
C8.7 Optimal Control

Sheet 4 — HT25

Section A

1. Consider the control problem with one-dimensional state dynamics given by

dXt =
1

3
Utdt+ dWt,

where W is a one-dimensional Brownian motion, Ut is a control process taking values

in the set [0, 1], the horizon is T = 1 and the costs are given by

g(t, x, u) =
2

3
ux(1− t)− t+ 3x+ 1, Φ(x) = −x3.

Show that the value function is given by v(t, x) = −x2(x + 1 − t), and describe the

optimal control.

Solution: We can compute the derivatives

∂tv = x2; Dxv = x(2t− 3x− 2); D2
xxv = 2(t− 3x− 1)

The Hamiltonian is given by

H(t, x,Dxv,D
2
xxv) = min

u∈[0,1]

{
g(t, x, u) + uDxv +

1

2
D2

xxv
}

= min
u∈[0,1]

{2

3
ux(1− t)− t+ 3x+ 1

+
1

3
u
(
x(2t− 3x− 2)

)
+

1

2

(
2(t− 3x− 1)

)}
= min

u∈[0,1]

{
− ux2

}
.

As x2 > 0, the optimizer is obtained by always taking u = 1, and so

H(t, x,Dxv,D
2
xxv) = −x2 = −∂tv(t, x)

so the HJB equation is satisfied. It’s easy to check that v(1, x) = −x3 = Φ(x), so by

the verification theorem, v must be the value function for our control problem, and the

optimal strategy is given by taking u = 1.
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2. Consider the control problem with state dynamics

dXt = (a+ bUt)dt+ (c+ fUt)dWt

where W is a one-dimensional Brownian motion, a, b ∈ R and U = R. Suppose that the
costs are given by

g(t, x, u) = qx2 + ru2 + 2sxu; Φ(x) = x2

with r > 0, and q, s ∈ R, and ΣT > 0.

Show that, provided t is close enough to T , the solution is given by a quadratic v(t, x) =

Σtx
2 + 2Ψtx + Γt, and find the ODEs satisfied by Σt,Ψt,Γt, together with the optimal

control.

Solution: Guessing that the solution is of the stated form, we have the spatial deriva-

tives

Dxv = 2Σtx+ 2Ψ; D2
xxv = 2Σt.

Substituting in the Hamiltonian, we have

H(t, x,Dxv,Dxxv) = inf
u

{
qx2 + ru2 + 2sxu+ (2Σtx+ 2Ψt)(a+ bu) +

(c+ fu)2

2
(2Σt)

}
.

Taking a first order condition (which gives a minimizer, assuming r + f 2Σt > 0 which

holds when t is close enough to T ) we have

0 = 2ru+ 2sx+ b(2Σtx+ 2Ψt) + 2f(c+ fu)Σt

which simplifies to give the optimal control,

u = − 1

r + f 2Σt

(
(s+ bΣt)x+ bΨt + cfΣt

)
= Ktx+Ht,

whereKt = − s+bΣt

r+f2Σt
andHt = − bΨt+cfΣt

r+f2Σt
.We substitute this back into the HJB equation

to get

− ∂t(Σtx
2 + 2Ψtx+ Γt)

= H(t, x,Dxv,Dxxv)

= qx2 + r(Ktx+Ht)
2 + 2sx(Ktx+Ht) + (2Σtx+ 2Ψt)(a+ b(Ktx+Ht))

+ (c+ f(Ktx+Ht))
2(Σt).

Matching coefficients, we get ΣT = 1,ΨT = ΓT = 0, and

−∂tΣt = q + rK2
t + 2sKt + 2bΣtKt + Σtf

2K2
t ,

−∂tΨt = rKtHt + sHt + Σt(a+ bHt) + ΨtbKt + ΣtfKt(fHt + c),

−∂tΓt = rH2
t + 2Ψt(a+ bHt) + (c+ fHt)

2Σt.
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3. Consider a controlled diffusion with drift f and volatility σ. For a given feedback control

U , we define the linear differential operator

LUv = g(t, x, Ut) + f(t, x, Ut)
⊤(Dxv) +

1

2
Tr

[
(D2

xxv)(σσ
⊤)(t, x, Ut)]

(a) Assuming all relevant equations admit sufficiently smooth solutions, and all stochas-

tic integrals with respect to martingales are martingales, show that the value of

the control J(·, ·, U) satisfies the PDE

−∂tJ = LUJ.

(b) The comparison principle states that if w and w′ satisfy

−∂tw ≥ LUw; −∂tw
′ ≤ LUw′

and w(T, ·) ≥ w′(T, ·), then w ≥ w′ for all (t, x).

