C8.7 Optimal Control
Sheet 3 — HT25

Section A

1. Consider the optimization problem of finding 7 € [0, T] to minimize
/ G(s, X5)ds + ¢(X,),
0

when %Xt = F(t, X;), where X € R™  F' is Lipschitz in x, and G is integrable.

(a) By interpreting this as an optimal control problem with controlled drift f(t, X, U;) =
F(t, X;)U; and U; € {0,1}, and similarly for g, write down the Hamilton-Jacobi

equation describing the minimal value of this problem.

(b) Show that the Hamilton—Jacobi equation is equivalent to the linear complementar-

ity problem

0 = min {(P(x) —o(t,z), 0w + G(t,z) + (Vo, F(t, x)>}

Solution:

(a) As described, we have a control problem with Hamilton—Jacobi equation —d,v =

H(t,z,Vv), where the Hamiltonian is given by

H(t,z,q) = min {G(t,x)u + (¢, F(t,z)u) } = min {O,G(t,x) + (g, F(t,x))}

ue{0,1}

and terminal value v(T, z) = ®(x).

(b) We know that —0,v < 0 and v(T,z) = ®(x), so v(t,z) < ®(z). At the same time,
for any (¢, x), if v(¢,z) = ®(x), then this implies that « is the best attainable state

(when you start at ¢,x), which implies ;v = 0. Therefore, we know that
0 = min {CD(x) —ou(t,x), 0w+ G(t, ) + (¢, F(t, x)>}

which is the desired linear complementarity formulation.
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2. Suppose the (un-minimized) Hamiltonian H(t, z, g, u) is convex with respect to u, where

u takes values in a finite-dimensional open set U.

(a) Show that Pontryagin’s minimum principle can be expressed in the form:

d * r d * * 7
EXt = 0,H, =P - 0. H, 0=0,H.

(b) Show that, if p = 0 and the Hamiltonian does not depend on time, and the optimal
strategy is differentiable with respect to time, then Pontryagin’s minimum principle

shows that, along the optimal path,

H(X;],q/,u;) = constant

(¢) (Trickier) Suppose that:

e the state dynamics f are Lipschitz continuous,

e the Hamilton—Jacobi equation admits a C! solution v with Lipschitz continuous

derivatives,

e H is twice differentiable and strictly convex with respect to u, in particular

8guﬁ(t, u, z,q) has all eigenvalues above ¢, for all ¢, u, z, q.
Show that there exists an optimal control, and that this control is unique.

(d) Explain why, in the setting above, Pontryagin’s minimum principle is both neces-

sary and sufficient for optimality.

Solution:
(a) This is essentially just notation — you calculate the derivatives of H(t,z,q,u) =

g(t,z,u) + {(q, f(t,x,u)) and compare with Pontryagin’s minimum principle.

(b) If H does not depend on time, assuming u* is differentiable, then the previous

results and the chain rule yield

SHOG qfu) = @) (X7 + @,1)(Tar) + @D S)
= (8 F[)(aq[:[) + (aq[:[)(_aa:ﬁ) +0

0.

This connects with the interpretation, in physical problems, of the Hamiltonian as
the total system energy (ie the sum of potential and kinetic energies), which is a

conserved quantity.

(c) As H is strictly convex and 9, H has nonvanishing derivative, we know that there

exists an interior minimizer which satisfies 9, H(t, X}, ¢, u) = 0. An admissible
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control is optimal if and only if this equation is satisfied, and there is at most one
value of u (for each X, ¢f) which satisfies this equation, so the optimal control
(if it exists) must be unique. The challenge is to simultaneously construct the
optimal control U* and the optimal trajectory X, (with which we can compute
g = Vo(X7)).

For ¢ fixed, consider the map u — 9, H (t,x,q,u) =: h(x,q,u). Suppose u satisfies

O H(t,x,q,u) = 0 for a given z,q. Using a Taylor expansion we know that, for

(', ¢, u') near (z,q,u), with all derivatives being evaluated at (z,q,u),
O H(t,2' ¢ ,u") = (D.h) (2 — ) + (Dgh) - (¢ — q) + (Dyh) - (u' — u) + error

where the error is sublinearly small. Our assumptions guarantee that the matrix
D, h has an inverse, which is uniformly bounded in (z, ¢, u). Therefore, if we wish

u’ to be optimal at 2’, ¢’, we have a variation on the inverse function theorem:
u' =u— (Dyh)™? <(th)(x’ — )+ (Dgh) - (¢ — q)) + error.

