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Introduction

Newtonian mechanics, as first developed by Galileo and Newton in the 17th century, is an
extraordinarily successful theory. Its laws are clear and relatively simple to state, but are
applicable to an enormous array of dynamical problems. They are also valid over a vast range
of scales. For example, in these lectures we’ll see that Newton’s laws govern phenomena as
diverse as the motion of bodies through fluids, charged particles moving in electromagnetic
fields, the motion of rigid bodies under gravity, and perhaps most famously the orbits of
planets in our solar system. There are also the slightly more mundane examples: masses
attached to springs and rods, marbles rolling on surfaces, beads sliding on wires, etc. For
applied mathematicians the ideas and techniques developed in Newtonian mechanics have wide
applicability, from phenomena in dynamical systems, such as resonance and chaos, to e.g. the
mathematical modelling of biological systems.

Newton’s laws nevertheless have their limits. For physics at the atomic scale classical mechanics
is replaced by quantum mechanics, while for phenomena involving speeds approaching the speed
of light one needs Einstein’s theory of relativity. However, these are much more complex
descriptions of Nature. Since for scales of everyday experience these theories agree with
Newtonian mechanics, to a good approximation, they are simply notneeded to accurately
describe many phenomena. In quantum mechanics and relativity many concepts in Newton’s
theory are modified: the concepts of space and time, the notion of a particle trajectory, and
even the basic process of measurement, are all radically altered. Nevertheless, many features
of Newtonian mechanics appear to be fundamental. In particular, the laws of conservation of
energy, momentum and angular momentum developed in this course are in some sense universal,
and pervade all of theoretical physics.
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1 Newtonian mechanics

1.1 Space and time

In Newtonian mechanics space is described by Euclidean geometry. In order to make this
precise we introduce the notion of a reference frame.

Definition A reference frame S is specified by a choice of origin O, together with a set of
perpendicular (right handed) Cartesian coordinate axes at O.

z
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O
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x axis

P

y axis

y

x

z

Figure 1: The position vector r = (x, y, z) of a point P , as measured in a reference frame S.

With respect to S a point P is specified by a position vector r from O to P . The chosen
Cartesian coordinate axes allow us to write r in terms of its components r = (x, y, z). The
Euclidean distance between two points P1, P2 with position vectors r1 = (x1, y1, z1), r2 =

(x2, y2, z2) is |r1 − r2| =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

For many problems there may be a natural or convenient choice of reference frame, although
this is not always the case. An important assumption in Newtonian mechanics is that any
two observers, using any choice of reference frames, agree on their measurements of distances –
provided they use the same units, which we take to be metres m. If we fix an initial choice of S,
then the origin O′ of any other reference frame S ′ will be at some position x, measured from the
origin O of S. See Figure 2. In order that distances measured in the two frames are the same,
the coordinate axes of S ′ must differ from those of S by a 3 × 3 rotation, i.e. an orthogonal
transformation.1 At some level these statements might seem intuitively obvious, but they were
formalised in the Geometry course last term: the two reference frames both identify space
with Euclidean R3, and you proved that any distance-preserving map (an isometry) between
the two is necessarily a combination of a translation and orthogonal transformation. Thus if
r = (x, y, z) denotes the position of a point P in the frame S, and r′ = (x′, y′, z′) is the position
of the same point in the frame S ′, we have

r′ = R (r− x) , (1.1)

where R is a 3× 3 orthogonal matrix. Recall these are characterized by RT = R−1.

1A general 3× 3 orthogonal transformation is either a rotation, a reflection, or a combination of a rotation
and reflection, but a single reflection takes a right handed frame to a left handed frame.
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Figure 2: Relative to a choice of reference frame S, the origin O′ of another reference frame S ′
has position vector x, and the coordinate axes of S ′ differ from those of S by a rotation.

In order to describe dynamics we also need time. In Newtonian mechanics there is a notion
of absolute time: provided any two observers use the same units of time, which we take to be
seconds s, they will always agree on the time interval between any two events. This means that
the time variables used by two different observers are related by t′ = t− t0, and they are always
free to synchronize their clocks to set t0 = 0.

Returning to the two reference frames in Figure 2, the origins O, O′ may move relative to each
other, so x = x(t), and the axes may also rotate, so the orthogonal transformation R = R(t)
is time-dependent. We shall describe rotating frames in much greater detail in section 8.

1.2 Newton’s laws

Many dynamical processes in the real world are clearly very complicated. Mathematical models
of dynamical systems usually involve making various approximations, or idealizations, in the
description of the system. One usually wants to construct the simplest model that captures the
most important features of the dynamics. Most of this course will focus on the dynamics of point
particles. These are objects whose dimensions may be neglected, to a good approximation, in
describing their motion. For example, this is the case if the size of the object is small compared
to the distances involved in the dynamics; e.g. the motion of the Earth around the Sun may
be described very accurately by treating the Earth and Sun as point particles. On the other
hand, it’s no good treating the Earth as a point particle if you want to understand the effects
of its rotation!

Definition A point particle is an idealized object that at a given instant of time t is located
at a point r(t), as measured in some reference frame S. The velocity of the particle is v =
d
dt

r = ṙ = (ẋ, ẏ, ż), where a dot will denote derivative with respect to time. Its acceleration is

a = d
dt

v = r̈ = (ẍ, ÿ, z̈).

Example (Motion with constant acceleration): Consider a particle moving in a straight line
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with constant acceleration a. Let us orient our axes so that a = ak, where k is a unit vector
in the increasing z direction. Suppose that the particle starts at time t = 0 at the origin and
has initial velocity u = uk.

The constant acceleration condition is a second order differential equation for r(t), namely
r̈ = ak. In Cartesian coordinates this reads (ẍ, ÿ, z̈) = (0, 0, a). Integrating this equation once
with respect to time t gives

ṙ = a tk + c , (1.2)

where c is a vector integration constant. The initial condition that ṙ(0) = u = uk then
determines c = uk. Integrating (1.2) again with respect to time t gives the solution

r(t) =
(

1
2
a t2 + u t

)
k = (0, 0, 1

2
a t2 + u t) . (1.3)

Here we have used the initial condition that the particle starts at time t = 0 at the origin, so
r(0) = 0, to determine the second vector integration constant. �

As time evolves the position of the particle sweeps out a curve r(t), parametrized by time
t, which we refer to as the trajectory. This must satisfy Newton’s laws of motion for point
particles, but before discussing these we need another definition.

Definition A point particle has a (inertial) mass m > 0. We measure mass in kilograms kg.
Its momentum (or more accurately linear momentum) is p = mv = mṙ.

In section 1.1 we noted that there are many choices of reference frames. Newton’s first law
singles out a special class of reference frames, called inertial frames.

N1: In an inertial frame a particle moves with constant momentum, unless acted
on by an external force.

In this course we will only consider constant mass particles, so that constant momentum p = mv
means constant velocity v. This is also sometimes referred to as uniform motion in a straight
line.

Suppose I choose a reference frame S: how do I know it is inertial? According to N1 it is inertial
if a particle with no identifiable forces acting on it travels in a straight line with constant speed
v = |v|. But how do we know whether or not there are any forces acting? And indeed, what is
a force?! We will begin to introduce and study forces in section 2, but an essential point is that
forces arise from the presence of other matter, which our particle interacts with. Thus one way
to ensure there are no forces acting is to head deep into space, far away from any other matter.
This is not very practical. On the surface of the Earth every particle experiences the force of
gravity. However, for a particle sitting on a solid surface the force due to gravity (its weight) is
balanced by a normal reaction force of the surface pushing back on the particle. There is hence
no net force acting on the particle, and the fact that it doesn’t move demonstrates that a frame
rigidly fixed relative to the surface of the Earth is a very good approximation to an inertial
frame.2 Whenever we refer to an “inertial frame”, we usually have in mind such a frame fixed
to the Earth’s surface.

2Actually it is not quite inertial: the Earth rotates around its axis once per day, and is accelerating due to
its motion around the Sun once per year. The former leads to a measurable effect, as we shall see in section 8.5.
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What about non-inertial frames? We shall describe these in much more detail in section 8, but
it might be helpful here to make a few, hopefully intuitive, comments. Relative to an inertial
frame S, a non-inertial frame S ′ will either have: (i) the origin O′ accelerating with respect to
O, or (ii) the axes of S ′ rotating relative to the axes of S. In a non-inertial frame a particle
will appear to be acted on by “fictitious forces”, in addition to any actual forces in Newton’s
second law stated below. For example, consider an observer standing inside a train carriage,
with reference frame S ′ fixed relative to the interior of the train. As the train pulls out of a
station it accelerates, and the origin O′ of S ′ is likewise accelerating. The person inside the
train (and everything else!) feels like they are being thrown backwards: this isn’t a real force
in Newton’s equations, but a fictitious force due to the frame S ′ being non-inertial. Similarly,
consider an observer standing on a roundabout, whose frame S ′ rotates with the roundabout
about a fixed vertical axis. As most of us will have experienced, you feel like you are being
thrown outwards, away from the axis of rotation.

In an inertial frame, the dynamics of a point particle is governed by

N2: The rate of change of linear momentum is equal to the net force acting on the
particle: F = ṗ.

Assuming the mass m is constant the right hand side of Newton’s second law is ṗ = mr̈, and this
is the vector form of the familiar “F = ma”. The inertial mass m of a particle hence measures
its resistance to accelerate when subjected to a given force F. This external force might in
general depend on the particle’s position r, its velocity ṙ, and on time t, so that F = F(r, ṙ, t).
Newton’s second law is then a second order ordinary differential equation (ODE) for r(t):

F(r(t), ṙ(t), t) = m r̈(t) . (1.4)

This is also often referred to as the equation of motion for the particle. Since (1.4) is second
order, for “suitably nice” functions F(r, ṙ, t) one expects that specifying the position r and
velocity ṙ at some initial time t = t0 gives a unique solution for the particle trajectory r(t). A
central problem in Dynamics is to find this trajectory, for a given force F.

Finally, if we have more than one particle, then

N3: If particle 1 exerts a force F = F21 on particle 2, then particle 2 also exerts a
force F12 = −F on particle 1.

In other words, F12 = −F21. This is often paraphrased by saying that every action has an
equal and opposite reaction.

1.3 Dimensional analysis

The fundamental dimensions in mechanics are length L, time T and mass M.3 A square bracket is
usually used to denote the dimension of a variable, so that [length] = L, [time] = T, [mass] = M.
Dimensions of other quantities may then be derived from these. For example, the dimensions
of velocityare [ṙ] = L T−1.

It is useful to note:
3When we discuss problems in electromagnetism we will also need to add electric charge Q.
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• A given dimension may be measured in a number of different standard units. For example,
length may be measured in inches, metres, light-years (the distance light travels in a year
in vacuum), etc

• We may only add two quantities if they have the same dimensions and the units must
match before adding.

