_3 dx_2 + \alpha_2 x_3 dx_1 - \alpha_2 x_1 dx_3 + \alpha_3 x_1 dx_2 - \alpha_3 x_2 dx_1 \right] = \left(\frac{\partial \alpha_1}{\partial x_1} + \frac{\partial \alpha_2}{\partial x_2} + \frac{\partial \alpha_3}{\partial x_3} \right) \left(x_1 dx_2 \wedge dx_3 + x_2 dx_3 \wedge dx_1 + x_3 dx_1 \wedge dx_2 \right) + \left(\frac{\partial \alpha_1}{\partial x_2} x_2 + \frac{\partial \alpha_1}{\partial x_3} x_3 + 2\alpha_1 - \frac{\partial \alpha_2}{\partial x_2} x_1 - \frac{\partial \alpha_3}{\partial x_3} x_1 \right) dx_2 \wedge dx_3 + \left(\frac{\partial \alpha_2}{\partial x_3} x_3 + \frac{\partial \alpha_2}{\partial x_1} x_1 + 2\alpha_2 - \frac{\partial \alpha_3}{\partial x_3} x_2 - \frac{\partial \alpha_1}{\partial x_1} x_2 \right) dx_3 \wedge dx_1 + \left(\frac{\partial \alpha_3}{\partial x_1} x_1 + \frac{\partial \alpha_3}{\partial x_2} x_2 + 2\alpha_3 - \frac{\partial \alpha_1}{\partial x_1} x_3 - \frac{\partial \alpha_2}{\partial x_2} x_3 \right) dx_1 \wedge dx_2 = \left(\frac{\partial \alpha_1}{\partial x_1} x_1 + \frac{\partial \alpha_1}{\partial x_2} x_2 + \frac{\partial \alpha_1}{\partial x_3} x_3 + 2\alpha_1 \right) dx_2 \wedge dx_3 + \left(\frac{\partial \alpha_2}{\partial x_1} x_1 + \frac{\partial \alpha_1}{\partial x_2} x_2 + \frac{\partial \alpha_2}{\partial x_2} x_3 + 2\alpha_2 \right) dx_3 \wedge dx_1 + \left(\frac{\partial \alpha_2}{\partial x_1} x_1 + \frac{\partial \alpha_1}{\partial x_2} x_2 + \frac{\partial \alpha_2}{\partial x_2} x_3 + 2\alpha_2 \right) dx_3 \wedge dx_1 + \left(\frac{\partial \alpha_2}{\partial x_1} x_1 + \frac{\partial \alpha_2}{\partial x_2} x_2 + \frac{\partial \alpha_2}{\partial x_2} x_3 + 2\alpha_2 \right) dx_3 \wedge dx_1 + \left(\frac{\partial \alpha_2}{\partial x_1} x_1 + \frac{\partial \alpha_2}{\partial x_2} x_2 + \frac{\partial \alpha_2}{\partial x_2} x_3 + 2\alpha_2 \right) dx_3 \wedge dx_1 + \left(\frac{\partial \alpha_2}{\partial x_1} x_1 + \frac{\partial \alpha_2}{\partial x_2} x_2 + \frac{\partial \alpha_2}{\partial x_2} x_3 + 2\alpha_2 \right) dx_3 \wedge dx_1 + \left(\frac{\partial \alpha_2}{\partial x_1} x_1 + \frac{\partial \alpha_2}{\partial x_2} x_2 + \frac{\partial \alpha_2}{\partial x_2} x_3 + 2\alpha_2 \right) dx_3 \wedge dx_1 + \left(\frac{\partial \alpha_2}{\partial x_1} x_1 + \frac{\partial \alpha_2}{\partial x_2} x_2 + \frac{\partial \alpha_2}{\partial x_2} x_3 + 2\alpha_2 \right) dx_3 \wedge dx_1 + \left(\frac{\partial \alpha_2}{\partial x_1} x_1 + \frac{\partial \alpha_2}{\partial x_2} x_2 + \frac{\partial \alpha_2}{\partial x_2} x_3 + 2\alpha_2 \right) dx_3 \wedge dx_1 + \left(\frac{\partial \alpha_2}{\partial x_1} x_1 + \frac{\partial \alpha_2}{\partial x_2} x_2 + \frac{\partial \alpha_2}{\partial x_2} x_3 + 2\alpha_2 \right) dx_3 \wedge dx_2.$