(This can, of course, be made fully rigorous, by use of a contraction mapping result.)
We conclude that the optimal strategy u’ is a Lipschitz continuous function of z’
and ¢'. More precisely, there exists a Lipschitz continuous function u*(¢,-,-) :
R™ x R™™ — U which satisfies the optimality condition

O H(t,x, q,u*(t,z,q)) = 0.

Given this, together with the smoothness of the solution v to the Hamilton—Jacobi
equation, there exists a solution X* to the state equation

d * * ok * *
EXt = f<t7Xt7u (t7Xt7vU(X )))7

so U = u*(t, X], Vu(X*)) is admissible. By construction, we know U* satisfies
the optimality condition along this trajectory, so we conclude that U* is the unique

optimal control.

(d) In the setting discussed, we know that an optimum indeed exists, and therefore it is
necessary that Pontryagin’s principle holds. However, as u* is a Lipschitz function
of x,q, we know that the system of equations in Pontryagin’s principle admits a
unique solution. It follows that there is exactly one triple (X*, ¢*,U*) satisfying

Pontryagin’s principle, which implies that all solutions are optimal.
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3. Suppose we have controlled state dynamics f which satisfy (for all x, u)
(@, f(z,u)) < CO1+ [l]*?)
for some constant C.

(a) Using the comparison theorem for ODEs, show that for any control U, the con-
trolled trajectory satisfies || XY|| < C(1 + ||zo||)(1 + t?), for some C' > 0.
The process y; with yo = 1 and dynamics %yt = C’ytl/2 may provide a useful upper
bound on || X[/ (1 + [[zo]l?).

(b) Consider controlling this process over the horizon [0, 7], where we assume the cost
process satisfies |g(t, z,u)| < C(1 4+ ||z||) and we have a discount rate p > 0. Show

that the total discounted cost of any control remains bounded as T" — oo.

(¢) Suppose the time-homogenous Hamilton—Jacobi equation
0=—pv+ H(z,Vv)

admits a bounded C! solution. Assuming the dynamic programming principle
holds, show that this must be the value function of the infinite horizon discounted

control problem. (Hint: Compare the behaviour over finite horizons.)

Solution:

(a) Fix a control U. We know that || XV||? = (XY, XV) has dynamics
d
VI =207 £ (8, X0, U) < O+ | X172,

Dividing by (1 + ||zo||)? simply reduces C, and gives a process which starts in the
unit ball.

Consider the function y, with yo = 1 and (Locally Lipschitz) dynamics Sy, = Cy, /2
% > 1. Observe that y? has dynamics $y? = 2022,
and that 2C||y||>? > C(1 + |ly||*/?) for all y > 1. The comparison theorem for

ODEs (see Part A DEL1 for a proof), then yields the desired growth bound

XY P ((2+Ct)2)2< (4+C2t2>2
Itz =%~ U1 =2 )

?

which has solution y; =

(b) We know from above that || XU|| < C(1+||zo||)(1+#%). This implies that, for some

constant C' (which can vary from line to line)
/ e Pg(t, X{, Uy)|dt < / Ce (14 | X/ |)dt
0 0
< / Ce P (14 ||zo||) (1 + ¢*)dt
0

1
<C(1+ ||550||)E
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This provides a global bound on the discounted cost of any control, as required.

(¢) By dynamic programming, we know that v is the value function of the control
problem on horizon [0,77], if we specify that the terminal value at T is ®(Xr) =
v(X7). (This can be seen by simply verifying that v satisfies the finite-horizon
Hamilton—Jacobi equation). Furthermore, for every 7' > 0 and ¢ > 0, there exists

a control U® such that
T £
v(z)+e> / e Plg(s, XPUT US)ds + e T 0y( X0V > w(x).
0
As v is bounded, we can take T — oo to see that there exists a control U such that

v(z)+e> / e Pg(s, X1U" U%)ds.
0

Now define the infinite-horizon discounted cost-to-go, for a general control U, which

satisfies, for some C' > 0

J(t,x,U)

e / efp(sft)g(s7 X;’m’U, Us)ds
t

T
—/ e’p(sft)g(s,Xﬁ’x’U,Us)ds—i—e”’(T’t)J(T, X;x’U,U)
t

T
> [ e g(s, XU U ds + e T Do(XE) - Ce?TOC(1 4 ||z))p?

t

> v(z) — Ce ?T9p (14 |l|) (1 + T?)

Taking 7" — oo shows that J(¢,z,U) > v(x) for all ¢, U. A similar argument shows
that
J(t,x,U%) < w(x) +e+ CePTp™3(1 4 ||z])).