• Functions that add terms of different powers, e.g.

ex = 1 + x+ x2/2 + . . . ...

or sin, cos, tan etc., must act on dimensionless variables so that x above has dimensions
of M0L0T0.

• A convenient and powerful check on any equation you write down is whether the dimen-
sions on both sides are the same.

Example (Dimensions of force): Newton’s second law gives the dimensions of force as [F] =
M L T−2. The magnitude |F| is measured in Newtons N, where 1 N = 1 kg m s−2. �

More interestingly, a knowledge of the dimensions of the parameters in a problem can some-
timesbe used to construct scaling laws, without needing to solve any differential equations.

Example (Maximum height for constant acceleration): Let’s reconsider the example of con-
stant acceleration in section 1.2. For a particle moving along the z axis, starting at the origin
at time t = 0 with velocity u = uk, we showed that the trajectory is r(t) = (1

2
at2 + ut) k.

Suppose that u > 0 but the constant acceleration a = −g < 0 is negative; that is, the particle
starts out moving in the positive z direction, but is accelerating in the opposite direction. In
this case it will reach a maximum height zmax at a time tmax, when ṙ(tmax) = 0:

0 = ṙ(tmax) = (−g tmax + u) k =⇒ tmax =
u

g
. (1.5)

We then compute

zmax = −1

2
g t2max + u tmax =

u2

2g
. (1.6)

The dimensionful quantities in the problem are u, with [u] = L T−1, and g, with [g] = L T−2.
The only way to obtain quantities with dimensions of T and L, respectively, are hence as[

u

g

]
=

L T−1

L T−2
= T ,

[
u2

g

]
=

L2 T−2

L T−2
= L . (1.7)

Dimensional analysis thus tells us that tmax must be a dimensionless number times u/g, while
zmax must be a dimensionless number times u2/g. �

An important role is played by dimensionless combinations of parameters in a problem. One
reason for this is that only dimensionless parameters can appear as arguments in many of
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the functions that arise as solutions to differential equations, such as ex, sinx, etc. For this
reason, the same dimensionless combinations of parameters often appear again and again
when solving a problem: it can be useful to recognize this, and rename these variables to
simplify notation. Another comment is that dimensionless quantities can be large or small,
while dimensional quantities always have to be large or small compared to another quantity
with the same dimensions. For example, is 1 metre (a dimensional quantity) large or small?
It’s extremely large compared to the diameter of a hydrogen atom (approximately 10−10 m)
but extremely small compared to the diameter of the observable universe (approximately
1027 m)! As another example, a dynamical system might have a dimensionless parameter Q,
with qualitatively different behaviour for Q > 1 and Q < 1, with a critical behaviour for Q = 1.
The dynamics might also simplify in the limit where certain dimensionless parameters become
large (say Q → ∞) or small (Q → 0), allowing one to find analytic solutions to the equations
in these limits.
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2 Forces and dynamics: a first look

In this section we introduce a number of different forces, and solve Newton’s second law (1.4)
to find the particle trajectory r(t). In some cases more than one force may be acting on the
particle. Forces are vectors, and the total force acting is simply the sum of all forces. Explicitly,
if forces F1,F2, . . . ,Fn all act on a particle, the force F appearing in Newton’s second law is
the vector sum

F =
n∑
i=1

Fi . (2.1)

2.1 Gravity and projectiles

A particle of mass m near the Earth’s surface experiences a gravitational force mg vertically
downwards, where g ' 9.81 m s−2 is the acceleration due to gravity. This force is the particle’s
weight. In an inertial frame where the z axis is the vertical direction, so that the x and y axes
are horizontal, we may write the force as F = −mg k, where k is a unit vector directed upwards.
More precisely, the mass m = mG that appears in this force is the gravitational mass, which
is logically distinct from the inertial mass m = mI that appears in N2. Newton’s second law
(1.4) hence reads

−mG g k = mI a . (2.2)

It is an experimental fact that mI = mG, as demonstrated famously by Galileo throwing things
off the tower of Pisa. It follows that the acceleration a = −g k is independent of the mass (hence
the name “acceleration due to gravity” for g). In practice air resistance can make an enormous
difference when you throw two objects of the same mass, but more modern experiments confirm
that mI/mG = 1, to at least 10−12 in precision.4

Example (Vertical motion under gravity): With notation as above, consider a particle of mass
m projected from the origin at time t = 0 with initial velocity u = uk. Newton’s second law
(2.2) simplifies to r̈ = a = −g k, which is precisely the example we solved in section 1. The
solution is

r(t) =
(
−1

2
gt2 + ut

)
k . (2.3)

�

We may make this more interesting by changing the initial condition.

Example (Projectiles): Suppose that a small projectile is thrown with velocity V at an angle
α to the horizontal, from a height h above the ground. Find the curve traced out by the
trajectory of the projectile, and its horizontal range.

4Side note: Einstein turned this around and made mI = mG into a new principle, called the Equivalence
Principle. It led him to formulate his General Theory of Relativity, in which gravity is not a force as in Newton’s
theory, but rather a curvature of space (which is no longer Euclidean) and time itself.
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Figure 3: Throwing a projectile.

We choose the origin O at ground level, and a unit vector k pointing vertically, and i horizontally
along the ground. The only force acting is gravity, with F = −mg k, so that Newton’s second
law reads

mr̈ = −mg k . (2.4)

The initial conditions are

At time t = 0: r(0) = hk , ṙ(0) = V = V cosα i + V sinαk . (2.5)

Integrating (2.4) twice and using (2.5) we find the solution

r(t) = −1

2
g t2 k + tV cosα i + tV sinαk + hk . (2.6)

This is the trajectory of the projectile. We can find the curve that this traces out in the (x, z)
plane by eliminating time t. Writing r = x i + z k, reading off the components of (2.6) gives

x(t) = tV cosα , z(t) = −1

2
g t2 + tV sinα + h . (2.7)

Using the first equation we may solve for t in terms of x, and then substitute into the second
equation, giving

z = − g

2V 2
x2 sec2 α + x tanα + h . (2.8)

This is a parabola.

The projectile hits the ground when z = r · k = 0. From (2.8) this gives a quadratic equation
for the horizontal range x, with solution

x =
V 2 cosα

g

[
sinα +

√
sin2 α + 2gh/V 2

]
. (2.9)

Notice that the second solution to the quadratic, with a minus sign in front of the square root
in (2.9), has x < 0 and corresponds to continuing the trajectory backwards, before t = 0.
Note also that if we throw the projectile from ground level, so h = 0, the range simplifies
to x = (2V 2 cosα sinα)/g = (V 2 sin 2α)/g, which is maximized to xmax = V 2/g for an angle
α = π/4. �
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2.1.1 Normal Reaction Force and Friction

When a particle rests on a table, it experiences a force mg due to gravity. This is balanced
exactly by a normal reaction force, often denoted N, and ultimately of electrostatic origin.

If the particle slides across the table, or is acted on by a force tangential to the table top,
friction can be generated which tends to act to oppose this motion and force.

2.2 Fluid drag

A particle moving through a fluid (such as air or water) experiences a drag force. Usually this
is taken to act in the direction −v, where v is the particle velocity.

A linear drag holds when viscous forces predominate, i.e. this is due to the “stickiness” of the
fluid. The force is

F = −b ṙ , (2.10)

where b > 0 is a constant (the friction coefficient), and ṙ is the particle velocity.

A quadratic drag often holds for streamlined shapes such as aerofoils, whence

F = −D |ṙ| ṙ , (2.11)

where the constant D > 0 and depends on the geometry of the aerofoil and the fluid density.

Example (Linear drag): Consider a particle falling under gravity with a linear drag force,
F = −bv, with b > 0. The particle is released from rest at time t = 0. Determine its trajectory
and terminal velocity.

mg

i
O

x

bx

Figure 4: A particle falling under gravity with a linear drag.

Solution We choose an inertial frame with origin O, at the starting location of the particle and
(unconventionally) take i to be a unit vector in the downwards direction, so that r(t) = x(t)i.

The force due to gravity is mg i and the drag force is −b ṙ = −bẋi.

Newton’s second law gives the equation of motion

mẍ i = mg i− b ẋ i . (2.12)
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We hence deduce the one-dimensional equation

ẍ +
b

m
ẋ = g, (2.13)

with initial conditions x(0) = ẋ(0) = 0.

Solving this differential equation and imposing the initial conditions yields

x(t) =
mgt

b
+
m2

b2
g
(
e−bt/m − 1

)
. (2.14)

The terminal velocity is given by

lim
t→∞

ẋ(t) =
mg

b
.

2.3 Hooke’s law for springs

A spring is fixed at one end and attached to a particle at the other. The particle will experience
a force, F, directed along the line of the spring with a magnitude that depends on the extension
of the spring from its equilibrium length.

Hooke’s linear law states that the force is proportional to the extension, so that

F = −k(x− l)t,

where t is the unit vector along the spring pointing towards the particle, x is the length of the
spring, l is the equilibrium length, and k is the spring constant.

l

fixed

x

F

mg

N

Figure 5: The forces acting on a particle attached to a spring on a table top. The normal
reaction force, N and gravity, mg cancel so there is zero total force perpendicular to the x-axis.

Example Suppose a particle of mass m is attached to a spring that possesses a spring constant
k, a length l, and is fixed by its opposing end to the origin, while aligned along the x-axis of a
table top with no friction. Initially the particle is at location x(0) = l, with speed ẋ(0) = u in
the positive x direction. Determine its trajectory.

Solution Resolving Newton’s second law along the x axis gives the equation of motion

mẍ = −k(x− l) , (2.15)

and x(0) = l, ẋ(0) = u. With x = l + q we have

q̈ = −ω2q, ω2 =
k

m
> 0. (2.16)
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Thus q = A sin(ωt + ψ), where A is the amplitude and ψ the phase of the ensuing oscillation.
Imposing the initial conditions gives Aω = u, ψ = 0 and hence

x(t) = l +
u

ω
sinωt.

2.4 Particle in an electromagnetic field

Elementary particles, in addition to having a mass, also have a property called electric charge.
This is measured in Coulombs C, and the electron and proton have equal and opposite charges
q = ∓1.60 × 10−19 C. In general, a particle of charge q moving in an electromagnetic field
experiences a force given by the Lorentz force law

F = qE + q ṙ ∧B . (2.17)

Here ṙ is the velocity of the particle, E is the electric field, and B is the magnetic field. In general
E = E(r, t) and B = B(r, t) depend on both position and time, making them time-dependent
vector fields.

In Maxwell’s theory of electromagnetism E and B become dynamical objects in their own right,
satisfying their own equations of motion – Maxwell’s equations. These equations are studied in
the course B7.2. We won’t need any detailed knowledge of electromagnetism for this course:
the Lorentz force law (2.17) is for us simply an interesting example of a force law. Notice
that in general F = F(r, ṙ, t), with the dependence on the particle’s velocity ṙ arising from the
magnetic part of the force Fmag = q ṙ∧B. Due to the cross product the latter is perpendicular
to both the velocity and the magnetic field, which leads to some interesting dynamics.

Example (Charged particle moving in a constant magnetic field): Ignoring gravity, determine
the trajectory of a particle of charge q moving in constant magnetic field B.

The force on the particle is given by the Lorentz force law, which gives F = q ṙ ∧ B. Hence
Newton’s second law reads

mr̈ = q ṙ ∧B . (2.18)

Since B is constant we may immediately integrate this with respect to time t:

mṙ = q r ∧B +mV . (2.19)

The last term is the integration constant (or three of them, given that (2.18) is a vector
equation). We have chosen the integration constant so that at time t = 0 the particle is at the
origin r = 0 and has velocity ṙ = V – notice that all we have done here is made a convenient
choice of origin. Moreover, without loss of generality we may further choose the magnetic field
to point along the z axis, so B = (0, 0, B), and then use the freedom to rotate the (x, y) plane
so that V = (V1, 0, V3). Writing r = (x, y, z), note that r ∧ B = −xB j + yB i. Writing the
integrated equation of motion (2.19) out in components thus gives the three ODEs

mẋ = qB y +mV1 ,

mẏ = −qB x ,

mż = mV3 . (2.20)
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The last equation immediately solves to give z(t) = V3t (using the initial condition r(0) = 0).
Solving for x in terms of ẏ from the second equation and substituting into the first gives a
second order ODE for y. One can solve the equations this way, but a slicker way to proceed is
to introduce the complex variable ζ = x + iy. Specifically, taking the first equation in (2.20)
and adding i times the second equation gives the complex equation

m(ẋ+ iẏ) = −qB i (x+ iy) +mV1 , (2.21)

which in terms of ζ = x+ iy reads

mζ̇ = −qB iζ +mV1 . (2.22)

Defining

ω =
qB

m
. (2.23)

we may rewrite (2.22) as

ζ̇ = −iω ζ + V1 = −iω

(
ζ +

i

ω
V1

)
. (2.24)

This is easily solved to give

ζ(t) +
i

ω
V1 = α e−iωt , (2.25)

where α is a complex integration constant. Using the initial condition ζ(0) = 0 fixes α = iV1/ω.
Writing e−iωt = cosωt− i sinωt the solution hence reads

x(t) + iy(t) = ζ(t) =
iV1

ω
(cosωt− i sinωt− 1) . (2.26)

the trajectory of the particle as

r(t) =
(
x(t), y(t), z(t)

)
=

(
V1

ω
sinωt , −V1

ω
+
V1

ω
cosωt , V3t

)
. (2.27)

The frequency ω = qB
m

is called the cyclotron frequency. The trajectory traces out a helix.
Notice that the projection of this to the (x, y) plane is a circle of radius V1/ω, with the time
taken to complete a circle being 2π/ω. �
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3 Motion in one dimension

In the previous section we were always able to solve Newton’s second law explicitly, in closed
form. Unfortunately, as soon as we move beyond the simplest examples, for example by
combining the effects of different forces, it becomes very difficult to solve for the trajectory
explicitly. In this section we introduce some general methods that help to understand certain
aspects of the dynamics, without having to solve Newton’s second law directly. We will here
focus (mainly) on dynamics in one dimension. Why focus on one-dimensional motion when the
real world is three-dimensional? Firstly, the problems are simpler, and when studying any new
subject one should always begin by trying to isolate the new phenomena and features in their
simplest setting. But more importantly, many three-dimensional problems may effectively be
reduced to studying lower dimensional problems.

3.1 Energy

Consider a particle moving along the x axis, subject to a force F = F (x) that depends only on
the particle’s position x. Newton’s second law gives

mẍ = F (x) . (3.1)

This is a second order ODE, but in this case there always exists a first integral. To see this, we
first introduce:

Definition The kinetic energy of the particle is T = 1
2
mẋ2. We may also write this in terms

of momentum p = mẋ as T = p2/2m. Energy is measured in Joules J, with 1 J = 1 kg m2 s−2.

To see the utility of this, we calculate

Ṫ = mẋ ẍ = F (x) ẋ , (3.2)

where the second equality uses (3.1). Suppose the particle starts at position x1 at time t1, and
finishes at x2 at time t2. Integrating (3.2) with respect to time t gives

T (t2)− T (t1) =

∫ t2

t1

Ṫ dt =

∫ t2

t1

F (x(t)) ẋ dt =

∫ x2

x1

F (x) dx . (3.3)

This motivates another definition:

Definition The work done W by the force in moving the particle from x1 to x2 is

W =

∫ x2

x1

F (x) dx . (3.4)

Equation (3.3) thus proves:

Work-Energy Theorem The work done by the force is the change in kinetic energy:

W = T (t2)− T (t1) . (3.5)
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This notion of work also leads to the following definition:

Definition The potential energy of the particle is V (x) = −
∫ x

x0

F (y) dy, where x0 is arbitrary.

By definition, the potential energy V (x) is minus the work done by the force in moving the
particle from x0 to x. This a priori depends on the choice of x0, but if we change x0 7→ x̃0

the potential energy changes to V (x) 7→ V (x) −
∫ x0
x̃0
F (y) dy. Changing x0 thus simply shifts

V (x) by an additive constant: potential energy is understood to be defined only up to an overall
additive constant.

Using the Fundamental Theorem of Calculus we may write the force as

F (x) = −dV

dx
= −V ′(x) . (3.6)

Examples:

1. For F = −mg a choice of potential is V (x) = mgx.

2. For Hooke’s linear force F = −k(x− l) a choice of potential is V (x) = 1
2
k(x− l)2.

Notice that we’ve made a natural choice of additive integration constant in each case, but any
choice will do. Also, be careful with the signs!

Conservation of Energy Theorem The total energy of the particle

E = T + V (3.7)

is conserved, i.e. is constant when evaluated on a solution to Newton’s second law (3.1).

Proof 1: From the Work-Energy Theorem we already have

T (t2)− T (t1) = W =

∫ x2

x1

F (x) dx = V (x1)− V (x2) . (3.8)

Rearranging thus gives

E = T (t1) + V (x1) = T (t2) + V (x2) . (3.9)

Since the initial and final positions and times here are arbitrary, this proves E is conserved. �

Proof 2: More precisely we first write the right hand side of (3.7) as T (t) + V (x(t)). Using
the chain rule we then have

Ė = Ṫ + V̇ = mẋ ẍ+
dV

dx

dx

dt
= ẋ (mẍ− F ) . (3.10)
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It follows that Ė = 0 is implied by Newton’s second law. �

The fact that E is constant implies that in the motion any loss of potential energy necessarily
results in an equal gain in the kinetic energy T = 1

2
mẋ2, and hence a gain in the speed |ẋ| of

the particle (and of course the same statement with loss/gain interchanged).

Notice that we may rewrite (3.7) as

1

2
mẋ2 = E − V (x) . (3.11)

This equation has many implications. First, knowing the energy E and position of the particle
immediately gives its speed |ẋ|. Second, since kinetic energy T = 1

2
mẋ2 ≥ 0 is non-negative,

we always have V (x) ≤ E. This confines the possible location of the particle, for fixed energy.
We’ll see in section 3.2 that this allows us to determine the qualitative motion of particles, in
a general potential V (x). But we may also obtain quantitative information.

Example (Maximum height under gravity (again)): Let’s revisit the example in section 1.3:
consider a particle moving vertically under gravity, which at time t = 0 starts at height z = 0
with velocity ż = u > 0 upwards. What is the maximum height of the particle?

The potential is V (z) = mgz. The conserved energy E may be calculated from the initial
conditions, which gives E = T (0) = 1

2
mu2. Thus (3.11) reads

1

2
mż2 =

1

2
mu2 −mgz . (3.12)

The maximum height occurs when ż = 0, which immediately gives

zmax =
u2

2g
. (3.13)

�

3.1.1 Non-conservative forces

If the force, F , also depends on t or ẋ, as occurs with fluid drag and friction, the above relations
no longer hold: we cannot define a potential V (x) as the integral of F over the trajectory as
a function of x only. In such cases the conservation rules above will not hold – energy is not
conserved. However, at a microscopic level energy should be conserved – this is believed to be
a fundamental principle in physics. In the case of fluid drag, the issue is that we have ignored
the “back-reaction” of our body on the fluid particles. In each collision between the body and
the fluid particles energy is conserved, but some of the kinetic energy is transferred to the fluid
particles, increasing their average kinetic energy. But by definition this means we lost kinetic
energy of our object as heat – the fluid will be a bit warmer. Such energy transfers are hard to
keep track of, but don’t worry, for the most part in this course we will tend to ignore friction
and stick with with conservative forces.
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3.2 Motion in a general potential

Returning to equation (3.11), slightly rerranging gives us

ẋ2 =
2

m
(E − V (x)) . (3.14)

This is a first order ODE, which we can in principle solve as

t = ±
∫

dx√
2
m

(E − V (x))
. (3.15)

This gives t as a function of x. Assuming we can do the integral on the right hand side, we can
invert the relation to find x(t). The problem here is that, apart from in very simple problems,
we usually can’t evaluate the integral. Of course, what this means is that we can’t write it in
terms of known elementary functions; but some of these integrals are so important, they are
used as the definition of new functions.

Example (Quadratic potential – the harmonic oscillator): With V (x) = kx2/2, which gives
Hooke’s law after a constant translation of x, we have Newton’s second law reduces to

ẍ+ ω2x = 0 . (3.16)

with ω2 = k/m. This is the equation of motion for a simple harmonic oscillator. We have
already seen and solved this ODE, via Eqn. (2.16). Here we use Eqn. (3.15) which gives

t = ±
∫

dx

ω
√

2E
mω2 − x2

. (3.17)

We may solve this by making the substitution

x =

√
2E

mω2
cos θ , (3.18)

which gives

t = ∓
∫

1

ω
dθ =⇒ t− t0 = ∓ 1

ω
cos−1

(
x√

2E/mω2

)
. (3.19)

Here t0 is an integration constant. The solution is hence simple harmonic motion

x(t) =

√
2E

mω2
cos [ω(t− t0)] . (3.20)

Notice that in this case it is much easier to solve the second order equation of motion, than to
integrate the first order conservation of energy equation.

