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Problem Sheet 1 (with solutions to sections A and C)

Section A

No work in this section will be marked. Guided solutions will be published. The material has to be

considered as preliminary/bookwork.

Question 1. Error Estimates for the Contraction Mapping Theorem. Let (X, d) be a

complete metric space and let T : X → X be a contractive map with constant κ < 1. Given x0 ∈ X

consider the sequence xn+1 = Txn, and x = limn→∞ xn. Show that

(1) d(xn, xn+m) ≤ κn

1−κd(x1, x0)

(2) d(xn, x) ≤ κn

1−κd(x1, x0)

(3) d(xn+1, x) ≤ κ
1−κd(xn+1, xn)

(4) d(xn+1, x) ≤ κd(xn, x)

Solution

(1) By definition of the sequence and by iterating the contraction estimate, we obtain

d(xn, xn+1) = d(Tnx1, T
nx0) ≤ κnd(x1, x0).

Thus, by iterating the estimate above with the triangle inequality, and using the formula for the sum of

a geometric serie we get

d(xn+m, xn) ≤
m−1∑
k=0

d(xn+k+1, xn+k) ≤
∑
k≥n

κnd(x1, x0) =
κn

1− κ
d(x1, x0).

(2) Enough to take the limit for m→∞ in point (1)

(3) Either repeat the argument in (1) but with

d(xn+m+1, xn+m) ≤ κmd(xn+1, xn)

or apply (1) to the new iterates (x̃n) starting from x̃0 = xn: this gives

d(xn+1, xn+1+m) ≤ κ

1− κ
d(xn+1, xn),

and at this point it is enough to pass to the limit as m→∞.

(4) Recalling that xn+1 = Txn and that Tx = x, the contraction property directly gives:

d(xn+1, x) = d(Txn, Tx) ≤ κd(xn, x).
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Question 2. Revisions on Banach Spaces. Which of the following spaces are Banach spaces?

Please justify your answer.

(1) Cc(R) = {u ∈ C(R) : supp(u) ⊂⊂ R} equipped with the supremum norm ‖u‖sup := sup
x∈R
|u(x)|.

(2) CV (R) = {u ∈ C(R) : u(x)→ 0 for |x| → ∞} with the supremum norm ‖u‖sup.

(3) Cb(R) := {u ∈ C(R) : u bounded} equipped with ‖u‖ := sup
x∈R

2+sin(x)
3+cos(x) |u(x)|

[You may use that (Cb(R), ‖ · ‖sup) is a Banach space]

Solution

(1) Cc(R) is not a Banach space as it is not complete.

E.g. Let ϕ ∈ Cc(R) be a cut-off function, identically equal to 1 on [−1/2, 1/2] and with suppϕ ⊂ [−1, 1].

Let f(x) = 1
1+x2 and let fn(x) := ϕ(x/n) ·f(x) and notice that fn ∈ Cc(R) and that fn → f with respect

to ‖ · ‖sup. Thus, fn is a Cauchy sequence with respect to ‖ · ‖sup. However f /∈ Cc(R) so fn is not a

convergent sequence in Cc(R).

(2) CV (R) is a Banach space. Indeed:

• It is a normed vector space as a subspace of a Banach space.

• Is is complete: Let (fn) ⊂ CV (R) be a Cauchy sequence with respect to ‖·‖sup. By completeness

of (Cb(R), ‖ · ‖sup) we know that there exists f ∈ Cb(R) such that fn → f wrt ‖ · ‖sup. It is then

enough to show that f ∈ CV (R). Let’s prove it. Fix ε > 0. From the uniform convergence,

there exists N > 0 such that |fn(x) − f(x)| ≤ ε for all x ∈ R. Since fn ∈ CV (R) then there

exists K > 0 such that |fn(x)| ≤ 2ε for all |x| ≥ K; but then |f(x)| ≤ 2ε for all |x| ≥ K.

(3) is a Banach space. Indeed ‖ · ‖ is a norm which is equivalent to ‖ · ‖sup, as

1

4
‖u‖sup ≤ ‖ ≤ ‖

3

2
‖u‖sup.

Now, since (Cb(R), ‖ · ‖sup) is a Banach space, it follows that also (Cb(R), ‖ · ‖) is a Banach space (as

equivalent norms give the same Cauchy sequences and the same convergent sequences).

�

Question 3. Revision on Gronwall Lemma. Let f : [t0, t0 +c]→ [0,∞) be a continuous function

such that there exists two non-negative constants α and β such that

f(t) ≤ α+ β

∫ t

t0

f(s) ds for all t ∈ [t0, t0 + c].

Show that

f(t) ≤ α expβ(t− t0)

for all t0 ≤ t ≤ t0 + c.

Solution You can find it the lectures notes of Differential Equations 1. Anyway, let’s recall it here.