Taking T" — oo, ¢ — 0, we conclude that v is indeed the optimal value for the

problem.

(Note that we never really used the assumption that v is C*, apart from to make

sure that v is the value function over the corresponding finite horizon problem.)
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Section B
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4. Consider a deterministic control problem with underlying state dynamics satisfying the
scalar second order controlled ODE

d? d
@Xt - Ut - &Xt

with initial values (Xo, Xo) = (1,0). Suppose we seek to minimize the value of
T
/ (X7 + U?)dt.
0

Reexpress this problem as a vector-valued first order equation, and hence derive an
equation for the value function in terms of a system of Riccati equations, and for the

optimal control in feedback form.

Using a backwards Euler scheme, solve the system of Riccati equations numerically, and

hence state the value, and optimal control at time ¢ = 0.

Solution: We can rewrite our equation as the vector equation
d d | X; X, 0 1
—Xy == . = : =
dt dt | X, U, — X, 0 —1
—_——

A B
We observe that these are linear dynamics, and the cost is given by the Quadratic form

T T 10
X2+U2dt:/ X/
| evnae= [(xT]

Q

X; + Uy

X, + UE) dt

As this is a linear quadratic problem, we see that the value function v(¢,r) = 2" Sz +
2U,z 4+ I'; can be obtained by solving the Riccati equations (with R = 1, and other

parameters zero, in our calculations from lectures)
K,=-R'B'S,,  H, =0,
—0,% = Q + K RK, + 2%,(A + BK,),
—at\ljt — \Ijt<A + BKt>,
—0tFt = 0
with X7 =0, U7 =0, and I'y = 0. The optimal control is then given by

Ut* - KtXt.

Numerically, the initial value is given by v(xzg) =~ 0.9714 and the initial control by
Uy ~ —0.3536 (see PS3_LQ.1ipynb)
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5. Write down a deterministic control problem where there are exactly two (distinct) tra-

jectories for the optimally controlled state process X.

Solution: Example 3.2.8 in the lecture notes has this property, if we start with the

initial value Xy = 0.

6. Consider a deterministic optimal control problem, with optimal state trajectory X*,
and costs fOT g(t, XV, Uy)dt + &(XY).

(a) Show that X* is still optimal for the problem with costs defined by g(¢,xz,u) =
g(t, z,u) + aljz—xr|> and d(x) = O(z) + aljp—xz|>e, for any a, e > 0.

(b) Show that X* may not be optimal for the problem with costs defined by §(¢, z,u) =

g(t,w,u) — aljy_x;|>. and d(z) = (x) — aljz—xz|>e, for some choices of a, e > 0

(c¢) Suppose Pontryagin’s minimum principle is satisfied for the original problem. Show
that Pontryagin’s minimum principle is also satisfied for both of the variations

above. What conclusion do you draw?

Solution:

(a) We know that, in our original problem, the optimal strategy will result in state
trajectory X*. If we raise costs for other strategies, this will clearly not result in
them becoming optimal. As we have not altered the costs for the optimal strategy,

it therefore must remain optimal.

(b) A simple counterexample is to suppose g(t,z,u) = 0, and to take € small enough
that there exists a control U with || XY — X%|| > e. If we then set a > ®(X%) —
d(XY), we conclude that with our pertubed costs, we know that XU has a lower

overall cost than X*, so X* cannot be an optimal trajectory.

(c¢) In both the cases above, we do not vary our cost in a neighbourhood of X*. As
Pontryagin’s principle only refers to the behaviour of costs in a neighbourhood of
the optimal trajectory, it must remain valid in both cases. We conclude that (as we
already knew) Pontryagin’s principle is generally only a necessary condition, but

not a sufficient condition, for optimality (c¢f. Q2)
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7. Consider the problem of minimizing the cost fog’(Ulf1 — X?)dt + X3, where X is a scalar
process following the controlled dynamics %Xt = U, — X, +sin(t) and X, = 1, where
U € U = R. Observe that this gives a convex Hamiltonian, so we believe that the
optimal strategy should be unique, and should be determined by Pontryagin’s minimum

principle.

Implement a forward-in-time Euler discretization of the equations in Pontryagin’s min-
imum principle, assuming you know the value of ¢y = Vuv(xy). By using a bisection
search, or otherwise, find the value of gy which gives the correct value of ¢, and hence

find a solution to the control problem.

Compare the cost of your strategy with the cost of a constant control u =0

Solution: See file PS3_Pontryagin.ipynb.
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