Let’s now consider a particle moving in a general potential V (x). An illustrative example is
shown in Figure 6. In general we won’t be able to do the integral in (3.15), nor will we be
able to explicitly solve Newton’s second law. However, we can deduce quite a lot about the
qualitative motion, using only the fact that E = T + V is conserved, and T ≥ 0, for different
values of the conserved energy E.
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x0 x1 xmin x2 x3xmax
x

V(x)

E0

E1

Figure 6: A general potential V (x), with various points marked on the x axis. xmin and xmax

are a local minimum and local maximum, respectively. At any point x the force acting on the
particle is minus the slope of the potential, F (x) = −V ′(x).

• Referring to Figure 6, suppose our particle has energy E0, and starts its motion at some
x > x0 with ẋ < 0. Since ẋ is negative the particle will start out moving to the left,
but as it does so T = E0 − V decreases to zero as it approaches x0, where by definition
V (x0) = E0. At x0 the particle has zero kinetic energy T = 0, and so is momentarily
at rest. However, since F (x0) = −V ′(x0) > 0 at this point there is a force acting to the
right. The particle’s motion hence turns around at x0 to have ẋ > 0 for x > x0. Since
T = E0−V > 0 for x > x0, the particle continues to move to the right (and in factescapes
to x→∞).

• For E = E1 and x > x3 the discussion is similar to that above. However, if the particle
begins its motion at x ∈ [x1, x2], it must remain bounded in this interval for all time –
we say it has insufficient energy to escape the “potential well”. At x = x1 or x = x2

note that again T = 0 and the particle is momentarily at rest. However, F (x1) > 0 while
F (x2) < 0, meaning that the particle simply bounces back and forth inside the interval
[x1, x2].

For E = E1 the regions x < x1 and x2 < x < x3 are classically forbidden – the particle doesn’t
have enough energy to exist at these points. Notice that at x = xmin or x = xmax we have
F (x) = −V ′(x) = 0 and the particle momentarily has no force acting on it (more on this in the
next subsection).

3.3 Motion near equilibrium

Given a dynamical system, one of the first questions we might ask is: are there any equilibrium
configurations? By definition, if you put the system in such a configuration, it will stay there.
Here is a more formal definition, in our setting of one-dimensional motion on the x axis:
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Definition An equilibrium configuration is a solution to Newton’s second law (3.1) with x =
xe = constant. Since this implies ẍ = 0 for all time t, Newton’s second law implies that
F (xe) = 0, and there is no net force acting on the particle.

For a conservative force 0 = F (xe) = −V ′(xe) implies that xe is a critical point of the potential
V (x).

Consider motion near an equilibrium point x = xe. We may begin by expanding Newton’s
second law around this point (assuming F (x) is suitably analytic):

mẍ = F (x) = F (xe) + (x− xe)F ′(xe) +O((x− xe)2) . (3.21)

By definition we have F (xe) = 0. We change variables to ξ ≡ x − xe, so that the equilibrium
point is now at ξ = 0. Assuming we are sufficiently close to the latter, so that the quadratic
and higher order terms in (3.21) are small, we may write down the following approximate linear
differential equation for ξ:

mξ̈ = F ′(xe)ξ . (3.22)

Definition Equation (3.22) is called the linearized equation of motion. Solutions to this linear
homogeneous equation are called linearized solutions.

There are three qualitatively different cases, depending on the sign of the constant

K ≡ −F ′(xe) . (3.23)

• K > 0

In this case we may define ω =
√
K/m > 0. The linearized equation of motion (3.22)

then reads ξ̈ + ω2ξ = 0, which is the simple harmonic oscillator we solved in section 2.3.
The general solution is ξ(t) = A cos (ωt+ φ). In this case ξ = 0 is called a point of stable
equilibrium – for amplitude A small enough so that it is consistent to ignore the higher
order terms in the expansion of the force (3.21), the system executes small oscillations
around the equilibrium point. The frequency of these oscillations is ω. Crucially, this
analysis applies to any point of stable equilibrium, and it is for this reason that the
harmonic oscillator is so important.

• K < 0

In this case we may define p =
√
−K/m > 0. The linearized equation of motion (3.22)

now reads

ξ̈ − p2ξ = 0 , (3.24)

which has general solution

ξ(t) = A ept +B e−pt , (3.25)

with A and B integration constants. A generic small displacement of the system at time
t = 0 will have both A and B non-zero, and the solution grows exponentially with t, for
both t > 0 and t < 0. The higher order terms in the Taylor expansion, that we ignored,
quickly become relevant. Such equilibria are hence termed unstable.
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• K = 0

Finally, if K = 0 the first two terms in the Taylor expansion in (3.21) are zero, and we
need to expand to higher order to determine what happens (although not in this course!).

We may rephrase all of the above discussion in terms of potentials. We similarly expand

V (x) = V (xe) + (x− xe)V ′(xe) +
1

2
(x− xe)2 V ′′(xe) +O((x− xe)3) . (3.26)

Without loss of generality we may choose the arbitrary additive constant in V so that V (xe) =
0. Moreover, V ′(xe) = −F (xe) = 0. This means that near equilibrium the potential is
approximately quadratic:

Vquad(x) =
1

2
K(x− xe)2 , (3.27)

where K = V ′′(xe) = −F ′(xe), as in (3.23). A stable equilibruim point with K > 0 is then a
local minimum of the potential (for example xe = xmin in Figure 6). An unstable equilibruim
point with K < 0 is instead a local maximum (for example xe = xmax in Figure 6).

Let’s see how to use some of these ideas in a realistic example (i.e. an exam question!):

Example (Taken from the Mods Examination paper, 2003): A bead of mass m slides along a
smooth, straight horizontal wire which passes through the origin O. The bead is attached to a
light, straight elastic spring of natural length l and spring constant k, and the other end of the
spring is attached to a fixed point P which is a distance d vertically above O.

(i) If x denotes the coordinate of the bead, relative to O, explain why the tension in the
spring is T = k

(√
d2 + x2 − l

)
, and show that

ẍ =
k

m
x

(
l√

d2 + x2
− 1

)
. (3.28)

(ii) Find the equilibrium solutions of this equation, and determine whether they are stable or
unstable, distinguishing carefully between the two cases l < d and l > d.

Solution: The set up is shown in Figure 7. From Pythagoras’ Theorem the extension of the
spring from its natural length is

√
d2 + x2− l, and from Hooke’s law the tension T is the spring

constant k times this extension.5 Writing down the component of Newton’s second law in the
x direction gives

mẍ = −T cos θ = − Tx√
d2 + x2

≡ F (x) . (3.29)

Substituting the given expression for T and rearranging slightly then gives the equation of
motion (3.28) for x.

5It is unfortunate that the letter T is variously used to denote kinetic energy, tension, and periods of
oscillation. However, these all have different dimensions, and the context should always be clear.
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x
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θ

m

Figure 7: The spring-bead system. The bead of mass m is constrained to move along the x
axis.

Equilibrium solutions have the right hand side of (3.29) equal to zero, namely F (xe) = 0 where

F (x) = kx

(
l√

d2 + x2
− 1

)
. (3.30)

The zeros are at xe = 0 and xe = x0, where l =
√
d2 + x2

0. Notice this solves as

x0 = ±
√
l2 − d2 , (3.31)

and this makes sense only if l ≥ d. Note also that the set up is symmetric under taking x 7→ −x,
so the behaviour of both equilibria in (3.31) should be the same. One computes

F ′(xe) = k

(
l√

d2 + x2
e

− 1

)
− x2

e kl

(d2 + x2
e)

3/2
. (3.32)

In particular

F ′(0) = k

(
l

d
− 1

)
, (3.33)

so that the equilibrium at xe = 0 is stable if l < d and unstable if l > d. On the other hand

F ′(x0) = − x2
0 kl

(d2 + x2
0)

3/2
< 0 , (3.34)

implying that x0 only exists as a distinct equilibrium when l > d, and in this case it is stable.�

Remark: You might ask: what about the component of Newton’s second law in the vertical
direction? In particular, what balances the vertical force T sin θ to constrain the bead to move
only along the x axis? This is an example of a constraint force, studied in detail in section 5.
Revisit this example after we cover that section, and ask yourself these questions again!
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3.4 Coupled oscillations

So far we have only considered one dimensional systems. In this section we briefly consider the
stability of systems in two dimensions.

Suppose we have a dynamical system, i.e. a system of ODEs, described by

ẍ = F (x, y) , ÿ = G(x, y) , (3.35)

where we shall assume that F and G are suitably smooth and here x and y may general
variables, rather than only Cartesian coordinates.

Definition An equilibrium point is a solution to (3.35) with x = xe, y = ye both constant.
Thus F (xe, ye) = 0 = G(xe, ye).

To determine the stability of such an equilibrium point, we again linearize the equations of
motion. This means that we write

x = xe + ξ , y = ye + η , (3.36)

where ξ and η are small, and then Taylor expand the right hand sides of (3.35), leading to

ξ̈ = F (xe + ξ, ye + η) = F (xe, ye) + ξ
∂F

∂x
(xe, ye) + η

∂F

∂y
(xe, ye) + · · · ,

η̈ = G(xe + ξ, ye + η) = G(xe, ye) + ξ
∂G

∂x
(xe, ye) + η

∂G

∂y
(xe, ye) + · · · , (3.37)

where · · · denote terms of quadratic and higher order in ξ, η. The linearized equations of
motion are hence

ξ̈ = a ξ + b η ,

η̈ = c ξ + d η , (3.38)

where we have introduced the constants

a =
∂F

∂x
(xe, ye) , b =

∂F

∂y
(xe, ye) ,

c =
∂G

∂x
(xe, ye) , d =

∂G

∂y
(xe, ye) . (3.39)

One could solve (3.38) by e.g. differentiating the equation for ξ̈ twice, eliminating η̈ using its

equation and then eliminating for η using the equation for ξ̈. This gives a fourth order ODE
in ξ.

However, it is usually more convenient to write (3.38) as a matrix equation(
ξ̈

η̈

)
=

(
a b

c d

)(
ξ

η

)
. (3.40)
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We then seek solutions to (3.40) of the form(
ξ(t)

η(t)

)
=

(
α

β

)
eλt , (3.41)

where α, β and λ are constant. Substituting (3.41) into (3.40) and cancelling the overall factor
of eλt gives

λ2

(
α

β

)
=

(
a b

c d

)(
α

β

)
. (3.42)

Thus λ2 is an eigenvalue of

(
a b

c d

)
, with corresponding eigenvector

(
α

β

)
.

The characteristic equation is

det

[
λ2

(
1 0

0 1

)
−

(
a b

c d

)]
= λ4 − (a+ d)λ2 + (ad− bc) = 0 , (3.43)

which gives the eigenvalues

λ2 =
1

2

(
a+ d±

√
(a+ d)2 − 4(ad− bc)

)
. (3.44)

For a general system (3.35) the solutions for λ2 in (3.44) can be complex, in general also leading
to complex λ. Note there are two roots for λ2 and thus four roots for λ.

Remark If λ does not have repeated roots, the general solution is a linear superposition (i.e.
a weighted linear sum) of the solutions of the form of Eqn. (3.40), where the summation is over
all possible roots for λ.

Remark If λ possesses repeated roots converting the equations to a fourth order ODE in ξ
will often be a convenient way of generating the general solution.

Stable and unstable solutions. If any of the four roots for λ has positive real part then the
solutions have exponential growth and are unstable. If all roots for λ have real part less than
or equal to zero then the solutions decay or oscillate and are stable.

Definition If all solutions for λ = ±λ± given by (3.44) are pure imaginary, we write λ = ±iω±,
where ω± > 0 are called the normal frequencies of the system.

Note as λ pure imaginary for a normal frequency, λ2 is real and hence the associated eigenvector(
α

β

)
(3.45)

is real. Thus, writing eλt = e±iω±t in terms of trigonometric functions, the linearized solution is(
ξ(t)

η(t)

)
=

(
α+

β+

)
cos (ω+t+ φ+) +

(
α−

β−

)
cos (ω−t+ φ−) , (3.46)
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where (
α±

β±

)
are the eigenvectors corresponding to the eigenvalues λ2

±, respectively, and φ± are constants.

A normal mode is defined to be the solution for a given eigenvector.

Figure 8: The system of masses and springs. The upper diagram shows the equilibrium
configuration, with all springs at natural length l. In the lower diagram the horizontal
displacements x and y of the two masses from their equilibrium positions are shown, together
with the various Hooke’s law forces.
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Example:

Consider two particles of mass m attached to three identical springs with spring constant k,
as shown in Fig. 8. In the upper plot, the springs are in equilibrium and all at their natural
length l. The system is characterised by x, y, as shown with the associated tension forces in
the lower plot.

Show that x = y = 0 is the only equilibrium point, find the equations of motion, determine the
normal frequencies and find the general solution.

Solution By Hooke’s law the forces shown in Figure 8 are

F1 = −kxi, F2 = k(y − x)i (Left Particle), F3 = −kyi, (3.47)

with −F2 on the Right Particle given by −k(y − x) i.

Resolving Newton’s second law in the x-direction for each particle thus gives

mẍ = −kx+ k(y − x) = k(y − 2x) ,

mÿ = −k(y − x)− ky = k(x− 2y) . (3.48)

We see that the equations are already linear, and that there is a unique equilibrium point at
x = y = 0.

Thus in this case we may identify x = ξ, y = η. In matrix form (3.48) reads(
ẍ

ÿ

)
=

(
−2k

m
k
m

k
m

−2k
m

)(
x

y

)
. (3.49)

The characteristic equation is

0 = det

[(
λ2 + 2k

m
− k
m

− k
m

λ2 + 2k
m

)]
=

(
λ2 +

2k

m

)2

−
(
k

m

)2

, (3.50)

and hence

λ2 =
k

m
(−2± 1). (3.51)

Thus

λ = ±i

√
k

m
, ±i

√
3k

m
. (3.52)

and the linearized modes (3.41) are oscillatory with normal frequencies

ω+ =

√
k

m
, ω− =

√
3k

m
. (3.53)

The two values of λ2 in (3.51) correspond to the two eigenvectors (1,±1)T of the matrix in
(3.49), respectively. Hence the general solution is(

x(t)

y(t)

)
=

(
1

1

)
P cos

(√
k

m
t+ ϕ

)
+

(
1

−1

)
Q cos

(√
3k

m
t+ ψ

)
,
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where P , Q, ϕ and ψ are constants. The lower frequency ω+ normal mode has the two masses
oscillating together, while the higher frequency ω− normal mode has the two masses oscillating
in opposite directions.

Aside Note that near a stable equilibrium point the system behaves like two independent
one-dimensional harmonic oscillators, of frequencies ω±.

4 Motion in higher dimensions

In this section we develop some general formalism that is useful for analysing dynamics in two
and three dimensions. In particular in sections 4.2 and 4.3 we introduce conservative forces and
central forces, respectively. The dynamics for each of these forces leads to a conserved quantity,
i.e. a quantity that is constant during the motion. Conserved quantities are very important in
dynamics: by definition one has at least partially integrated the equations of motion whenever
one finds a conserved quantity. Conservative forces and central forces lead to conservation of
energy and angular momentum, respectively. In this section we focus on developing the theory,
with a few very simple examples, but then apply this to more sophisticated examples in sections
5 and 6.

4.1 Planar motion in polar coordinates

Motion in a plane is sometimes conveniently described using polar coordinates. Recall that
Cartesian coordinates (x, y) are related to polar coordinates (r, θ) by

x = r cos θ , y = r sin θ . (4.1)

See Figure 9a. The coordinate r =
√
x2 + y2 ≥ 0 is simply the Euclidean distance of the point

(x, y) from the origin O. On the complement of the origin we have tan θ = y
x
, where θ ∈ [0, 2π),

and the direction of increasing θ is anticlockwise.

y

O x

r

θ

er
eθ

i

j

(a) Cartesian and polar coordinates.

y

O x

r

θ

(t)

r
r

(b) Velocity in polar coordinates.

Figure 9

We introduce the two unit vectors

er = cos θ i + sin θ j , eθ = − sin θ i + cos θ j . (4.2)
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These should be thought of as direction vectors at a point with polar coordinates (r, θ), r 6= 0,
as in Figure 9a. er is a unit vector in the direction of increasing r (at fixed θ), while eθ is a
unit vector in the direction of increasing θ (at fixed r). We also have er · eθ = 0, so that at
every point in the plane (apart from the origin) {er, eθ} form an orthonormal basis. However,
unlike {i, j} the directions of the vectors {er, eθ} are not fixed, but depend on θ.

In this basis the position of a particle is simply r = (x, y) = r er. For a time-dependent
trajectory r(t) we then compute

ṙ = ṙ er + r ėr . (4.3)

But from (4.2) we have

ėr = −θ̇ sin θ i + θ̇ cos θ j = θ̇ eθ ,

ėθ = −θ̇ cos θ i− θ̇ sin θ j = −θ̇ er , (4.4)

and hence

ṙ = ṙ er + rθ̇ eθ . (4.5)

The second term has arisen because the basis we used is itself time-dependent, specifically due
to the time-dependence of θ = θ(t). The quantity θ̇ is called the angular velocity. Equation
(4.5) expresses velocity ṙ in polar coordinates – see Figure 9b. We may find a similar expression
for acceleration by taking another time derivative, using (4.4):

r̈ = r̈ er + ṙ ėr + ṙθ̇ eθ + rθ̈ eθ + rθ̇ ėθ ,

= (r̈ − rθ̇2) er + (2ṙθ̇ + rθ̈) eθ ,

= (r̈ − rθ̇2) er +
1

r

d

dt
(r2θ̇) eθ , (4.6)

Here in the last line we’ve written 2ṙθ̇ + rθ̈ = 1
r

d
dt

(r2θ̇).

Example (Uniform circular motion): Consider a particle moving in a circle of radius R, centre
the origin, at constant speed v. Since r = R = constant we have ṙ = 0. Thus from (4.5) its
velocity is

ṙ = R θ̇ eθ . (4.7)

This is tangent to the circle. The particle’s speed is v = |ṙ|, which implies v = R|θ̇|, and hence

the angular speed |θ̇| = v
R

is constant. Since θ̇ is constant, θ̈ = 0, and similarly since ṙ = 0 we
also have r̈ = 0. Thus from (4.6) the acceleration is

r̈ = −R θ̇2 er = −v
2

R
er . (4.8)

We conclude that the acceleration in uniform circular motion has magnitude v2/R, and is
directed towards the centre of the circle O. Newton’s second law implies that in order to
generate this acceleration we need a force of magnitude F = mv2/R = mR θ̇2 directed towards
the origin – this is called the centripetal force. �
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4.2 Conservative forces

In section 3.1 we saw that for motion in one dimension and forces F = F (x) there is a conserved
energy. In three dimensions this is no longer necessarily the case: we need an additional
constraint on F = F(r) in order for energy to be conserved. Even before looking at the details
one might have anticipated this: energy is a scalar quantity, and without any further input
there is no natural way to construct a scalar from the vector F, analogously to what we did in
one dimension.

Definition The kinetic energy of a particle is T = 1
2
m|ṙ|2, where r(t) is the particle’s position

in an inertial frame.

We then have the following important result:

Conservation of Energy Theorem The quantity

E = T + V =
1

2
m|ṙ|2 + V (r) , (4.9)

is conserved if the force F = F(r) takes the form

F = −∇V . (4.10)

That is, in Cartesian coordinates F = (−∂xV,−∂yV,−∂zV ).

Proof: From Newton’s second law

mr̈ = F(x) = −∇V, (4.11)

where r = r(t) is a function of time. Taking the dot product of both sides by ṙ gives

d

dt

(
1

2
mṙ2

)
= mṙ · r̈ = −ṙ · ∇V = −dV (r(t))

dt
,

with the first and last equalities from the product and chain rules of differentiation respectively.
Hence

1

2
mṙ2 + V (r) = E, constant . (4.12)

Or, going the other direction, suppose that the force takes the form (4.10). Using the chain
rule we compute

Ė = mr̈ · ṙ +∇V · ṙ
= (mr̈− F) · ṙ = 0 , (4.13)

where the last step uses Newton’s second law. �

To understand where the condition (4.10) really comes from, it is useful to first generalize the
notion of work to three dimensions:
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Definition The work done by a force F in moving a particle from r1 to r2 along a curve C is

W =

∫
C

F · dr . (4.14)

The distinction with the corresponding definition in one dimension (3.4) is that in higher
dimensions the line integral (4.14) depends on the precise curve C, and not just on its endpoints
r1, r2. If we now suppose that r(t) is the trajectory of a particle satisfying Newton’s second
law, starting at position r1 = r(t1) and ending at r2 = r(t2), then we may write

W =

∫ t2

t1

F · ṙ dt = m

∫ t2

t1

r̈ · ṙ dt =
1

2
m

∫ t2

t1

d

dt
|ṙ|2 dt = T (t2)− T (t1) . (4.15)

Thus, as in one dimension, the work done by the force is the change in kinetic energy.

Suppose now that the total energy E given by (4.9) is conserved. This means that E =
T (t1) + V (r1) = T (t2) + V (r2), and hence (4.15) implies that

W =

∫
C

F · dr = V (r1)− V (r2) . (4.16)

The right hand side manifestly depends only on the endpoints r1, r2 of the curve C, and we
have thus shown that if energy is conserved then the work done is independent of the choice
of curve C connecting r1 to r2. In the Prelims Multivariable Calculus course you prove that if
this is true for all curves C then F takes the form (4.10).6

Definition A force F = F(r) is said to be conservative if there exists a potential energy
function V = V (r) such that

F = −∇V . (4.17)

Note that as in one dimension the potential V is only defined up to an additive constant.

