C5.7 Topics in Fluid Mechanics Michaelmas Term 2023

Problem Sheet 4: Solutions

Question 1. Rotating sphere in Stokes flow.

With & = ¢ — @, r = |x — x| and
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the rotational dipole G¢ is defined by
1 0G;
G = S€mij 1]7
un 26 g 8I071
where
+1 if  (m,l,7)=(1,2,3) or (3,1,2) or (2,3,1)
emij =< —1 if  (m,l,5) =(1,3,2) or (2,1,3) or (3,2,1)

0 if  any of 4, j, k are equal

Part a. We have
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Part b. Thus GY,,q,, is a solution of Stokes equations for any constant vector g and it decays at

spatial infinity. With aq the centre of the sphere, the sphere is given by r = a, where we have
3GS Q) — Pen O = e i
a imStm a €im] st €imlS i L,
which is the velocity on a rotating sphere.

Hence
v; 1= a*GS, O,

in a solution of the Stokes flow for a rotating sphere with radius a and angular velocity €2 and, by
uniqueness, it is the solution (with constant pressure).
Part c. One can use brute force, though that would be on the long side. The stress field of the

Stokes solution )

u; = ——Gijg;

8T

1



be given by o0;; = T};,g,, wWith symmetry in the indices ¢, j. You can show

a,-Tijs

ajjj = —(515(5(.’13),

from the momentum balance for u;, consistent with the notion that wu; is the flow associated with a
point force.
Then the stress field associated with v = a*G* - Q, that is

_ 3
U = a°Gy s

is given by

—_— a? o) a? 9]
Yij = 8mp)a Ty 8y = (SW)EGplq%Tiijp = —(8mu) 5 Eplqa—xlTijq-

Hence the s* component of the moment of the sphere due to the fluid is given by

3 0
MS = esrix,,Eijnde = —(87T/L) (a—Qp) / €sriLrEplq (_qu> nde
2 Sphere axl

Sphere

Using the divergence theorem we have

a3 0 a3 0 0
° (87(”) ( 2 p) /Sphere Cejicola (axl Uq) dV (87TIU) ( 2 p) /Spheree ! Pla a’xj (al'l ]q)

The first term is zero as there is an contraction between ¢ with antisymmetry in ¢, j and 7;j,, with
symmetry in ¢, j. Commuting derivatives and noting the above relation for the derivative of Tj;, we
have

3 3
M, = (Smp1) (G—Qp) / it (0()) AV = —(87p) <“—Qp> / orionid(@)dV,
2 Sphere 8[)’2[ 2 Sphere

noting the additional surface integral term to deduce the final equality must be zero as the §-function
has no support on the surface of the sphere. Finally, with €456, = 20,5, we have

M, = —8mpaQ,,

as required.



Question 2. Ciliary Pumping.

Detailed calculation is not necessary to deduce the expression for U. Fourier modes decouple at the
first non-trivial order and each derivative acting on mode number n just induces a factor of n. Thus
one can determine the contribution to U from the Fourier mode

e — ¢ = €(—bycos(n[z +1t]), Y. = ec,sin(n[z +t]) (1)
by identifying
a=—nb,, b=nc, (2)

in the example sheet result

U; = (b2 + 2ab — a2)

N | —

to obtain the contribution from this mode.
We then can consider the remaining Fourier modes without detailed calculation. The mode

e —x = €aysin(n[z +t]), y. = e(—d, cos(n[z +t]))

is simply a phase shift of the mode in equation (1). By considering a shifted time coordinate

F= i oD
B n2
we can determine the contribution from this mode by the subsitution
d, = Cp, @, — —b,.
followed by the identification (2). Hence we use

a =na,, b=nd,

in the example sheet result

U, = (b2 + 2ab — a2)

DO | —

to obtain the contribution from this mode.
Summing all contributions, and noting U = €U, to leading order, gives

Lo oa ., 2 2 g
U= € Zln [z +d —a;, — by + 2(and, — cpby)].

We now determine power optimal strokes, defined as those maximising absolute velocity, subject
to the constraint of a fixed power consumption W using Lagrange multipliers with the above leading
order expressions. Thus we consider

L{an, bn, cn, dn}] = Ul{an, by, cn, dpn}] — A(P{an, by, cn, dn}] — W) (3)
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and the extremal conditions
oL _ oL _ oL oL, "
oa, 0b, Oc, 0Od,
Thus
a2 + 2and, —d2 =0, b2 — 2b,c, — 2 =0.

and hence a, = (=1 % +/2)d, and b, = (1 £ v/2)c,, which yields
U = Zn (@+2v2)e + 2 F2v2)2) (5)
P = Zn <4i2\/_c +(4¢2x/_)d2) (6)

Therefore the optimal stroke is achieved when a,, = b, = ¢,, = d,, = 0 for n > 2. Without loss of
generality, we can set by = 0 as it is just a phase difference, and we finally have the optimal strokes
= (-1 ++/2)d;.

