C8.7 Optimal Control
Sheet 4 — HT25

Section A
1. Consider the control problem with one-dimensional state dynamics given by
1
dXt = gUtdt + th,

where W is a one-dimensional Brownian motion, U; is a control process taking values

in the set [0, 1], the horizon is T'= 1 and the costs are given by
2 3
g9(t, v, u) Zgux(l—t)—t+3x+1, O(z) = —a®.

Show that the value function is given by v(t,z) = —z*(z + 1 — t), and describe the

optimal control.

Solution: We can compute the derivatives
o = % D,v = z(2t — 3z — 2); D? v=2(t—3z—1)
The Hamiltonian is given by

1
H(t,z, Dyv, D%,0) = min {g(t, 1) + uDyv + §Dfmv}
u€l0,1

2
= ] — 1—¢t)—t+3 1
min {Sur(l— )~ 4 30+

1 1
+ 5u(:c(mt ~ 3z — 2)) + 5(2(15 ~ 3z — 1))}
= min { — uxQ}.
u€(0,1]
As 2% > 0, the optimizer is obtained by always taking u = 1, and so
H(t,r, D,v,D? v) = —2* = —0u(t, r)

so the HJB equation is satisfied. It’s easy to check that v(1,z) = —2% = ®(x), so by
the verification theorem, v must be the value function for our control problem, and the

optimal strategy is given by taking u = 1.
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2. Consider the control problem with state dynamics
dXt = (Cl + bUt)dt + (C + fUt)th

where W is a one-dimensional Brownian motion, a,b € R and &/ = R. Suppose that the

costs are given by
g(t, x,u) = qz° + ru® + 2sau; d(r) = 2°
with » > 0, and ¢,s € R, and 7 > 0.

Show that, provided t is close enough to T', the solution is given by a quadratic v(t, x) =
¥2? + 2U,z + Ty, and find the ODEs satisfied by %, U,, ', together with the optimal

control.

Solution: Guessing that the solution is of the stated form, we have the spatial deriva-

tives
D,v = 2%z + 2V, Dixv = 2>.

Substituting in the Hamiltonian, we have
2
H(t,z,Dyv, Dyyv) = inf {qx2 +ru? + 2svu + (257 4+ 29,)(a + bu) + @(2&)}.

Taking a first order condition (which gives a minimizer, assuming r + f23; > 0 which

holds when t is close enough to T') we have
= 2ru + 2sx + b(25x + 2Wy) + 2f (c + fu)>,

which simplifies to give the optimal control,

1
u = _Tf?Zt <(S -+ bzt).ﬁlf + b\IJt -+ Cf2t> = Ktﬂf -+ Ht,
where K; = —Tffzzit and H, = — b‘fj:}?;?t We substitute this back into the HJB equation

to get

— (S + 2V + 1))

= H(t,z, Dyv, Dyyv)

= qr* +r(Kx 4+ H)? + 2s2( Ko + Hy) + (25,0 + 2W,)(a + b(K,x + Hy))
+ (c+ f(Kux + Hy))* ().

Matching coefficients, we get ¥ =1, W =1y =0, and

—atZt =q+ ’T’Kf + 28Kt + QbEth + EthKE,
—815\1115 = T'Kth + SHt + Zt(a + th) + \IltbKt + Etht<th + C),
—atrt = THtZ ‘l— 2\:[/75((1 + th) + (C + th)QZt.
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3. Consider a controlled diffusion with drift f and volatility o. For a given feedback control

U, we define the linear differential operator
1
L% = g(t, 2, U) + f(t 2, 0) (Dov) + 5Tr | (D2,0)(00T) (¢, 7, U]

(a) Assuming all relevant equations admit sufficiently smooth solutions, and all stochas-
tic integrals with respect to martingales are martingales, show that the value of
the control J(-,-,U) satisfies the PDE

—0yJ = LY.
(b) The comparison principle states that if w and w’ satisfy
—0yw > LYw:; o’ < LY

and w(T,-) > w'(T,-), then w > w' for all (¢, x).
Design a policy iteration scheme to solve the Hamilton—Jacobi-Bellman equation,
assuming you are able to solve linear PDEs. For your scheme, assuming the com-

parison theorem holds, prove the policy improvement lemma.

Solution:

(a) Let w be the solution to the PDE. We apply [t6’s lemma to calculate the dynamics

of w(t, X", which gives (evaluating all terms inside the integral at (s, Xb=U 1))
O(X7) —w(t, z)
_ /t ! ((@w)ds + (D) TdXEOU 4 %Tr [wawd<Xt’x’U>5D
— / ! ((—EUw)ds + (O,w) " f(s, X0™V U)ds + (9,w) o (s, X0™Y, U)dWs>
t
+ %Tr [Dfmw(aaT)(t, xtal, U)} ds

T T
= / 9(s, XLV Uy)ds + / (O,w) T o(s, XE™V, U) AW,
t t
Rearranging and taking an expectation, we have
T
witx) =E[ [ gls. X5, U)ds + 24| 7]
t

sow(t,x) = J(t,z,U).

(b) A simple policy iteration scheme would take v, (¢, x) = J(t, z, U,) for the evaluation
step, and U, 41 € argmin{L"v,} for the improvement step. Using this definition,

we clearly have v, (T, x) = ®(x) for all n, and also

—0yuy, = LY, > LUy,
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However, this implies that
_atvn Z LUn+1vn; _atvn—l-l - EUnJrlUn—l-l

so the comparison theorem proves that v,, > v,1, which implies we have the policy

improvement lemma.
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Section B

4. Consider the Merton problem, where an investor has nonnegative wealth X, invests a
fraction U? of their wealth into a risky asset following a geometric Brownian motion,
and consumes a fraction U¢ of their wealth per unit time. This means that their wealth

satisfies
dX; = -U°X,dt + U Xy (pudt + odWy)

for p, o > 0, and costs

c,\1—y 1—v
A PO
-

g(tax7u> = -

where u¢;u® > 0 and v > 0, v # 1. Show that the optimal strategy is to invest a
constant proportion of wealth U® in the risky asset, and consume at a deterministic

time-dependent rate U€, determined by the solution to an ODE.

1—v .-
wj, for some positive

You may wish to use an ansatz of the form v(t,r) = —w(t)%

function w.

Solution: We take the suggested ansatz v(t,z) = —w(t)“"f_?. Then our derivatives are
w'(t)
o = v, D,v=—w(t)x™"; D? v =~w(t)z 177,

The Hamiltonian is

H(.)= inf { - %

{ ()

1 -y

1
+ (—ue + pute) (—w(t)a™) + é(usxa)z(’yw(t)x_l_“/)}
+ (u® — pu)w(t) + %(usa)Qw(t)}x1_7
Taking a first order condition gives the pair of equations

0 = —pw(t) + yu'c?w(t)
0=—(u)"" 4+ w(t)

from which we obtain the optimal controls

s _ :u c __ -1/
U; = Ui =w(t)~”

Observe that u® is constant, and u° is independent of X,. Substituting into the Hamil-

tonian, we have

(w(t)) =P -1 p -
H(..)= <— )Y — —) t v
(...) — + w(t) 2707 w(t)x
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and so the HJB equation simplifies to

w(t) 11—~

C8.7 Optimal Control: Sheet 4 — HT25

w’(t)v _ ( Cw(t) +w(t) M — #_2> (v —1)v

202

which in turn simplifies to the (locally Lipschitz) ODE for w

:’}/w

~ 11— p?
Y A
)"+ 207

with terminal value w(7T) = 1. Solving this ODE numerically, we find the optimal

consumption rate.
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5. In this question, we consider finite difference approximations of the Hamilton—-Jacobi—-
Bellman equation. We will consider the problem where the state variable is in one
dimension, and the Hamiltonian is given by

H(t,xz,q,a) = inf {uq—i—a}: inf H(t,z,q,a,u).
ue[—1,1] ue[—1,1]

For N € N, consider a discrete grid {0, d;, 2d;, ..., No;} in time, and
{=Né;, (=N +1)d,,...,0, .., (N — 1)d,, No, }

in space, where 6, = T/N and 6, = 1/v/N.

We assume the problem stops when we hit the numerical boundary (so v(t,x) = ®(z)

for all £ and all € {£NJ,}). We assign a terminal value ®(z) =1 — %

(a) If v is a C''? function, show that (as N — oo), with k chosen such that ¢ €
[(k = 1)6t, kdy],

v(kdy, ) —v((k — 1), x)
Wy

= Ow(t,x) + o(1)

and, with & chosen such that = € [(k — 1)d,, (k + 1)d,],

o(t, (k+1)8,) — v(t, kd,)

: = D,u(t, k6,) + o(1)

and

u(t, (k + 1)) — 20(t, k6,) + o(t, (k — 1)8,)

5 = D2 v(t, ké,) + o(1).

(b) Using this finite difference scheme, write down an approximation of
V-1, = U((k — 1)5t7]51‘)

in terms of vy ;, Vg j+1, Uk j—1, when v satisfies the HJB equation.

(c) Show that vj_;; is a componentwise monotone increasing function of vy, (where
Uk represents the vector [vg ;] for j = —N,—N +1,..., N), provided 36,/62 < 1.
(This is known as being a monotone scheme.) How does this compare with the

discrete-time discrete-state control problem?

(d) Now consider the deterministic problem with Hamiltonian

H(t,z,q) = inf }{uq}.

ue[—1,1

Is the basic finite difference numerical scheme for this problem typically monotone?
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(e) For the deterministic problem in the previous part, consider the modified scheme

VU j+1—Vk . j .

A W if Vi,j+1 < Vg j,
H(t,z,v.) =

’ _ Yk Uk,j-1

5 if Vg j1 > Uk

Show that using H(v) in the place of H(t,,q) in our numerical approximation
gives a monotone scheme, provided d,/d, < 1. (Approximations of this type are
commonly known as upwind schemes, and are important in order to prove numerical
stability).

(f) Implement the three numerical schemes considered above, for various choices of T'

and N, and observe the behaviour of the numerical approximations.

Solution:

(a) This is essentially just the definition of the derivative and second derivative.

(b) Expanding the HJB equation with our approximation, we have

Ukj — Uk-1ly H(t Ukjtl — Ukyj Ukl — 2Uky + Uk,H)
- el

O¢ Oy ’ 92
| Vkg41 = Uk | | Ukl — 20k + Uk
= — + .
O 02
which rearranges to
_ Ukl = Vkg| | Vkgtl = 20k + Ukjo1 s
V-1, = Uk + | — 5 + 52 t
x x

(c) The right hand side can be written as the minimum of

Ukj+l — Uky . Ukjt+1 — 2Ukj + Uk j—1 5
’Ukyj + 5 + 52 t
X X

and

Ukj+1 = Ukj | Ukl = 2V + Vi1
Uk i + - + 6t.

’ 0 02

x x
The first of these is clearly monotone increasing in vy, j41 and v j—1, and is monotone
increasing in vy, ; provided 1— g—t —2(‘;—; > (. The second equation is always monotone

x x

increasing in v ;_1, is monotone increasing in v ;41 provided 9, < 1 (which we
know), and is monotone increasing in vy ; provided 1+ g—t — 2(‘;—; > (. Both of these

are guaranteed provided 36;/0% < 1.

(d) We now have

Vk,j+1 — Uk,j

Oy )5t

Taking vy j4+1 — £00 we have v,_;; — —00, so this scheme is not monotone.

Vk—1,5 = Ukj + ( -
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(e) Observe that H is indeed an approximation of H(t,x,q) (with a different choice of

derivative approximator), and vj_; ; is one of

Vg, j4+1 — Uk,j
U]f,j + (5— (St
X

and
Vk,j — Uk,j—1
Uk, j + < - %)(%
These are both monotone functions, provided d,/d, < 1

(f) See P34 Upwind.ipynb
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