Examples:

(i) Any constant force Fconst is conservative, with potential V (r) = −Fconst · r. An important
example is gravity: for F = −mg k the corresponding potential function is simply V (r) =
mg k · r = mgz.

(ii) In section 6.1 we’ll show that any force of the form F = F (|r|) er is conservative, where
er = r/|r|. These also play a particularly important role in Dynamics.

Conservative forces enjoy the following equivalent definitions:

Theorem (From Prelims Multivariable Calculus) Let F : S → R3 be a vector field, where
the domain S ⊂ R3 is open and path connected. Then the following three statements are
equivalent:

6See the Theorem below. Note also that if F takes the form (4.10), the second equality in (4.16) is just the
Fundamental Theorem of Calculus.
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1. F is conservative, i.e. there exists a potential V : S → R such that F = −∇V .

2. Given any two points r1, r2 in S, and any curve C in S starting at r1 and ending at r2,
then the integral

∫
C

F · dr is independent of the choice of C.

3. For any simple closed curve C in S we have
∫
C

F · dr = 0.

It is also shown in Multivariable Calculus that conservative forces satisfy ∇∧F = 0, although
we won’t need this fact.

4.3 Central forces and angular momentum

Another important concept is that of a central force:

Definition A force that is always directed along the line joining a particle to a fixed position
in an inertial frame is called a central force. It is usually convenient to choose this point as the
origin of the frame, meaning that

F ∝ r , (4.18)

where r is the position vector of the particle, measured from the origin O.

The importance of central forces is that they always lead to an associated conserved vector
quantity.

Definition The angular momentum L = LP of a particle about a point P in an inertial frame
is the moment of linear momentum p = mṙ about P . That is,

LP ≡ (r− x) ∧mṙ = (r− x) ∧ p . (4.19)

Here x is the position vector of the point P , while r is the position of the particle (both
measured from the origin O). Notice that ṙ is the velocity of the particle in the inertial frame,
not the velocity relative to P (which could in principle be moving, x = x(t)).

This definition makes it clear that the angular momentum depends on the point P . However,
for central forces there is a natural choice for P , namely P = O, the centre of the force.

Proposition If a particle is acted on by a central force with centre O then the angular
momentum L = LO is conserved, and the path of the particle lies entirely in a fixed plane
through O. That is, the motion is planar.

Proof: We compute

L̇ =
d

dt
(r ∧mṙ) = ṙ ∧mṙ + r ∧mr̈ = r ∧mr̈ . (4.20)

The last equality follows since a ∧ a = 0 for any vector a. Newton’s second law then gives

L̇ = r ∧mr̈ = r ∧ F = 0 , (4.21)
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where the last equality follows since F ∝ r for a central force. Thus L is constant. In the
special case that L = r ∧mṙ = 0 the position and velocity must be parallel (a ∧ b = 0 implies
a and b are parallel, where we include this to mean that one or both are zero). Thus the
particle either moves in a straight line through the origin, or in the special case that ṙ = 0 sits
at a fixed point. More generally if L 6= 0 then notice that L · r = 0 = L · ṙ both follow from
L = r∧mṙ, meaning that L is always perpendicular to both the position of the particle and its
velocity. This means that the motion is confined to the plane through O with normal vector L
– see Figure 10. �

r
O

L

r

Figure 10: The planar motion of a particle acted on by a central force, with centre O. The
conserved angular momentm L is normal to the plane of motion through O.

Suppose that L = LO is conserved, as in the last Proposition. In particular the direction of
L is constant, and we may choose this as the z direction, so that LO ∝ k. Introducing polar
coordinates for the planar motion in the (x, y) plane, we compute

L = r ∧mṙ = r er ∧m
(
ṙ er + rθ̇ eθ

)
,

= mr2θ̇ k , (4.22)

where we have used (4.5) in the first line, and k = i ∧ j = er ∧ eθ in the last step. This proves
the following result, which will be important later:

Proposition If angular momentum L is conserved, then the quantity

h ≡ r2θ̇ ≡ specific angular momentum (4.23)

is conserved, where (r, θ) are polar coordinates in the plane of motion. Note from (4.22) that
|L| = m|h|, so that h is also the angular momentum per unit mass.

For completeness we conclude this section with a definition and brief discussion of torque,
although in practice we won’t meet this again until section 7.

Definition The torque τ = τP of a force F, about a point P with position vector x, acting on
a particle with position vector r is

τP ≡ (r− x) ∧ F . (4.24)

In other words, the torque is the moment of the force about P . The direction of τP is normal
to the plane containing r − x and F, and may be regarded as the axis about which the force
tends to rotate the particle about P .
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If P is a fixed point in the inertial frame, so that x = constant, then using (4.19) and Newton’s
second law we have

L̇P = (r− x) ∧mr̈ = (r− x) ∧ F = τP , (4.25)

and the torque is the rate of change of angular momentum. This can be compared with Newton’s
second law itself, written in the form ṗ = F, which says that the force is the rate of change of
linear momentum. The definition (4.24) leads to another way to characterize central forces:

Proposition A force is a central force about P if and only if the torque about P is zero, or
equivalently LP is conserved.

Proof: The torque (4.24) is zero if and only if F ∝ (r − x), which means F is a central force

about P . On the other hand from (4.25) the torque about P is zero if and only if L̇P = 0. �
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5 Constrained systems

In this section we consider constrained dynamical systems: think of masses attached to light
rods, beads threaded on smooth wires, marbles rolling in smooth dishes, etc. The dynamics
happens in R3, but the constraints effectively reduce the motion to a one-dimensional or two-
dimensional dynamical system.

5.1 Constraint forces

If a particle is going to be constrained to move on a particular curve or surface in R3, there
must be some kind of force ensuring this. These types of forces are a little different to those
we have considered so far, but they may be included in Newton’s second law just as easily. In
this course we shall make the following assumption about these constraint forces:

Assumption: The constraint force N is always perpendicular to the constraint space.

We have used the letter “N” because “perpendicular” is also sometimes called “normal”, and
such constraint forces are similarly also referred to as normal reaction forces. Since by definition
the velocity of the particle ṙ is always tangent to the constraint space, we have

N · ṙ = 0 . (5.1)

This is a simple geometric condition, but what does this Assumption mean physically? The
work done by the force N when the particle moves along a curve C in the constraint space is
(from the definition (4.14))

W =

∫
C

N · dr =

∫
N · ṙ dt = 0 , (5.2)

where the last step uses (5.1). Thus such constraint forces do no work during the constrained
motion of the particle. Another way to think about this is that there is no component of the
constraint force tangent to the constraint space. Actually any reaction force tangent to the
constraint space would be interpreted as some kind of friction force, opposing motion along the
wire, dish, or whatever the constraint space is. Thus an equivalent Assumption is to say that
that the constraint space is smooth, or frictionless : the implication is that N is perpendicular
to the constraint space, and hence does no work.

If we consider a particle of mass m, acted on by a force F0, that is then further constrained to
move on a smooth constraint space, Newton’s second law simply reads

mr̈ = F = F0 + N , (5.3)

where N is the normal reaction/constraint force. We have the following important result:

Conservation of Energy Theorem (Constrained motion) Suppose that the force F0 = −∇V
is conservative, with potential V = V (r). Then the total energy E = T +V is conserved in the
constrained motion of the particle.
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Proof: We simply compute

Ė =
d

dt

(
1

2
m|ṙ|2 + V (r)

)
= mr̈ · ṙ +∇V · ṙ

= (mr̈− F0) · ṙ
= (mr̈− F0 −N) · ṙ = 0 . (5.4)

The first few steps are identical to the proof of conservation of energy in the unconstrained
case. In going to the last line we have used (5.1), and the last equality is Newton’s second
law (5.3). �

Let’s see all of this in some examples.

5.2 The simple pendulum

Perhaps the simplest interesting example of constrained motion is the simple pendulum. This
consists of a mass m fixed to the end of a light (i.e. negligible mass) rod of length l. The other
end of the rod is hinged smoothly at a point O and is free to swing in a vertical plane under
gravity.

x

T

z

O

mg

θ

er

eθ

length l

Figure 11: A simple pendulum.

The set up is shown in Figure 11. The effect of the rod is to constrain the mass m to move on
a circle of radius l in the (z, x) plane, centred on the pivot point O. The constraint space in
this case is hence a circle. The constraint force for the motion is the tension T in the rod. We
denote the angle that the rod makes with the downward vertical by θ. Notice that this is the
only degree of freedom in the problem, parametrizing where the mass m is on the circle, so we
expect to find an ODE for θ(t) from Newton’s laws.

Given that the motion will lie on a circle, it is useful to introduce polar coordinates in the (z, x)
plane: z = −l cos θ, x = l sin θ. The corresponding unit vectors are

er = − cos θ k + sin θ i , eθ = sin θ k + cos θ i . (5.5)
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See Figure 11. Although these are slightly different to the polar coordinates in the (x, y) plane

in Figure 9a, the essential point is that as in (4.4) we again have ėr = θ̇ eθ, ėθ = −θ̇ er. It
follows that the velocity and acceleration are again given by (4.5) and (4.6), respectively, where
r = (z, x).

The forces acting on the mass m are gravity and the constraint force: in the notation of
section 5.1 we have

F0 = −mg k , N = −T er , (5.6)

where the total force acting is F = F0 +N. Notice in particular that the constraint force N acts
in the radial direction, and is thus always perpendicular to the constrained motion in a circle:
this follows from our general discussion in section 5.1, and the fact that the rod is “hinged
smoothly” at O.

Newton’s second law (5.3) is a vector equation, and we may conveniently pick out different
components of it by taking dot products with the linearly independent vectors er, eθ. Since
k = − cos θ er + sin θ eθ, taking the dot product of Newton’s second law (5.3) with eθ gives

mr̈ · eθ = F · eθ = −mg sin θ . (5.7)

From (4.6) we have r̈ · eθ = 2ṙθ̇ + rθ̈. However, here r = l is constant, so that (5.7) reads

mlθ̈ = −mg sin θ, which rearranges to

θ̈ = −g
l

sin θ . (5.8)

This is the equation of motion for the simple pendulum: a second order ODE for θ(t). Of
course, this is only “half” of Newton’s second law. To obtain the remaining equation we take
the dot product of (5.3) with er:

mr̈ · er = F · er = mg cos θ − T . (5.9)

On the other hand from (4.6) we have r̈ · er = r̈ − rθ̇2 = −lθ̇2. Thus (5.9) rearranges to

T = mlθ̇2 +mg cos θ . (5.10)

This says that the tension T balances the component of the weight along the rod mg cos θ, and
the centripetal force mlθ̇2 for circular motion about the origin O.