As an extra to the question, note the extremal velocity is

w



Question 3. Ciliate Motility.

Take a reference frame comoving with the swimmer oriented such that the direction of the swimmer
velocity is given by U = Ue,. The non-dimensional Stokes equations are

Viu=Vp, V.-u=0,
with
u=—Ue,, as |x|— o0, u = ef(t)sinfey, on r =1,

where ey is the unit vector in the direction of increasing spherical polar 8, where r = |x| and z = r cos 6,
x = rsinf cos p for instance.

By symmetry we have U is in the e, direction.

Show that
Q(t)

r3

} cos fe, + {U(t) + w] sinfey,  p= Const

u= {—U(t) + =

is a solution of the Stokes equation for Q(t) = 2P(t). To do this, you will need to consider the vector
Lapalacian of u. This is non-trivial in non-Cartesian coordinates and you may wish to consider using
a symbolic algebra package such as Mathematica:

f1[r_, theta_, phi_|:=(—U + Q/r"3) * Cos[theta]
f2[r_, theta_, phi_|:=(U + P/r"3) * Sin[theta]

FullSimplify[Laplacian|f1[r, theta, phi], {r, theta, phi}, “Spherical”’] — 2  f1|r, theta, phi] /r*2—
2/(r"2 x Sin[theta]) * (f2[r, theta, phi] * Cos[theta] + Sin[theta] * D[f2[r, theta, phi], theta])]

2(—2P + @Q)Cos[theta]
5

FullSimplify[Laplacian[f2[r, theta, phi], {r, theta, phi}, “Spherical”]+
2 x D[fl1[r, theta, phi], theta] /r*2 — 1/(r"2 * Sin[theta] * Sin[theta]) * f2[r, theta, phi]]

2(2P — @)Sin[theta]
5

Given Q(t) = 2P(t), the above two expressions are zero and the governing equation is satisfied. One
can then read off that U(t) = 2¢£/3 from the boundary condition, by finding Q(¢) in terms of U(t)
from setting the coefficient of e, to zero and then equating the coefficient of ey to the boundary
conditions at the boundary.



Question 4. Resistive force theory.
For the force balance with a spherical cell body of radius a, we have
0 = (Drag force on body) + (Drag force on flagellum). (7)

and e; = (—1, €hy), e, = (ehs, 1) and the velocity of the flagellum element is given by U = (U, V +¢h,).
Hence the drag force per unit length on the element ds is given by

f = — [CNGn . Uen + C’Tet : Uet] = — [(ON — C’T)en . Uen + CTU]
= —[(CN — CT)en X €, + CTI]U

eh? ehs U
- _{<CN_CT>(ehS 1 )+CTI](eht+V)

— _(Cx—Cy) €2 h2U + €2hshy + ehV _ U
B N T Eh5U+€ht + \% Eht + Vv

Integrating over the flagellum length, s € [0, L], gives

g CrL+E(Cn—Cr) [y dsht < e(Cy — Cr) [y dsh, ) _ [ €Cn=Cn) i dshghy
(CN — OT fO dSh CNL GON fD dSht

Clearly the term 62(0 N —Cr) fOL dsh? is a lower order than CpL and hence the former is dropped.

The cell body drag follows by setting h = 0 and replacing parameters dependent on geometry with
those of the cell body. Hence the cell body drag is

L, 0
(%) v (ein)

(ChLy 4+ CrL)U = —(Cy — Cr) |:62/ dshshy + eV/ dshs} :

0 0

Thus, using Eqn.(7),

and

1
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Substituting the expression for V' into the expression for U we have

L C L L
bL L 2 — _ 2 _ / Jhy — ___ZN / s/ .
(CLLy + CrL + O(2)U = —&(Cy — Cy) { st = et [ dshe [ dsh

We can drop the O(e?) on the left as it is asymptotically small relative to CrL.



Hence we have at leading order

Cr — Cy /L Cy /L /L
U=+ N dshshy — ———— [ dshs [ dsh
“CLL,+ CrL [ o T e oL J, T,

and we recover the expression in the lecture notes provided
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displacement y_0 is O(g) on assumption
3 shm S— € = ["" l, & ng) there is no drift
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Aside. No drift entails h(s,t) is such that these
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