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SECOND PUBLIC EXAMINATION

Honour School of Mathematics Part C: Paper C5.12

MATHEMATICAL PHYSIOLOGY

Exam date

You may submit answers to as many questions as you wish but only the best two will count for
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numbers of the questions attempted. A booklet with the front sheet completed must be handed in
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1. (a) (i) [2 marks] [Bookwork]
v represents the membrane action potential. [1 mark]
w represents the gating potential. [1 mark]

(ii) [6 marks] [Bookwork]

[2 marks] Equilibrium points occur when dv/dt = dw/dt = 0, which gives v = 0 and
w = f(0) = 0, so (v, w) = (0, 0) is the unique equilibrium point. [1 mark]
If 0 < v∗ < v0 and v0 = α then v decays to zero and is linearly stable. (Case (2) on
figure). [1 mark]
If v0 < v∗ < 1 and v0 = α then v undergoes an excursion as indicated on the phase
plane (Case (1) on figure). [1 mark]

[1 mark]

(b) (i) [6 marks] [Similar ideas to lectures]
[Equations highlighted in red correspond to the numbers used in the question, to
distinguish from the numbering in the solution.]
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Setting y = (x− ct)/ϵ gives

∂

∂x
=

1

ϵ

d

dy
,

∂

∂t
= −c

ϵ

d

dy
.

Substituting this into equation (1) gives

d2v

dy2
+ c

dv

dy
+ f(v)− w = 0,

dw

dy
= −ϵv

c
. (1a,b)

[2 marks]

Equation (1b) gives w =constant to leading order in ϵ and so w = 0 since w → 0 as
y → ∞ since w = 0 ahead of the wavefront. [1 mark]
Equation (1a) then gives

d2v

dy2
+ c

dv

dy
+ f(v) = 0. (2)

If we define

p =
dv

dy
(3)

then (2) becomes

dp

dy
= −cp− f(v). (4)

[1 mark]

If we divide (3) by (4) this gives

dp

dv
=

−cp− f(v)

p
, (5)

as required. [1 mark]
The travelling wave must have v → 0 as y → ∞ and v → 1 as y → −∞ to take it
from the fixed point (v, w) = (0, 0) to (v, w) = (1, 0). [1 mark]

(ii) [6 marks] [New material]
Try p = Av(1− v). Substituting into (5) gives

(2A2 − 1)v2 + (1− 3A2 −Ac+ α)v + (A2 +Ac− α) = 0.

Equating coefficients of v2 gives A = ±1/
√
2. [1 mark]

We take the negative root to satisfy the boundary conditions (see later in this part).
[1 mark]
Equating coefficients of v gives c = −

√
2(α− 1/2). [1 mark]

The constant terms are then identically satisfied. [1 mark]
So p = −v(1−v)/

√
2. Since p = dv/dy = by definition, we may separate the variables

and integrate to obtain

v =
1

D + exp
(
y/

√
2
) ,
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for some constant D. [2 marks]
We see that v → 0 as y → ∞ and v → 1 as y → −∞ as required by the boundary
conditions. We note that if we had taken the positive root A = 1/

√
2 then these

boundary conditions would have been reversed.
We can set D = 1 without loss of generality, so that v(0) = 1/2. This just corresponds
to removing the translational invariance in the travelling wave solution. This gives

v =
1

1 + exp
(
y/

√
2
) .

(iii) [5 marks] [New material]

Now we suppose that the trajectory departs the w-nullcline when w = w∗. From
(1b), dw/dy = 0 to leading order in ϵ, so w = constant = w∗ on the second travelling
wave solution [1 mark] .
In (1a) this gives

d2v

dy2
− c

dv

dy
+ f(v)− w∗ = 0,

where we have chosen the wave speed −c =
√
2(α− 1/2) for the reverse wave. There

is a unique value of w∗ for each corresponding wave speed so this sets w∗. [1 mark]
This is subject to the boundary conditions

v → v1 as y → ∞, and v → v2 as y → −∞.

[1 mark]
We note that once w∗ is specified, v1 and v2 are also determined. In an analogous
fashion to the front wave, in this case it is now w∗ rather than the wave speed c that
we determine. [2 marks]
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2. (a) [5 marks] [Bookwork]
Reaction (1a): S1 is created at a rate k1. This is a one-way reaction. (Given in question).
Reaction (1b): Two molecules of S2 combine with enzyme E to form a product X1 = ES2

2

at a rate k2. The reverse reaction of dissociation ofX1 into two molecules of S2 and enzyme
E takes place at a rate k−2. [2 marks]
Reaction (1c): The complex X1 combines with one molecule of S1 to form a product
X2 = S1ES2

2 at a rate k3. The reverse reaction takes place at a rate k−3. [2 marks]
The species X2 dissociates, after undergoing the enzyme reaction, into X1 and S2 at a
rate k4. This is a one-way reaction. [1 mark]
Reaction (1d): S2 is removed from the system at a rate k5. This is a one-way reaction.
(Given in question.)