Thus $\mathcal{L}_u \alpha = 0$ provided

$$\frac{\partial \alpha_i}{\partial x_1} x_1 + \frac{\partial \alpha_i}{\partial x_2} x_2 + \frac{\partial \alpha_i}{\partial x_3} x_3 + 2\alpha_i = 0, \qquad i = 1, 2, 3.$$

Here is the tricky part:

Along the ray (tx_1, tx_2, tx_3) for $t \in \mathbb{R}$ this gives

$$t\frac{\mathrm{d}}{\mathrm{d}t}(\alpha_i(tx_1,tx_2,tx_3))+2\alpha_i(tx_1,tx_2,tx_3)=0,$$

with solution $\alpha_i(tx_1, tx_2, tx_3) = Ct^{-2}$.

But this is only continuous at t=0 if C=0, so when t=0, $\alpha_i(x_1,x_2,x_3)=0$. Thus $\alpha=0$.

(d)[4 marks] Find all vector fields w on \mathbb{R}^3 with $\mathcal{L}_u w = 0$, that is, [u, w] = 0. [Well known formulae may be used if clearly stated.]

Write $u=u_1\frac{\partial}{\partial x_1}+u_2\frac{\partial}{\partial x_2}+u_3\frac{\partial}{\partial x_3}$ and $w=w_1\frac{\partial}{\partial x_1}+w_2\frac{\partial}{\partial x_2}+w_3\frac{\partial}{\partial x_3}$. Then $[u,w]=\sum_{i,j=1}^3 \left(u_i\frac{\partial w_j}{\partial x_i}-w_i\frac{\partial u_j}{\partial x_i}\right)\frac{\partial}{\partial x_j}$. Learn this. As $u_i=x_i$ we see that [u,w]=0 iff

$$\frac{\partial w_i}{\partial x_1}x_1 + \frac{\partial w_i}{\partial x_2}x_2 + \frac{\partial w_i}{\partial x_3}x_3 - w_i = 0, \qquad i = 1, 2, 3.$$

(Another tricky part.) Along the ray (tx_1, tx_2, tx_3) for $t \in \mathbb{R}$ this gives

$$t\frac{\mathrm{d}}{\mathrm{d}t}(w_i(tx_1, tx_2, tx_3)) - w_i(tx_1, tx_2, tx_3) = 0,$$

with solution $w_i(tx_1, tx_2, tx_3) = Ct$. Thus w_i is linear along each ray in \mathbb{R}^3 . For w_i to be smooth at (0,0,0), this forces w_i to be linear, $w_i = \sum_{j=1}^3 a_{ij}x_j$. So the vector fields w with $\mathcal{L}_u w = 0$ are $w = \sum_{i,j=1}^3 a_{ij}x_j \frac{\partial}{\partial x_i}$ for real matrices $(a_{ij})_{i,j=1}^3$.

C3.3 2023 question 3

(a)[6 marks] Define the *de Rham cohomology groups* $H^k(X)$ of an n-manifold X. Show that if X is compact and oriented then there is a well-defined, surjective linear map $\Phi: H^n(X) \to \mathbb{R}$ with $\Phi([\omega]) = \int_X \omega$.

[Standard results about integration of exterior forms may be used if clearly stated.]

In the rest of the question you may assume that Φ is an isomorphism if X is connected.

All bookwork.

To show Φ is surjective, make an *n*-form ω with nonzero integral, supported in a small coordinate ball, using a 'bump function'.

(b)[5 marks] Let $f: X \to Y$ be a smooth map between compact, connected, oriented *n*-manifolds X, Y. Define the *degree* deg f of f, using de Rham cohomology. State an alternative definition in terms of preimages of points (you need not prove they are equivalent).

All bookwork.

(c)[9 marks] Show that the cohomology of $X = S^2 \times S^2$ may be written

$$\begin{split} H^0(X) &= \langle 1_X \rangle_{\mathbb{R}}, \quad H^1(X) = 0, \ H^2(X) = \langle \alpha_1, \alpha_2 \rangle_{\mathbb{R}}, \\ H^3(X) &= 0, \ H^4(X) = \langle \alpha_1 \cup \alpha_2 \rangle_{\mathbb{R}}, \end{split}$$

where $\alpha_1 \cup \alpha_1 = 0$, $\alpha_2 \cup \alpha_2 = 0$, and $\int_X \alpha_1 \cup \alpha_2 = 1$. [You may assume the Künneth Theorem, and a formula for $H^k(S^2)$.]

