
C8.7 Optimal Control

Sheet 3 — HT25

Section A

1. Consider the optimization problem of finding τ ∈ [0, T ] to minimize∫ τ

0

G(s,Xs)ds+ Φ(Xτ ),

when d
dt
Xt = F (t,Xt), where X ∈ Rm, F is Lipschitz in x, and G is integrable.

(a) By interpreting this as an optimal control problem with controlled drift f(t,Xt, Ut) =

F (t,Xt)Ut and Ut ∈ {0, 1}, and similarly for g, write down the Hamilton–Jacobi

equation describing the minimal value of this problem.

(b) Show that the Hamilton–Jacobi equation is equivalent to the linear complementar-

ity problem

0 = min
{
Φ(x)− v(t, x), ∂tv +G(t, x) + ⟨∇v, F (t, x)⟩

}
.

Solution:

(a) As described, we have a control problem with Hamilton–Jacobi equation −∂tv =

H(t, x,∇v), where the Hamiltonian is given by

H(t, x, q) = min
u∈{0,1}

{
G(t, x)u+ ⟨q, F (t, x)u⟩} = min

{
0, G(t, x) + ⟨q, F (t, x)⟩

}
and terminal value v(T, x) = Φ(x).

(b) We know that −∂tv ≤ 0 and v(T, x) = Φ(x), so v(t, x) ≤ Φ(x). At the same time,

for any (t, x), if v(t, x) = Φ(x), then this implies that x is the best attainable state

(when you start at t, x), which implies ∂tv = 0. Therefore, we know that

0 = min
{
Φ(x)− v(t, x), ∂tv +G(t, x) + ⟨q, F (t, x)⟩

}
which is the desired linear complementarity formulation.
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2. Suppose the (un-minimized) Hamiltonian H̃(t, x, q, u) is convex with respect to u, where

u takes values in a finite-dimensional open set U .

(a) Show that Pontryagin’s minimum principle can be expressed in the form:

d

dt
X∗

t = ∂qH̃,
d

dt
q∗t = ρq∗t − ∂xH̃, 0 = ∂uH̃.

(b) Show that, if ρ = 0 and the Hamiltonian does not depend on time, and the optimal

strategy is differentiable with respect to time, then Pontryagin’s minimum principle

shows that, along the optimal path,

H̃(X∗
t , q

∗
t , u

∗
t ) = constant

(c) (Trickier) Suppose that:

• the state dynamics f are Lipschitz continuous,

• the Hamilton–Jacobi equation admits a C1 solution v with Lipschitz continuous

derivatives,

• H̃ is twice differentiable and strictly convex with respect to u, in particular

∂2
uuH̃(t, u, x, q) has all eigenvalues above ε, for all t, u, x, q.

Show that there exists an optimal control, and that this control is unique.

(d) Explain why, in the setting above, Pontryagin’s minimum principle is both neces-

sary and sufficient for optimality.

Solution:

(a) This is essentially just notation – you calculate the derivatives of H̃(t, x, q, u) =

g(t, x, u) + ⟨q, f(t, x, u)⟩ and compare with Pontryagin’s minimum principle.

(b) If H̃ does not depend on time, assuming u∗ is differentiable, then the previous

results and the chain rule yield

d

dt
H̃(X∗

t , q
∗
t , u

∗
t ) = (∂xH̃)(

d

dt
X∗

t ) + (∂qH̃)(
d

dt
q∗t ) + (∂uH̃)(

d

dt
u∗
t )

= (∂xH̃)(∂qH̃) + (∂qH̃)(−∂xH̃) + 0

= 0.

This connects with the interpretation, in physical problems, of the Hamiltonian as

the total system energy (ie the sum of potential and kinetic energies), which is a

conserved quantity.

(c) As H̃ is strictly convex and ∂uH̃ has nonvanishing derivative, we know that there

exists an interior minimizer which satisfies ∂uH̃(t,X∗
t , q

∗
t , u) = 0. An admissible
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control is optimal if and only if this equation is satisfied, and there is at most one

value of u (for each X∗
t , q

∗
t ) which satisfies this equation, so the optimal control

(if it exists) must be unique. The challenge is to simultaneously construct the

optimal control U∗ and the optimal trajectory X∗
t (with which we can compute

q∗t = ∇v(X∗
t )).

For t fixed, consider the map u 7→ ∂uH(t, x, q, u) =: h(x, q, u). Suppose u satisfies

∂uH(t, x, q, u) = 0 for a given x, q. Using a Taylor expansion we know that, for

(x′, q′, u′) near (x, q, u), with all derivatives being evaluated at (x, q, u),

∂uH(t, x′, q′, u′) = (Dxh)(x
′ − x) + (Dqh) · (q′ − q) + (Duh) · (u′ − u) + error

where the error is sublinearly small. Our assumptions guarantee that the matrix

Duh has an inverse, which is uniformly bounded in (x, q, u). Therefore, if we wish

u′ to be optimal at x′, q′, we have a variation on the inverse function theorem:

u′ = u− (Duh)
−1
(
(Dxh)(x

′ − x) + (Dqh) · (q′ − q)
)
+ error.

(This can, of course, be made fully rigorous, by use of a contraction mapping result.)

We conclude that the optimal strategy u′ is a Lipschitz continuous function of x′

and q′. More precisely, there exists a Lipschitz continuous function u∗(t, ·, ·) :

Rm × Rm×m → U which satisfies the optimality condition

∂uH̃(t, x, q, u∗(t, x, q)) = 0.

Given this, together with the smoothness of the solution v to the Hamilton–Jacobi

equation, there exists a solution X∗ to the state equation

d

dt
X∗

t = f
(
t,X∗

t , u
∗(t,X∗

t ,∇v(X∗))
)
,

so U∗
t = u∗(t,X∗

t ,∇v(X∗)) is admissible. By construction, we know U∗ satisfies

the optimality condition along this trajectory, so we conclude that U∗ is the unique

optimal control.

(d) In the setting discussed, we know that an optimum indeed exists, and therefore it is

necessary that Pontryagin’s principle holds. However, as u∗ is a Lipschitz function

of x, q, we know that the system of equations in Pontryagin’s principle admits a

unique solution. It follows that there is exactly one triple (X∗, q∗, U∗) satisfying

Pontryagin’s principle, which implies that all solutions are optimal.
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3. Suppose we have controlled state dynamics f which satisfy (for all x, u)

⟨x, f(x, u)⟩ ≤ C(1 + ∥x∥3/2)

for some constant C.

(a) Using the comparison theorem for ODEs, show that for any control U , the con-

trolled trajectory satisfies ∥XU
t ∥ ≤ C(1 + ∥x0∥)(1 + t2), for some C > 0.

The process yt with y0 = 1 and dynamics d
dt
yt = Cy

1/2
t may provide a useful upper

bound on ∥XU
t ∥2/(1 + ∥x0∥2).

(b) Consider controlling this process over the horizon [0, T ], where we assume the cost

process satisfies |g(t, x, u)| < C(1 + ∥x∥) and we have a discount rate ρ > 0. Show

that the total discounted cost of any control remains bounded as T → ∞.

(c) Suppose the time-homogenous Hamilton–Jacobi equation

0 = −ρv +H(x,∇v)

admits a bounded C1 solution. Assuming the dynamic programming principle

holds, show that this must be the value function of the infinite horizon discounted

control problem. (Hint: Compare the behaviour over finite horizons.)

Solution:

(a) Fix a control U . We know that ∥XU
t ∥2 = ⟨XU

t , X
U
t ⟩ has dynamics

d

dt
∥XU

t ∥2 = 2⟨XU
t , f(t,Xt, Ut)⟩ ≤ C(1 + ∥XU

t ∥3/2).

Dividing by (1 + ∥x0∥)2 simply reduces C, and gives a process which starts in the

unit ball.