(b) [6 marks] [Application of ideas in lectures to a new example]
The following system of ordinary differential equations describes the reaction scheme (1):

dŝ1

dt̂
= k1 − k3ŝ1x̂1 + k−3x̂2, [1 mark] (6)

dŝ2

dt̂
= −k2ŝ

2
2ê+ k−2x̂1 + k4x̂2 − k5ŝ2, [1 mark] (7)

dx̂1

dt̂
= k2ŝ

2
2ê− k−2x̂1 − k3ŝ1x̂1 + k−3x̂2 + k̂4x̂2, [1 mark] (8)

dx̂2

dt̂
= k3ŝ1x̂1 − k−3x̂2 − k̂4x̂2, [1 mark] (9)

where ŝi and x̂i denote, respectively, the concentrations of species Si and Xi for i = 1, 2,
ê denotes the concentration of enzyme, and t̂ denotes time. [1 mark] (Note the hats
have been added to distinguish from their dimensionless counterparts used later in this
question.) Conservation of enzyme leads to the relationship ê + x̂1 + x̂2 =constant. [1
mark]

(c) [4 marks] [Standard calculation]
[Equations highlighted in red correspond to the numbers used in the question, to distin-
guish from the numbering in the solution.]
Setting ϵ = 0 in equation (2d) gives

x2 = s1x1. (10)

Recognizing that equation (2d) means that the terms in the square brackets of equation
(2c) must equal zero, substituting for x2 using (10) gives

x1 =
f(s1, s2)

s1
, [1 mark] (11)

x2 = f(s1, s2), [1 mark] (12)

where

f =
s1s

2
2

1 + s1s22 + s22
. (13)

Equations (2a,b) then become the required expressions (3) in the question. [2 marks]

(d) [3 marks] [Standard calculation]
In equilibrium, setting time derivatives to zero, gives

α = f(s∗1, s
∗
2), f(s∗1, s

∗
2) = s∗2. (14)
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Rearranging these equations gives

s∗1 =
(1 + α2)

(1− α)α
, s∗2 = α. [2 marks] (15)

When α > 1, s1 < 0 and so the solution is non-physical. When α < 0, s2 < 0 and the
solution is non-physical. This can also be seen from the definition of f , which indicates
that 0 6 f < 1 and so equilibria exist only for 0 6 α < 1. [1 mark]

(e) [4 marks] [New idea]
Linearization of the equations about the equilibrium state via si = s∗i +δs̃i, i = 1, 2 where
δ ≪ 1 gives

d

dt

(
s̃1
s̃2

)
=

(
−F1 −F2

F1 F2 − 1

)(
s̃1
s̃2

)
, (16)

where

Fi =
∂f

∂si

∣∣∣∣
(s∗1,s

∗
2)

for i = 1, 2. (17)

[1 mark]
Eigenvalues λ satisfy ∣∣∣∣−F1 − λ −F2

F1 F2 − 1− λ

∣∣∣∣ = 0, (18)

and so

λ± =
−(F1 − F2 + 1)±

√
(F1 − F2 + 1)2 − 4F1

2
. (19)

[1 mark]
Thus, if we define

h(s1, s2) =
∂f

∂s1
− ∂f

∂s2
+ 1. (20)

and g(α) = h(s∗1(α), s
∗
2(α)) then the equilibrium point is stable if g(α) > 0, provided

F1(s
∗
1(α), s

∗
2(α)) > 0, which can straightforwardly be shown to be true since

F1(s1, s2) =
s22(1 + s22)(

1 + (1 + s1)s22
)2 > 0 for all s1 and s2.

[1 mark]

(f) [4 marks] Consider h(s1, s2):

h(s1, s2) =
s2

(
s2 − 2s1 + s32

)(
1 + s1s22 + s22

)2 + 1. (21)

We may examine the behaviour near α = 0 by considering α = µ with µ ≪ 1. Here,

s∗2 = µ, s∗1 ∼
1

µ
, (22)
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so g → −1 as α → 0+. [2 marks]
We may examine the behaviour near α = 1 by considering α = 1− µ with µ ≪ 1. Here,

s∗2 ∼ 1, s∗1 ∼
2

µ
, (23)

so g → 1 as α → 1−. [1 mark]
Thus, since g(α) changes sign between 0 and 1, the stability of the equilibrium must
change at some α = α†, with the fixed point stable for 0 < α < α† and unstable for
α† < α < 1; α† is given by the implicit relation g(α†) = 1. [1 mark]
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3. (a) [4 marks] [Bookwork]

(A) the mitral valve closes; (B) the aortic valve opens; (C) the aortic valve closes; and
(D) the mitral valve opens. [3 marks] VLV is approximately constant between A and B
and between C and D because here both valves are closed. [1 mark]

(b) [3 marks] [Bookwork]
The compliance is the balloon-like property of the blood vessel walls that allows for their
distension under increased internal pressure. [1 mark]

[2 marks]
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(c) [6 marks] [Bookwork]

[2 marks]

Blood is incompressible but the blood vessels are compliant so the pressure and volume
in different parts of the network can change with time.

Conservation of blood in the arteries, veins and left ventricle give, respectively,

dVa

dt
= Q+ −Qc,

dVv

dt
= Qc −Q−,

dVLV

dt
= Q− −Q+,

where Q−, Q+ and Qc are, respectively, the flow rate into and out of the left ventricle
and the flow rate in the capillaries. The flow rate in each compartment is proportional
to the pressure drop, with the constant of proportionality being the inverse resistance of
that compartment. This gives

Qc =
pa − pv
Rc

, Q+ =
[pLV − pa]+

Ra
, Q− =

[pv − pLV ]+
Rv

.

Here, pa, pv and pLV are the pressures in the arteries, veins and left ventricle, respectively,
and Rc, Ra and Rv are the resistances offered by the capillaries, arteries and veins,
respectively; [f ]+ = f if f > 0 and [f ]+ = 0 if f 6 0. This ensures that blood flow only
occurs in directions of decreasing pressures. The volume occupied by the blood in the
arteries, Va, veins, Vv and left ventricle, VLV are related to the pressures via

Va = V ∗
a + Capa, Vv = V ∗

v + Cvpv, VLV = V ∗
LV + CLV pLV , (1a–c)

where Ca, Cv and CLV are the compliances of the arteries, veins and left ventricle, re-
spectively, and V ∗

a , V
∗
v and V ∗

LV all denote baseline volumes when the pressures are zero.
The compliance is equal to the inverse of the elastance. A low value of compliance corre-
sponds to vessels that are tight and resist changes in volume. A high value of compliance
corresponds to vessels that are loose and permit appreciable changes in volume. [4 marks]

(d) [3 marks] [Generalization of ideas discussed in lectures]
Scaling t = δ2T gives, to leading order in δ,

dpa
dT

= 0
dpv
dT

= 0,
d

dT
(CLV pLV ) = 0,
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and so pa, pv and CLV pLV all remain constant and equal to their initial values over the
duration of the systole. [2 marks] Since CLV goes from Cd to Cs over the systole, this
gives

p1a = p0a, p1v = p0v, p1LV =
Cdp

0
LV

Cs
.

[1 mark]

(e) [5 marks] [New material]

[Equations highlighted in red correspond to the numbers used in the question, to distin-
guish from the numbering in the solution.]

Equations (1a) and (1c) from the question at leading order both give pa = pLV . Hence
Csp

0
a = Cdp

0
LV applying the initial conditions. [1 mark] Equation (1b) from the question

at leading order gives

dpv
dt

= pa. (2)

Considering equations (1a)+(1c) from the question at leading order gives

(1 + Cs)
dpa
dt

= −pa, (3)

as required. [1 mark] Solving (3) subject to the initial condition pa(0) = p0a gives

pa = p0aexp

(
− t

1 + Cs

)
and so

pLV = p0aexp

(
− t

1 + Cs

)
.

[1 mark] Solving (2) gives

pv = p0v −
p0a

1 + Cs

[
exp

(
− t

1 + Cs

)
− 1

]
.

[2 marks]

(f) [4 marks] [New material]

The volume ejected from the left ventricle (in similarly scaled terms) is given by

∆VLV (t2) = CspLV (t2) = Csp
0
aexp

(
− t2
1 + Cs

)
.

using (1c). [1 mark] We expect the compliance to fall with age as the blood vessels become
less flexible. [1 mark] Since p0a = n(1− exp(−n)) and Cs = 1/n, this gives

VLV = (1− exp(−n)) exp

(
− t2
1 + 1/n

)
.

Differentiating with respect to n and setting the result equal to zero gives

1 + 2n+ n2 + t2(1− exp(n)) = 0.

Since VLV = 0 when n = 0 and VLV → exp(−t2) as n → ∞, this optimum is a maximum
and corresponds to a measure of the age at which the volume of blood pumped in one
stroke is maximized. This can also be shown to be a maximum graphically or by taking
the second derivative of VLV . [2 marks]
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