We cannot solve the equation of motion (5.8) in closed form, as simple as it looks. However,
we have our dynamics toolbox to apply: let’s look at the equilibrium configurations, and
conservation of energy.

Equilibria: Notice there are two equilibrium configurations, where the right hand side of (5.8)
is zero: θ = 0 and θ = π. The former has the pendulum hanging down vertically, and for small
oscillations (i.e. small θ) we may approximate sin θ ' θ. In this linearized approximation (5.8)
becomes

θ̈ = −ω2θ , where ω2 =
g

l
> 0 . (5.11)
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Thus, as is intuitively obvious, θ = 0 is a stable equilibrium, in the terminology of section 3.3.
For small oscillations about this point the pendulum executes simple harmonic motion with
angular frequency ω, and hence period

T = 2π

√
l

g
. (5.12)

Notice that
√
l/g indeed has dimensions of time, and that in fact this is the only way we can

construct such a quantity from the variables in the problem. Thus T had to be a dimensionless
number times

√
l/g.

The second equilibrium position, θ = π, has the rod precariously balanced above the pivot
point O. Setting θ = π + ξ(t), with ξ(t) small, we may now approximate sin θ = sin(π + ξ) '
− sin ξ ' −ξ. The linearized equation of motion obtained from (5.8) thus reads

ξ̈ = −g
l
(−ξ) =

g

l
ξ . (5.13)

The general solution is ξ(t) = C e
√
g/l t +D e−

√
g/l t, and the equilibrium is unstable.

Conservation of energy: The Conservation of Energy Theorem at the end of section 5.1
guarantees that the total energy of the mass is conserved: the gravitational force F0 = −mg k
is conservative, with potential V (r) = V (x, y, z) = mgz. The total energy is

E =
1

2
m|ṙ|2 + V (r) =

1

2
ml2θ̇2 −mgl cos θ . (5.14)

Here in the second equality we have substituted ṙ = lθ̇ eθ for circular motion, and z = −l cos θ.
Let’s check explicitly that E is indeed conserved:

Ė = ml2θ̈θ̇ +mgl sin θ θ̇ = ml2θ̇
(
θ̈ +

g

l
sin θ

)
. (5.15)

We thus see that Ė = 0, provided the equation of motion (5.8) holds.

As in section 3.2, we may view (5.14) as a first order ODE for θ(t), and integrate it. Rerranging
we have

θ̇2 =
2E

ml2
+

2g

l
cos θ , (5.16)

which integrates to

t = ±
∫

dθ√
2E/ml2 + 2(g/l) cos θ

. (5.17)

If we assume that the pendulum starts at θ = 0 at time t = 0, and reaches a maximum angle
of θ0 > 0 in its swing, then we may compute the period of the swing:

T = 4

∫ θ0

0

dθ√
2E/ml2 + 2(g/l) cos θ

= 4

√
l

g

∫ θ0

0

dθ√
2 cos θ − 2 cos θ0

. (5.18)

39



Here we have noted that at the top of the swing θ̇ = 0, and hence from (5.16) cos θ0 = −E/mgl.
The factor of 4 in (5.18) arises because the integral from 0 to θ0 is only a quarter of one period.
Compare to the result for small oscillations (5.12). One can derive this from the general
formula (5.18) by making the approximation cos θ ' 1− 1

2
θ2 in the integral. More generally the

integral in (5.18) is an elliptic integral. We also see that the period T is a dimensionless number

times
√
l/g, where the dimensionless number in general depends on the initial conditions (via

the conserved energy E).

Finally, notice that we have tacitly assumed that |E| ≤ mgl in the above discussion. From
(5.14) we have E ≥ −mgl, with equality for the stable equilibrium at θ = 0. However, if

E > mgl then cos θ0 = −E/mgl has no solution, and hence θ̇ is never zero. In this case the
system has so much energy that the pendulum swings over the top of the pivot point.

5.3 Motion on a surface under gravity

Consider a mass m moving under gravity on a smooth surface. For example, this might model
a marble rolling in a dish, or a bicycle freewheeling down a hill. The gravitational force is, as
usual, F0 = −mg k, and this is conservative with potential V (r) = mgz. The fact that the
surface is smooth means that the constraint force is perpendicular to the surface.

Mathematically, there are different ways in which we can specify a surface in R3 (see the last
part of the Geometry course). For example, we can define a surface as the zero set of some
suitable function f : R3 → R. A normal vector to the surface is ∇f , and the constraint force
will be proportional to this. Rather than trying to describe the general situation, here we’ll
focus on a surface of revolution. This may be specified as

f(r, θ, z) ≡ z −H(r) = 0 , (5.19)

where (r, θ, z) are cylindrical polar coordinates. Recall this means that the Cartesian (x, y)
coordinates are given by x = r cos θ, y = r sin θ. The defining equation (5.19) specifies the
height z as a function z = H(r) of the radial distance r in the (x, y) plane – see Figure 12.
Since this is independent of θ the resulting surface will be invariant under rotation about the
z axis, which rotates the θ coordinate. This also implies that eθ is tangent to the surface at
every point, and hence in particular we have N · eθ = 0.

The position vector of the particle moving on the surface is

r = r er + z ez , (5.20)

where ez = k. Newton’s second law (5.3) thus reads

mr̈ = F = −mg ez + N . (5.21)

Using (4.6) we may write the acceleration r̈ in cylindrical polar coordinates, so that (5.21) reads

m

[(
r̈ − rθ̇2

)
er +

1

r

d

dt

(
r2θ̇
)

eθ + z̈ ez

]
= −mg ez + N . (5.22)

Notice that every term in (5.22) is orthogonal to eθ, apart from the term proportional to eθ.
Thus we immediately deduce

1

r

d

dt

(
r2θ̇
)

= 0 =⇒ r2θ̇ ≡ h = constant . (5.23)
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Figure 12: Particle moving under gravity on a surface of revolution.

From the general discussion in section 4.3 we see this has something to do with conservation
of angular momentum. However, in that section we also showed that the angular momentum
LP about a point P is conserved if and only if the force acting is a central force about P , i.e.
the total force F is always directed towards P . This clearly isn’t true in general for motion on
a surface of revolution. To see what’s going on, let us compute the angular momentum about
the origin O:

L = LO = r ∧mṙ = m (r er + z ez) ∧
(
ṙ er + rθ̇ eθ + ż ez

)
= mr2θ̇ ez +m(zṙ − rż) eθ −mzrθ̇ er , (5.24)

where we have used er∧eθ = ez, eθ∧ez = er, ez ∧er = eθ, which are easily checked from (4.2).
We thus have

L · ez = mr2θ̇ = mh . (5.25)

We now see that (5.23) says that the component of angular momentum in the direction of the
axis of symmetry ez is conserved.

Let’s go back to Newton’s second law (5.22). This is a vector differential equation, and we have
so far taken the dot product with eθ to find the conserved quantity h in (5.23). There must be
two more scalar equations, and obviously we may obtain these by taking dot products with er
and ez. However, we should be a bit smarter and think about what we’re trying to do. The
motion of the particle is determined by finding r(t), θ(t) and z(t). Firstly, z(t) is fixed to be

z(t) = H(r(t)) by the constraint (5.19). Secondly, the equation (5.23) determines θ̇ = h/r2(t),
which may be integrated to find θ(t), once we know r(t). Thus at this stage we really only have
one degree of freedom in the problem, namely r(t). One linear combination of the remaining
equations in (5.22) should thus be an equation of motion for r(t). The other combination simply
determines the constraint force N, c.f. the simple pendulum, where equation (5.9) determined
the tension in the pendulum. If we want to obtain the equation of motion for r(t) directly, a
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nice geometric way to do this is to take the dot product of (5.22) with another tangent vector
to the surface: that way N will immediately drop out. Since f(r, θ, z) = z −H(r) = 0 defines
the surface, a normal vector is7

n = ∇f = ez −H ′(r)er . (5.26)

The constraint force N is proportional to n. We have already used that eθ is tangent to the
surface, and from (5.26) another independent tangent vector is

t = H ′(r)ez + er . (5.27)

Clearly t · n = 0. Thus taking the dot product of Newton’s second law (5.22) with t gives
(cancelling an overall factor of the mass m)(

r̈ − rθ̇2
)

+H ′(r) z̈ = −g H ′(r) . (5.28)

On the other hand from (5.23) and the defining equation (5.19) we may substitute

θ̇ =
h

r2
, z = H(r) , (5.29)

and from the chain rule

ż = H ′(r) ṙ , z̈ = H ′′(r) ṙ2 +H ′(r) r̈ . (5.30)

Substituting these into (5.28) hence gives[
1 + (H ′(r))

2
]
r̈ +H ′(r)H ′′(r) ṙ2 − h2

r3
= −g H ′(r) . (5.31)

This is a second order ODE for r(t), as we expected to find. Given H(r), in principle one can
try to solve this equation.

However, from the end of section 5.1 we also know that there is a conserved energy for this
problem. This will lead to a first order equation, and moreover the second order equation
(5.31) should be implied by this first order equation. Let’s see that this is indeed the case.
From conservation of energy we know that

E =
1

2
m|ṙ|2 +mgz = constant . (5.32)

In cylindrical polars we compute

|ṙ|2 = |ṙ er + rθ̇ eθ + ż ez|2 = ṙ2 + r2θ̇2 + ż2 . (5.33)

Substituting using (5.29) into (5.32) we hence have

E =
1

2
m

[
ṙ2 +

h2

r2
+ (H ′(r))

2
ṙ2

]
+mgH(r) . (5.34)

7The gradient in cylindrical polar coordinates is ∇f = ∂f
∂r er+ 1

r
∂f
∂θ eθ+ ∂f

∂z ez. See the Multivariable Calculus
course.
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Equation (5.34) is the expected first order ODE for r(t). It’s straightforward enough to take
d/dt of the right hand side of (5.34) and check (after cancelling an overall factor of ṙ) this indeed
gives the equation (5.31). In the other direction, equation (5.34) may in principle be integrated,
given H(r), although typically one won’t be able to do the integral explicitly. Nevertheless, as
we have seen before one can often use conservation of energy to deduce various qualitative and
quantitative features of the motion. Let’s see this in a concrete example, with a specific choice
of the surface of revolution (i.e. choice of H(r)).

Example (Motion on a paraboloid): A particle moves under gravity on the smooth inside
surface of the paraboloid z = r2/4a. Initially it is at a height z = a and is projected horizontally
with speed v along the surface of the paraboloid. Show that the particle moves between two
heights in the subsequent motion, and find them.