Let F (t) =
∫ t
t0
f(s) ds. Then

F ′(t) ≤ α+ βF (t),

which gives:
d

dt
(F (t) exp(−β t)) ≤ α exp(−β t).

Now integrate from t0 to t and obtain:

F (t) ≤ exp(β t) (exp(−β t)− exp(−β t0))
α

β
= exp(β (t− t0)(1− exp(−β (t− t0)))

α

β
.

So

f(t) ≤ α+ α exp(β (t− t0))− α = α exp(β (t− t0).
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Section B

Work done in this section will be marked.

Question 4. Uniqueness of Solutions to ODEs. Let H be a real Hilbert space endowed with

the scalar product (·, ·). Show that the initial value problem for y : R→ H, given by

y′(t) = f(t, y(t)) for t > 0, y(0) = y0,

has at most one continuously differentiable solution on the interval [0, T ], provided that f : R×H → H

is continuous and satisfies for some L > 0

(1) (f(t, y)− f(t, z), y − z) ≤ L‖y − z‖2 for all y, z ∈ H.

[Hint: Use the product rule d
dt (y(t), z(t)) = (y′(t), z(t)) + (z′(t), y(t)) for functions y, x : R→ H and

Gronwall’s Lemma.]

Give furthermore an example of a function f for which (1) is satisfied but for which the Lipschitz-

condition of Picard’s theorem does not hold.

Question 5. Null Lagrangian.

(1) Give two examples of a Null-Lagrangian L(∇u, u, x) (and explain in particular why the functions

you propose are Null-Lagrangians.)

(2) Define for real n× n matrices P ∈ Rn×n the map

L(P ) = tr(P 2)− (tr(P ))
2
.

where tr(P ) denotes the trace of the matrix P . Show that L is a Null-Lagrangian.

Question 6. Euler-Lagrange Equations.

(i) Let p ∈ (1,∞) and Ω ⊂ Rn be a domain. Derive the Euler-Lagrange equation for the functional

I(v) =

∫
Ω

1

p
|∇v|p − 1

4
v4 dx

where v : Ω → R and |∇v| =

√
(∂1v)

2
+ . . .+ (∂nv)

2
once by using the formula derived in the

lecture and once by direct computation of d
dtI(v + tφ), φ ∈ C∞c (Ω).

(ii) Let Ω ⊂⊂ R3 and 1 ≤ p ≤ 6. Show that the functional

E(u) :=
‖∇u‖2L2

‖u‖2Lp

is well defined for all u ∈ H1
0 (Ω), u 6= 0 and satisfies inf{E(u) : u ∈ H1

0 (Ω)} > 0. Derive

furthermore it’s Euler-Lagrange equation.

Then consider

E0(u) :=

∫
|∇u|2dx

and explain what condition has to be satisfied for a function u ∈ H1
0 (Ω) which minimises E0 in

the set M := {v : ‖v‖Lp = 1}
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Question 7. Counter-example to Brouwer’s Fixed Point Theorem in an infinite dimen-

sional space. Consider the real Hilbert Space

l2 =

{
(xi)i∈N such that

∞∑
i=0

x2
i <∞

}
with the norm ‖x‖l2 =

√√√√ ∞∑
i=0

x2
i .

Let B be its closed unit ball.

• Consider the map

T : B → B given by T (x) = (
√

1− ‖x‖2l2 , x0, x1, x2, . . .).

Show that T is continuous and does not have a fixed point.

• Construct a continuous retraction from B to ∂B.

Section C

No work in this section will be marked. Guided solutions will be published. These problems are not

more difficult than those in previous sections. They sit here simply because they are relevant but either

slightly off or beyond the main interests of the course.

Question 8. Equivalence between Retraction Principle and Brouwer’s FPT. Let B be the

closed unit ball in Rn. Using Brouwer’s Fixed Point Theorem, show that there does not exist a retraction

r from B to ∂B, i.e. a map r : B → ∂B such that r restricted to ∂B is the identity map.

Hint: by contradiction, consider the map g(x) = −r(x).

Solution If r : B → ∂B is a retraction, then

(2) g(x) = −r(x)

is continuous and maps B to ∂B ⊂ B. By Brouwer’s Fixed point theorem there exists x0 ∈ B such that

(3) g(x0) = x0.

Since g(x0) ∈ ∂B we infer that x0 ∈ ∂B. Since r restricted to ∂B is the identity map, we must have

(4) x0 = r(x0) .

The combination of (2), (3) and (4) gives a contradiction. �

Question 9. Application of Brouwer’s FPT. Given a map f ∈ C(Rn : Rn) such that |f(x)| ≤
a+ b|x|, with a ≥ 0 and and 0 < b < 1, show that f has a fixed point.

Solution Choose R > 0 such that |a|+bR ≤ R, i.e. R ≥ |a|
1−b . Then f : BR(0)→ BR(0) is continuous

and has a fixed point by Brouwer’s FPT. �


