
C8.7 Optimal Control

Sheet 2 — HT25

Section A

1. Consider the control of a process X which takes values in the discrete set {(i, j); i, j ∈
{0, 1, ..., K−1}}. At each time, the controller can choose either to do nothing, in which

case X will take a step in a randomly chosen cardinal direction (in particular, to one of

the four points of the form (i±1, j±1)(modK), so this is a discrete walk on the torus).

Alternatively, the controller can choose one direction, and modify the probability of

walking in that direction to be a given constant α < 1, while all other directions are

chosen with equal probability.

If the controller chooses to intervene, they must pay a cost 1 for doing so. In addition, at

each time in state (i, j), they face a random state-dependent cost taken from a Binomial

(N, i+1
i+j+1

) distribution.

Implement policy iteration to solve this problem.

Solution: See attached file PS2 policy.ipynb

2. Prove that the SARSA iteration, as described in the lecture notes, converges.

Solution: We follow the proof of convergence of Q-learning in the lecture notes. We

define Take Qπ
n to be the sequence generated by SARSA, and Qπ to be the true Qπ-

function. Define

Yn(x, u) = Qπ
n(x, u)−Qπ(x, u),

αn(x, u) = αn1{(Xn,Un)=(x,u)},

Zn+1(x, u) =
[
Gn + e−ρQπ

n(Xn+, Un+)−Qπ(Xn, u)
]
1{(Xn,Un)=(x,u)}.

With this notation, simple rearrangement shows that Yn(x, u) satisfies the dynamics

Yn+1(x, u) =
(
1− αn(x, u)

)
Yn(x, u) + αn(x, u)Zn+1(x, u).

From the definition of Qπ, we know that

0 = Eu
[
Gn + e−ρQπ(Xn+, Un+)−Qπ(x, u)

∣∣∣Fn

]
1{(Xn,Un)=(x,u)}
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and thus

E[Zn+1(x, u)|Fn] = E
[
Gn + e−ρQπ

n(Xn+, Un+)−Qπ(Xn, u)
∣∣∣Fn

]
1{(Xn,Un)=(x,u)}

= e−ρE
[
Qπ

n(Xn+, Un+)−Q(Xn+, Un+)
∣∣∣Fn

]
1{(Xn,Un)=(x,u)},

Taking an absolute value, we have the bound∣∣E[Zn+1(x, u)|Fn]
∣∣ ≤ e−ρmax

x,u

∣∣Qπ
n(x, u)−Qπ(x, u)

∣∣ = e−ρ∥Yt∥∞.

We also know (using (a+ b)2 ≤ 2a2 + 2b2) that

(Zn+1(x, u))
2 ≤ 2

(
Gn−Qπ(x, u)+e−ρQπ(Xn+, Un+)

)2

+2e−ρ
(
Qπ

n(Xn+, Un+)−Qπ(Xn+, Un+)
)2

,

and so

E[(Zn+1(x, u))
2|Fn] ≤ c(1 + ∥Y ∥2∞)

for some c > 0. Combining with our previous bound, we get the desired growth bound

on the variance. As e−ρ < 1, applying Lemma 2.3.4 we conclude that ∥Yn∥∞ → 0 a.s.,

as desired.
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3. Consider a modification of the value iteration process, where instead of updating all

states simultaneously, we iterate through the states and only update the value associated

with each state in turn. Prove that this process gives a convergent approximation of

the true value function.

Proof. Comparing with the proof of convergence given in lectures, we define the operator

T i which is given by

(T iv)(x) =

v(x) if i ̸= x

(T v)(x) if i = x.

Now it is not the case that T i is a contraction, but it is true that

∥T iv(x)− T iv′(x)∥ ≤

∥v − v′∥∞ if i ̸= x

e−ρ∥v − v′∥∞ if i = x.

In particular, we see that

∣∣∣ |X |∏
i=1

T iv(x)−
|X |∏
i=1

T iv′(x)
∣∣∣ = ∣∣∣T x

∏
i<x

T iv(x)− T x
∏
i<x

T iv′(x)
∣∣∣

≤ e−ρ
∥∥∥∏

i<x

T iv −
∏
i<x

T iv′
∥∥∥
∞

≤ e−ρ∥v − v′∥∞

So the concatenation
∏|X |

i=1 T i is a contraction, which gives our result.

4. Consider the Markov Decision problem where an agent wishes to minimize

J(U) = EU
[ τ∑

t=0

g(Xt, Ut)
]

where τ is a geometric random variable independent of the control and the state process

(and the other terms are as we usually define them). Show that this is equivalent to a

discounted control problem.

Solution: We know that P(τ = T ) = (1 − p)pT , for some p > 0. Therefore, as τ is
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independent of the control and X, we can write

J(U) =
∑
T

EU
[ T∑

t=0

g(Xt, Ut)
]
P(τ = T )

= EU
[∑

T

T∑
t=0

g(Xt, Ut)
]
(1− p)pT

= EU
[∑

t

∞∑
T

pTg(Xt, Ut)
]
(1− p)

= EU
[∑

t

( ∞∑
T

pT (1− p)
)
g(Xt, Ut)

]
= EU

[∑
t

pTg(Xt, Ut)
]
.

Setting ρ = − log p gives our usual notation.
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Section B

5. For the situation in Question 1, implement value iteration, and compare the convergence

of this algorithm with policy iteration.

Solution: See attached file PS2 value policy.ipynb

6. Consider the pollution regulation problem from Sheet 1. Implement a Q-learning algo-

rithm which solves the problem, and compare the results with the explicit solution for

appropriate choices of parameter values illustrating two different optimal solutions.

Solution: See attached file PS2 QL.ipynb

7. In this question, we consider at an agent who faces a discrete time MDP over an infinite

horizon, with a time-homogenous cost g(x, u) and transition probabilities p(x′;x, u). As

usual, our actions take values in a compact set U , and g and p are both continuous with

respect to u.

However, this agent wants to minimize the long-run average cost

J̄(X0, U) := lim sup
T→∞

1

T
EU

[ T∑
t=0

g(Xt, Ut)
]
.

We consider this through an approximate infinite-horizon discounted problem, where

the agent seeks to minimize

Jρ(X0, U) = EU
[ T∑

t=0

e−ρtg(Xt, Ut)
]
.

We write vρ for the value function for the discounted problem. We aim to show that

taking ρ → 0 gives a problem which converges, in an appropriate sense, to the long-run

average cost problem.

We suppose the following geometric ergodicity property holds:

Assumption: There exist constants R, γ > 0 such that,

max
U∈U

max
x,x̃,x′∈X

∣∣∣PU [Xt = x′|X0 = x]− PU [Xt = x′|X0 = x̃]
∣∣∣ ≤ Re−γt for all t.

This assumption guarantees that, for every feedback control Ut = u(Xt), the state X is

a Markov chain under PU with a unique stationary distribution πU , and the distribution

of Xt converges to this stationary distribution (geometrically quickly, in total variation

norm).

For simplicity, we write C = maxx,u |g(x, u)|.
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(a) Assuming there is an optimal control which is of feedback form, show that the

long-run average cost criterion is the same as minimizing the expected cost∑
x

πU(x)g(x, u(x))

where πU is the stationary distribution when using the feedback control U .

(Hint: It may help to know that if an is a convergent sequence as n → ∞, then the

Cesàro sums n−1
∑

m≤n am are also convergent as n → ∞, to the same limit.)

(b) By taking the trivial example g(x, u) ≡ 1, or otherwise, explain why vρ(x) typically

diverges as ρ → 0.

(c) Show that ṽρ(x) := vρ(x)− vρ(0) satisfies

ṽρ(x) = min
u

{
g(x, u)− (1− e−ρ)vρ(0) + e−ρ

∑
x′

p(x′;x, u)ṽ(x′)
}

and taking the argmin in this equation gives the same (optimal) controls as vρ.

(d) Using the geometric ergodicity assumption, show that

|ṽρ(x)| = |vρ(x)− vρ(0)| ≤ R|X |
1− e−(γ+ρ)

C.

Hint: Fix an optimal policy, and write out the value function as an infinite sum.

(e) Show that (1− e−ρ)|vρ(0)| ≤ C.

(f) Using the inequalities above, show that we can take a sequence ρ → 0 such that

ṽρ(x) converges to some v̄(x) for every x, and (1−e−ρ)vρ(0) converges to a constant

λ, where v̄ and λ satisfy the ergodic Bellman equation:

v̄(x) = min
u

{
g(x, u)− λ+

∑
x′

p(x′;x, u)v̄(x′)
}
.

(g) Show that the λ you have just constructed is the optimum value for the long-run

average cost criterion, and a time-homogenous feedback control u is optimal if and

only if

u(x) ∈ argminU

{
g(x, u)− λ+

∑
x′

p(x′;x, u)v̄(x′)
}
.

(You may assume that there exists an optimal control of feedback form.)

(h) Show that this problem generally admits other (time dependent) optimal controls.

Solution:
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(a) If u is a feedback control, we know that EU [g(Xt, u(Xt))] →
∑

t π
U(x)g(x, u(x))

as t → ∞ (because of the convergence of the law of Xt). The Cesàro sum

T−1
∑T

t=0 EU [g(Xt, u(Xt))] has the same limit as EU [g(Xt, u(Xt))] (as it is con-

vergent), giving the result.

(b) In this trivial example, we know that vρ(x) =
∑∞

t=0 e
−ρt = 1

1−e−ρ . Taking ρ → 0

we see this diverges. This is the typical behaviour, as the total undiscounted cost

becomes infinite when we consider it over an infinite horizon, as we will face the

same costs infinitely many times.

(c) This is similar to the deterministic shifts we saw in sheet 1. In particular, we know

that, with T ρ the usual Bellman operator with discount rate ρ, we have

T ρ(ṽ) = T ρ(vρ)− e−ρvρ(0) = vρ − e−ρvρ(0) = ṽ + (1− e−ρ)vρ(0).

Rearrangement gives the desired result. That the optimal control remains un-

changed is simply because adding a constant doesn’t ever change your optimal

controls (as we saw on sheet 1).

(d) If uρ is an optimal control for the problem with discount rate ρ, we can write our

value function as

vρ(x) =
∑
t

∑
x′

p0,t(x
′;x, uρ)e−ρtg(x′, uρ(x′))

Subtracting, we see that

|vρ(x)− vρ(0)| =
∣∣∣∑

t

∑
x′

(
p0,t(x

′;x, uρ)− p0,t(x
′; 0, uρ)

)
e−ρtg(x′, uρ(x′))

∣∣∣
≤

∑
t

∑
x′

∣∣∣p0,t(x′;x, uρ)− p0,t(x
′; 0, uρ)

∣∣∣e−ρt|g(x′, uρ(x′))|

≤
∑
t

∑
x′

Re−γte−ρtC

≤ R|X |
1− e−(γ+ρ)

C.

(e) Using the same expansion as above, we see

|vρ(x)| ≤
∑
t

∑
x′

p0,t(x
′;x, uρ)e−ρt max

x,u
|g(x, u)| = 1

1− e−ρ
C.

(f) We notice from the above inequalities that ṽ(x) and (1− e−ρ)vρ(0) live in compact

sets. Therefore, we can take any sequence ρ → 0, and find a subsequence for
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which these terms all converge. Taking limits in the Bellman equation, with λ =

lim(1− e−ρ)vρ(0) and v̄(x) = lim ṽρ(x), we have

v̄(x) = min
u

{
g(x, u)− λ+

∑
x′

p(x′;x, u)v̄(x′)
}
.

(g) From the ergodicity assumption, we know that any control umakesX into a Markov

chain with stationary distribution πU , which satisfies πU(x′) =
∑

x p(x
′;x, u(x))πU(x).

Therefore, we know∑
x

πU(x)v̄(x) =
∑
x

πU(x)min
u

{
g(x, u)− λ+

∑
x′

p(x′;x, u)v̄(x′)
}

≤
∑
x

(
πU(x)g(x, u(x))

)
− λ+

∑
x,x′

(
πU(x)p(x′;x, u(x))v̄(x′)

)
=

∑
x

(
πU(x)g(x, u(x))

)
− λ+

∑
x′

(
πU(x′)v̄(x′)

)
and hence

λ ≤
∑
x

(
πU(x)g(x, u(x))

)
.

From part (a), this shows that λ is less than or equal to the long-run average cost

under the arbitrary feedback control u. We also see that this is an equality if and

only if u achieves the minimum in the ergodic Bellman equation, that is, u is an

optimal policy.

(h) Simply notice that you can change the control at any finite number of times (ar-

bitrarily) without changing the long-run average cost. Therefore, modifying an

optimal control in this way will always yield another optimal control.
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