Quote: $H^0(\mathcal{S}^2) \cong H^2(\mathcal{S}^2) \cong \mathbb{R}$, $H^1(\mathcal{S}^2) = 0$. Künneth Theorem: $H^k(X \times Y) \cong \bigoplus_{i+j=k} H^i(X) \otimes H^j(Y)$, where the $H^i(X) \otimes H^j(Y)$ factor is the image of $\pi_X^*(H^i(X)) \cup \pi_Y^*(H^j(Y))$. Write $H^0(\mathcal{S}^2) = \langle 1 \rangle_{\mathbb{R}}$ and $H^2(\mathcal{S}^2) = \langle \omega \rangle_{\mathbb{R}}$ with $\int_{\mathcal{S}^2} \omega = 1$. Write $\pi_1, \pi_2 : \mathcal{S}^2 \times \mathcal{S}^2 \to \mathcal{S}^2$ for the projections to first and second factors. Künneth says that $H^0(X) = \langle \pi_1^*(1) \cup \pi_2^*(1) \rangle_{\mathbb{R}} = \langle 1 \rangle_{\mathbb{R}}$, $H^1(X) = 0$, $H^2(X) = \langle \pi_1^*(1) \cup \pi_2^*(\omega) \rangle_{\mathbb{R}} \oplus \langle \pi_1^*(\omega) \cup \pi_2^*(1) \rangle_{\mathbb{R}} = \langle \pi_2^*(\omega), \pi_1^*(\omega) \rangle_{\mathbb{R}}$, $H^3(X) = 0$, and $H^4(X) = \langle \pi_1^*(\omega) \cup \pi_2^*(\omega) \rangle_{\mathbb{R}}$.

Set $\alpha_i = \pi_i^*(\omega)$. Then $H^2(X) = \langle \alpha_1, \alpha_2 \rangle_{\mathbb{R}}$, $H^4(X) = \langle \alpha_1 \cup \alpha_2 \rangle_{\mathbb{R}}$ as we want. Also $\alpha_1 \cup \alpha_1 = \pi_1^*(\omega) \cup \pi_1^*(\omega) = \pi_1^*(\omega \cup \omega) = 0$, as $\omega \cup \omega \in H^4(\mathcal{S}^2) = 0$. Similarly $\alpha_2 \cup \alpha_2 = 0$. And

$$\int_X \alpha_1 \cup \alpha_2 = \int_{\mathcal{S}^2 \times \mathcal{S}^2} \pi_1^*(\omega) \cup \pi_2^*(\omega) = \left(\int_{\mathcal{S}^2} \omega\right) \cdot \left(\int_{\mathcal{S}^2} \omega\right) = 1 \cdot 1 = 1.$$

(d)[5 marks] The cohomology of the compact oriented 4-manifold $Y=\mathbb{CP}^2$ may be written

$$\begin{split} H^0(Y) &= \langle 1_Y \rangle_{\mathbb{R}}, \quad H^1(Y) = 0, \ H^2(Y) = \langle \beta \rangle_{\mathbb{R}}, \\ H^3(Y) &= 0, \ H^4(Y) = \langle \beta \cup \beta \rangle_{\mathbb{R}}, \ \text{where} \quad \int_Y \beta \cup \beta = 1. \end{split}$$

Show that any smooth map $f: Y \to X$, with X defined as in (c), has degree $\deg f = 0$.

Write $f^*(\alpha_i) = a_i\beta$ for i = 1, 2. Then $f^*(\alpha_i \cup \alpha_i) = a_i^2\beta \cup \beta$. But $\alpha_i \cup \alpha_i = 0$ and $\beta \cup \beta \neq 0$, so $a_i^2 = 0$, and $a_i = 0$. Hence $f^*(\alpha_1 \cup \alpha_2) = a_1a_2\beta \cup \beta = 0$. The commuting diagram

$$H^{4}(X) = \langle \alpha_{1} \cup \alpha_{2} \rangle_{\mathbb{R}} \xrightarrow{f^{*}} H^{4}(Y) = \langle \beta^{2} \rangle_{\mathbb{R}}$$

$$\cong \downarrow [\lambda] \mapsto \int_{Y} \lambda \downarrow \cong$$

$$\mathbb{R} \xrightarrow{\cdot \text{deg } f} \mathbb{R}$$

now shows that $\deg f = 0$.