Design a policy iteration scheme to solve the Hamilton–Jacobi–Bellman equation,

assuming you are able to solve linear PDEs. For your scheme, assuming the com-

parison theorem holds, prove the policy improvement lemma.

Solution:

(a) Let w be the solution to the PDE. We apply Itô’s lemma to calculate the dynamics

of w(t,X t,x,U
t ), which gives (evaluating all terms inside the integral at (s,X t,x,U

s , U))

Φ(XU
T )− w(t, x)

=

∫ T

t

(
(∂tw)ds+ (∂xw)

⊤dX t,x,U
s +

1

2
Tr

[
D2

xxwd⟨X t,x,U⟩s
])

=

∫ T

t

(
(−LUw)ds+ (∂xw)

⊤f(s,X t,x,U
s , U)ds+ (∂xw)

⊤σ(s,X t,x,U
s , U)dWs

)
+

1

2
Tr

[
D2

xxw(σσ
⊤)(t,X t,x,U

s , U)
]
ds

= −
∫ T

t

g(s,X t,x,U
s , Us)ds+

∫ T

t

(∂xw)
⊤σ(s,X t,x,U

s , U)dWs.

Rearranging and taking an expectation, we have

w(t, x) = E
[ ∫ T

t

g(s,X t,x,U
s , Us)ds+ Φ(X t,x,U

T )
∣∣∣Ft

]
so w(t, x) = J(t, x, U).

(b) A simple policy iteration scheme would take vn(t, x) = J(t, x, Un) for the evaluation

step, and Un+1 ∈ argmin{LUvn} for the improvement step. Using this definition,

we clearly have vn(T, x) = Φ(x) for all n, and also

−∂tvn = LUnvn ≥ LUn+1vn.

Mathematical Institute, University of Oxford

Sam Cohen: cohens@maths.ox.ac.uk

Page 3 of 9



C8.7 Optimal Control: Sheet 4 — HT25

However, this implies that

−∂tvn ≥ LUn+1vn; −∂tvn+1 = LUn+1vn+1

so the comparison theorem proves that vn ≥ vn+1, which implies we have the policy

improvement lemma.
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Section B

4. Consider the Merton problem, where an investor has nonnegative wealth X, invests a

fraction U s of their wealth into a risky asset following a geometric Brownian motion,

and consumes a fraction U c of their wealth per unit time. This means that their wealth

satisfies

dXt = −U cXtdt+ U sXt(µdt+ σdWt)

for µ, σ > 0, and costs

g(t, x, u) = −(ucx)1−γ

1− γ
; Φ(x) = − x1−γ

1− γ
.

where uc, us > 0 and γ > 0, γ ̸= 1. Show that the optimal strategy is to invest a

constant proportion of wealth U s in the risky asset, and consume at a deterministic

time-dependent rate U c, determined by the solution to an ODE.

You may wish to use an ansatz of the form v(t, x) = −w(t)x
1−γ

1−γ
, for some positive

function w.

Solution: We take the suggested ansatz v(t, x) = −w(t)x
1−γ

1−γ
. Then our derivatives are

∂tv =
w′(t)

w(t)
v; Dxv = −w(t)x−γ; D2

xxv = γw(t)x−1−γ.

The Hamiltonian is

H(...) = inf
uc,us

{
− (ucx)1−γ

1− γ
+ (−ucx+ µusx)(−w(t)x−γ) +

1

2
(usxσ)2(γw(t)x−1−γ)

}
= inf

uc,us

{
− (uc)1−γ

1− γ
+ (uc − µus)w(t) +

γ

2
(usσ)2w(t)

}
x1−γ

Taking a first order condition gives the pair of equations

0 = −µw(t) + γusσ2w(t)

0 = −(uc)−γ + w(t)

from which we obtain the optimal controls

U s
t =

µ

γσ2
; U c

t = w(t)−1/γ

Observe that us is constant, and uc is independent of Xt. Substituting into the Hamil-

tonian, we have

H(...) =
(
− (w(t))−(1−γ)/γ−1

1− γ
+ w(t)−1/γ − µ2

2γσ2

)
w(t)x1−γ
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and so the HJB equation simplifies to

−w′(t)

w(t)
v =

(
− w(t)−1/γ

1− γ
+ w(t)−1/γ − µ2

2γσ2

)
(γ − 1)v

which in turn simplifies to the (locally Lipschitz) ODE for w

−w′(t)

w(t)
= γw(t)−1/γ +

1− γ

γ

µ2

2σ2

with terminal value w(T ) = 1. Solving this ODE numerically, we find the optimal

consumption rate.
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5. In this question, we consider finite difference approximations of the Hamilton–Jacobi–

Bellman equation. We will consider the problem where the state variable is in one

dimension, and the Hamiltonian is given by

H(t, x, q, a) = inf
u∈[−1,1]

{
uq + a

}
= inf

u∈[−1,1]
H̃(t, x, q, a, u).

For N ∈ N, consider a discrete grid {0, δt, 2δt, ..., Nδt} in time, and

{−Nδx, (−N + 1)δx, ..., 0, ..., (N − 1)δx, Nδx}

in space, where δt = T/N and δx = 1/
√
N .

We assume the problem stops when we hit the numerical boundary (so v(t, x) = Φ(x)

for all t and all x ∈ {±Nδx}). We assign a terminal value Φ(x) = 1− x4

1+x4 .

(a) If v is a C1,2 function, show that (as N → ∞), with k chosen such that t ∈
[(k − 1)δt, kδt],

v(kδt, x)− v((k − 1)δt, x)

δt
= ∂tv(t, x) + o(1)

and, with k chosen such that x ∈ [(k − 1)δx, (k + 1)δx],

v(t, (k + 1)δx)− v(t, kδx)

δx
= Dxv(t, kδx) + o(1)

and

v(t, (k + 1)δx)− 2v(t, kδx) + v(t, (k − 1)δx)

δ2x
= D2

xxv(t, kδx) + o(1).

(b) Using this finite difference scheme, write down an approximation of

vk−1,j := v((k − 1)δt, jδx)

in terms of vk,j, vk,j+1, vk,j−1, when v satisfies the HJB equation.

(c) Show that vk−1,j is a componentwise monotone increasing function of vk,• (where

vk,• represents the vector [vk,j] for j = −N,−N + 1, ..., N), provided 3δt/δ
2
x < 1.

(This is known as being a monotone scheme.) How does this compare with the

discrete-time discrete-state control problem?

(d) Now consider the deterministic problem with Hamiltonian

H(t, x, q) = inf
u∈[−1,1]

{
uq

}
.

Is the basic finite difference numerical scheme for this problem typically monotone?
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(e) For the deterministic problem in the previous part, consider the modified scheme

Ĥ(t, x, vk,·) =


vk,j+1−vk,j

δx
if vk,j+1 < vk,j,

−vk,j−vk,j−1

δx
if vk,j+1 ≥ vk,j

Show that using Ĥ(v) in the place of H(t, x, q) in our numerical approximation

gives a monotone scheme, provided δt/δx < 1. (Approximations of this type are

commonly known as upwind schemes, and are important in order to prove numerical

stability).

(f) Implement the three numerical schemes considered above, for various choices of T

and N , and observe the behaviour of the numerical approximations.

Solution:

(a) This is essentially just the definition of the derivative and second derivative.

(b) Expanding the HJB equation with our approximation, we have

−vk,j − vk−1,j

δt
= H

(
t, x,

vk,j+1 − vk,j
δx

,
vk,j+1 − 2vk,j + vk,j−1

δ2x

)
= −

∣∣∣vk,j+1 − vk,j
δx

∣∣∣+ vk,j+1 − 2vk,j + vk,j−1

δ2x

which rearranges to

vk−1,j = vk,j +
(
−

∣∣∣vk,j+1 − vk,j
δx

∣∣∣+ vk,j+1 − 2vk,j + vk,j−1

δ2x

)
δt

(c) The right hand side can be written as the minimum of

vk,j +
(vk,j+1 − vk,j

δx
+

vk,j+1 − 2vk,j + vk,j−1

δ2x

)
δt

and

vk,j +
(
− vk,j+1 − vk,j

δx
+

vk,j+1 − 2vk,j + vk,j−1

δ2x

)
δt.

The first of these is clearly monotone increasing in vk,j+1 and vk,j−1, and is monotone

increasing in vk,j provided 1− δt
δx
−2 δt

δ2x
> 0. The second equation is always monotone

increasing in vk,j−1, is monotone increasing in vk,j+1 provided δx < 1 (which we

know), and is monotone increasing in vk,j provided 1+ δt
δx
− 2 δt

δ2x
> 0. Both of these

are guaranteed provided 3δt/δ
2
x < 1.

(d) We now have

vk−1,j = vk,j +
(
−

∣∣∣vk,j+1 − vk,j
δx

∣∣∣)δt
Taking vk,j+1 → ±∞ we have vk−1,j → −∞, so this scheme is not monotone.
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(e) Observe that Ĥ is indeed an approximation of H(t, x, q) (with a different choice of

derivative approximator), and vk−1,j is one of

vk,j +
(vk,j+1 − vk,j

δx

)
δt

and

vk,j +
(
− vk,j − vk,j−1

δx

)
δt

These are both monotone functions, provided δt/δx < 1

(f) See PS4 Upwind.ipynb
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