Consider the function yt with y0 = 1 and (Locally Lipschitz) dynamics d
dt
yt = Cy

1/2
t ,

which has solution yt =
(2+Ct)2

4
≥ 1. Observe that y2t has dynamics d

dt
y2t = 2Cy

3/2
t ,

and that 2C∥y∥3/2 ≥ C(1 + ∥y∥3/2) for all y ≥ 1. The comparison theorem for

ODEs (see Part A DE1 for a proof), then yields the desired growth bound

∥XU
t ∥2

(1 + ∥x0∥)2
≤ y2t =

((2 + Ct)2

4

)2

≤
(4 + C2t2

2

)2

.

(b) We know from above that ∥XU
t ∥ ≤ C(1+∥x0∥)(1+ t2). This implies that, for some

constant C (which can vary from line to line)∫ ∞

0

|e−ρtg(t,XU
t , Ut)|dt ≤

∫ ∞

0

Ce−ρt(1 + ∥XU
t ∥)dt

≤
∫ ∞

0

Ce−ρt(1 + ∥x0∥)(1 + t2)dt

≤ C(1 + ∥x0∥)
1

ρ3
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This provides a global bound on the discounted cost of any control, as required.

(c) By dynamic programming, we know that v is the value function of the control

problem on horizon [0, T ], if we specify that the terminal value at T is Φ(XT ) =

v(XT ). (This can be seen by simply verifying that v satisfies the finite-horizon

Hamilton–Jacobi equation). Furthermore, for every T > 0 and ε > 0, there exists

a control U ε such that

v(x) + ε ≥
∫ T

0

e−ρtg(s,X t,x,Uε

s , U ε
s )ds+ e−ρ(T−t)v(X t,x,Uε

T ) ≥ v(x).

As v is bounded, we can take T → ∞ to see that there exists a control U such that

v(x) + ε ≥
∫ ∞

0

e−ρtg(s,X t,x,Uε

s , U ε
s )ds.

Now define the infinite-horizon discounted cost-to-go, for a general control U , which

satisfies, for some C > 0

J(t, x, U)

=

∫ ∞

t

e−ρ(s−t)g(s,X t,x,U
s , Us)ds

=

∫ T

t

e−ρ(s−t)g(s,X t,x,U
s , Us)ds+ e−ρ(T−t)J(T,X t,x,U

T , U)

≥
∫ T

t

e−ρ(s−t)g(s,X t,x,U
s , Us)ds+ e−ρ(T−t)v(X t,x,U

T )− Ce−ρ(T−t)C(1 + ∥x∥)ρ−3

≥ v(x)− Ce−ρ(T−t)ρ−3(1 + ∥x∥)(1 + T 2)

Taking T → ∞ shows that J(t, x, U) ≥ v(x) for all t, U . A similar argument shows

that

J(t, x, U ε) ≤ v(x) + ε+ Ce−ρ(T−t)ρ−3(1 + ∥x∥).

Taking T → ∞, ε → 0, we conclude that v is indeed the optimal value for the

problem.

(Note that we never really used the assumption that v is C1, apart from to make

sure that v is the value function over the corresponding finite horizon problem.)
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Section B
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4. Consider a deterministic control problem with underlying state dynamics satisfying the

scalar second order controlled ODE

d2

dt2
Xt = Ut −

d

dt
Xt

with initial values (X0, Ẋ0) = (1, 0). Suppose we seek to minimize the value of∫ T

0

(X2
t + U2

t )dt.

Reexpress this problem as a vector-valued first order equation, and hence derive an

equation for the value function in terms of a system of Riccati equations, and for the

optimal control in feedback form.

Using a backwards Euler scheme, solve the system of Riccati equations numerically, and

hence state the value, and optimal control at time t = 0.

Solution: We can rewrite our equation as the vector equation

d

dt
Xt =

d

dt

[
Xt

Ẋt

]
=

[
Ẋt

Ut − Ẋt

]
=

[
0 1

0 −1

]
︸ ︷︷ ︸

A

Xt +

[
0

1

]
︸ ︷︷ ︸

B

Ut

We observe that these are linear dynamics, and the cost is given by the Quadratic form∫ T

0

(X2
t + U2

t )dt =

∫ T

0

(
X⊤

t

[
1 0

0 0

]
︸ ︷︷ ︸

Q

Xt + U2
t

)
dt

As this is a linear quadratic problem, we see that the value function v(t, x) = x⊤Σtx+

2Ψtx + Γt can be obtained by solving the Riccati equations (with R = 1, and other

parameters zero, in our calculations from lectures)

Kt = −R−1B⊤Σ̄t, Ht = 0,

−∂tΣt = Q+K⊤
t RKt + 2Σ̄t(A+BKt),

−∂tΨt = Ψt(A+BKt),

−∂tΓt = 0

with ΣT = 0, ΨT = 0, and ΓT = 0. The optimal control is then given by

U∗
t = KtXt.

Numerically, the initial value is given by v(x0) ≈ 0.9714 and the initial control by

U0 ≈ −0.3536 (see PS3 LQ.ipynb)
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5. Write down a deterministic control problem where there are exactly two (distinct) tra-

jectories for the optimally controlled state process X.

Solution: Example 3.2.8 in the lecture notes has this property, if we start with the

initial value X0 = 0.

6. Consider a deterministic optimal control problem, with optimal state trajectory X∗,

and costs
∫ T

0
g(t,XU

t , Ut)dt+ Φ(XU
T ).

(a) Show that X∗ is still optimal for the problem with costs defined by g̃(t, x, u) =

g(t, x, u) + α1∥x−X∗
t ∥>ε and Φ̃(x) = Φ(x) + α1∥x−X∗

T ∥>ε, for any α, ε > 0.

(b) Show that X∗ may not be optimal for the problem with costs defined by g̃(t, x, u) =

g(t, x, u)−α1∥x−X∗
t ∥>ε and Φ̃(x) = Φ(x)−α1∥x−X∗

T ∥>ε, for some choices of α, ε > 0

(c) Suppose Pontryagin’s minimum principle is satisfied for the original problem. Show

that Pontryagin’s minimum principle is also satisfied for both of the variations

above. What conclusion do you draw?

Solution:

(a) We know that, in our original problem, the optimal strategy will result in state

trajectory X∗. If we raise costs for other strategies, this will clearly not result in

them becoming optimal. As we have not altered the costs for the optimal strategy,

it therefore must remain optimal.

(b) A simple counterexample is to suppose g(t, x, u) = 0, and to take ε small enough

that there exists a control U with ∥XU
T − X∗

T∥ > ε. If we then set α > Φ(X∗
T ) −

Φ(XU
T ), we conclude that with our pertubed costs, we know that XU has a lower

overall cost than X∗, so X∗ cannot be an optimal trajectory.

(c) In both the cases above, we do not vary our cost in a neighbourhood of X∗. As

Pontryagin’s principle only refers to the behaviour of costs in a neighbourhood of

the optimal trajectory, it must remain valid in both cases. We conclude that (as we

already knew) Pontryagin’s principle is generally only a necessary condition, but

not a sufficient condition, for optimality (cf. Q2 )
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7. Consider the problem of minimizing the cost
∫ 3

0
(U4

t −X2
t )dt+X2

3 , where X is a scalar

process following the controlled dynamics d
dt
Xt = Ut − Xt + sin(t) and X0 = 1, where

U ∈ U = R. Observe that this gives a convex Hamiltonian, so we believe that the

optimal strategy should be unique, and should be determined by Pontryagin’s minimum

principle.

Implement a forward-in-time Euler discretization of the equations in Pontryagin’s min-

imum principle, assuming you know the value of q0 = ∇v(x0). By using a bisection

search, or otherwise, find the value of q0 which gives the correct value of qT , and hence

find a solution to the control problem.

Compare the cost of your strategy with the cost of a constant control u = 0

Solution: See file PS3 Pontryagin.ipynb.
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