Solution: We have H(r) = r2/4a. We begin by substituting the initial conditions into the

conserved specific angular momentum h = r2θ̇. At t = 0 we have z = a and hence since
r2 = 4az initially we have r = 2a. Moreover, since the particle is projected horizontally at
speed v, in polar coordinates (see Figure 9) we may identify ṙ = 0, rθ̇ = v initially. We thus
compute

h = r2θ̇ = r · rθ̇ = 2av . (5.35)

Conservation of energy (5.32) reads

E =
1

2
m|ṙ|2 +mgz =

1

2
mv2 +mga , (5.36)

where we have substituted the initial conditions into the second equality. Thus

1

2

(
ṙ2 + r2θ̇2 + ż2

)
+ gz =

1

2
v2 + ga . (5.37)

Let us now eliminate θ̇ and r to get a differential equation for z(t) only. From the constraint

r = 2
√
az =⇒ ṙ =

√
a

z
ż . (5.38)

Substituting into (5.37) using θ̇ = h/r2 gives

1

2

[(
1 +

a

z

)
ż2 +

4a2v2

4az

]
+ gz =

1

2
v2 + ga . (5.39)

This may be expanded out and simplified to(
1 +

a

z

)
ż2 = v2

(
1− a

z

)
+ 2g(a− z) =

1

z

(
v2 − 2gz

)
(z − a) . (5.40)

Since z > 0 and ż2 ≥ 0 it follows that(
z − v2

2g

)
(z − a) ≤ 0 . (5.41)

Therefore the particle always stays between the two heights z = a and z = v2/2g, at which
ż = 0. In particular the particle is confined to z ≥ a if v2 > 2ga, or to z ≤ a if v2 < 2ga, or to
the horizontal circle z = a if v2 = 2ga. �
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6 Motion under inverse square force

In this section we introduce Newton’s law of universal gravitation. This is described by an
inverse square law force, and we show that a particle acted on by such a force moves on a conic
section. This was famously first shown by Newton in his Principia. We also derive Kepler’s
laws of planetary motion, and comment briefly on the inverse square law force of electrostatics.

6.1 Inverse square law forces and potentials

In sections 4.2 and 4.3 we introduced the notions of conservative forces and central forces. These
lead to a conserved energy and conserved angular momentum, respectively. In this section we
combine the two. Specifically, we are interested in forces given by the following:

Proposition Denote r = |r| and er = r/r = r̂ a unit vector in the direction of r, where the
latter is the position vector of a particle. Then forces of the form

F = F (r) er , (6.1)

are conservative central forces, where the potential V = V (r) depends only on the distance r
to the origin.

Proof: It is immediate that (6.1) is a central force, as it is proportional to r. Let V (r) be a
function of r = (x2

1 + x2
2 + x2

3)1/2, where (x1, x2, x3) are Cartesian coordinates. Then

−∇V = −
(
∂V

∂x1

,
∂V

∂x2

,
∂V

∂x3

)
= −dV

dr

(x1

r
,
x2

r
,
x3

r

)
= −dV

dr
er . (6.2)

Then we have F is conservative by setting V (r) = −
∫ r
r0
F (s) ds so that

F (r) = −dV

dr
. (6.3)

More specifically, for the remainder of this section we are interested in the following important
example:

Definition The inverse square law force is a conservative central force with

V (r) = −κ
r

=⇒ F = − κ
r2

er , (6.4)

where κ is constant, and we have used (6.1) and (6.3) to relate the potential to the force.

Inverse square law forces arise in Nature in two different contexts:

1. Newton’s law of universal gravitation
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According to Newton, the gravitational force on a point particle at position r1 due to a point
particle at position r2 is given by (see Figure 13)

F = F12 = −GN
m1m2

|r1 − r2|2
(r1 − r2)

|r1 − r2|
= −GN

m1m2

|r1 − r2|2
r̂12 . (6.5)

Here m1, m2 are the (gravitational) masses of the two particles, we have defined the unit vector
r̂12 = (r1 − r2)/|r1 − r2|, and GN ' 6.67× 10−11 N m2 kg−2 is Newton’s gravitational constant.
Note that:

• We have F12 = −F21. This is Newton’s third law.

• The force is proportional to the product of the masses; given the overall minus sign and
the fact that masses are positive, the gravitational force is always attractive.

• The force acts in the direction of the vector joining the two masses, and is inversely
proportional to the square of the distance of separation.

• Suppose that particle 2 has much more mass, so that m2 � m1. Placing the heavy mass
at the origin, so that r2 = 0 and with the relabelling r = r1, m2 = M , m1 = m, Eqn (6.5)
collapses to the respective force and potential energy

F = − κ
r2

er , V (r) = −κ
r

with κ = GNmM, where for planetary examples M is usually the mass of the Sun.

• As the force is conservative, energy is conserved.

• Aside The force and potential are singular at the origin; the point particle assumption
breaks down as the Sun, Earth and other bodies within the system are not point particles
and cannot occupy the same point in space. We exclude r = 0 from our considerations.

O

r2

r1

mass m1

mass m2

r1 r2-
F12

Figure 13: The attractive gravitational force F12 on a mass m1 at position r1, due to a mass
m2 at position r2. A particular physical case of interest has the Earth for mass m1 and the Sun
for mass m2.

Remark: We now apparently have two different descriptions of the force of gravity: one given
by Newton’s inverse square law force, and the other given by F = −mg k. The latter is valid on
the Earth’s surface as an approximation to Newton’s inverse square law force in the limit that

45



the lengthscales of the dynamics are much smaller than the lengthscales over which the Earth’s
gravitational field varies, that is the Earth’s radius. Hence there is no variation in g = −gk in
the approximation.

2. Coulomb’s law of electrostatics.

Coulomb discovered a similar inverse square law force between two point charges at rest.
Given two such charges q1, q2 at positions r1, r2, respectively, the first charge experiences
an electrostatic force F12 due to the second charge, given by

F12 =
1

4πε0

q1q2

|r1 − r2|2
r̂12 . (6.6)

The constant ε0 ' 8.85 × 10−12 C2 N−1 m−2 is called the permittivity of free space. Unlike
gravity, the Coulomb force can be both attractive and repulsive, with opposite sign charges
attracting, and same sign charges repelling.

As we did for gravity, let us now suppose the second charge has much more mass and then can
be approximated as fixed at the origin (r2 = 0). With the relabelling q2 = Q, r1 = r and q1 = q
we may restate Coulomb’s law as:

A point charge Q at the origin O exerts an electrostatic force F on a point charge
q at position r given by (6.4), where κ = −Qq/4πε0.

6.2 The Kepler problem and planetary orbits

Let us return to the conservative central force (6.1),

F = F (r) er . (6.7)

We assume this force acts on a particle of mass m, and is directed towards a fixed centre O,
which is the origin of an inertial frame. From section 4.3 we know that angular momentum
L = LO about the origin is conserved, and that the motion of the particle lies in a plane.
We introduce the polar coordinates of section 4.1 in this plane. Using the formula (4.6) for
acceleration r̈ in polar coordinates, Newton’s second law

mr̈ = F (r) er (6.8)

becomes

m

[
(r̈ − rθ̇2) er +

1

r

d

dt
(r2θ̇) eθ

]
= F (r) er . (6.9)

We then read off two scalar equations from (6.9):

d

dt
(r2θ̇) = 0 , (6.10)

m(r̈ − rθ̇2) = F (r) . (6.11)
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We recognize the first equation (6.10) as a consequence of angular momentum conservation, as

discussed in section 4.3. Indeed, recall that L = mr2θ̇ k = mhk, where as earlier k = er ∧ eθ
is orthogonal to the plane of motion, and we define

r2θ̇ ≡ h = constant , (6.12)

where h is the specific angular momentum. Using (6.12) to substitute for θ̇ in terms of h into
(6.11) gives

m

(
r̈ − h2

r3

)
= F (r) . (6.13)

Using conservation of angular momentum, we have reduced motion in a conservative central
force to a second order ODE for the distance of the particle from the origin! Solving this gives
r(t), which we may then substitute into (6.12) to obtain a first order ODE for θ(t), namely

θ̇ = h/r(t)2. Eliminating time t from this solution will generically give some curve r = r(θ)
(compare with the projectile example in section 2.1, where we first solved for the trajectory
as a function of time t, and from this then eliminated t to find the curve). For our particular
problem it turns out to be easier to solve for r(θ) directly, or rather u(θ) ≡ 1/r(θ).

Proposition For a particle moving in a central force the equations of motion (6.12), (6.13)
imply that, for h 6= 0,

d2u

dθ2
+ u = −F (1/u)

mh2u2
, (6.14)

where u(θ) = 1/r(θ) gives the curve traced out by the path of the particle. Having solved (6.14)

we may restore the time-dependence by solving θ̇ = hu(θ)2 to find θ(t).

Proof: From (6.12) we have θ̇ = hu2, giving

ṙ =
d

dt

(
1

u

)
= − 1

u2

du

dθ
θ̇ = −hdu

dθ
. (6.15)

Differentiating again:

r̈ =
d

dt

(
−hdu

dθ

)
= −hθ̇ d2u

dθ2
= −h2u2 d2u

dθ2
. (6.16)

Substituting this into (6.13) gives

m

(
−h2u2 d2u

dθ2
− h2u3

)
= F

(
1

u

)
, (6.17)

which rearranges to (6.14). �

Notice that (6.14) is not valid in the special case that h = 0. Since |L| = m|h| in fact h = 0 if
and only if the angular momentum L = 0, and from our discussion in section 4.3 we know this
means the particle must be travelling on a straight line through the origin – this can be seen
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explicitly from (6.12), which implies that θ̇ = 0. In this case θ is constant, and it doesn’t make
sense to parametrize r = r(θ) as we do in the Proposition. Solutions with h = 0 are called
radial trajectories. For the remainder of this section we assume that L 6= 0.

The Kepler Problem We now examine the central inverse square law force, with F (r) =
−κ/r2. This is called the Kepler problem. Recall that κ > 0 for an attractive force (such as
gravity), while κ < 0 for a repulsive force (such as the electrostatic force between two charges
with the same sign). We’ll focus on the attractive case, with κ = GNMm > 0.

Theorem (Due to Newton) For the Kepler problem the particle trajectories with non-zero
angular momentum are conic sections.

Proof: In terms of the variable u = 1/r we have F (r) = −κu2. Substituting this into (6.14)
gives

d2u

dθ2
+ u =

κ

mh2
. (6.18)

Remarkably, the change of variable has reduced the problem to the same ODE we found for a
particle attached to a spring (c.f. equation (2.15))! The general solution to (6.18) is

u(θ) =
κ

mh2
[1 + e cos (θ + φ)] , (6.19)

where e and φ are integration constants. Without loss of generality we may assume that e ≥ 0,
and then further using the freedom to rotate the plane we may assume that φ = 0, which we
henceforth do. On the other hand, from the Prelims Geometry course we know that the general
polar form of a conic may be written as

r0

r
= r0u = 1 + e cos θ , (6.20)

where r0 is a constant and the origin at r = 0 is situated at one of the foci. Comparing to
(6.19) and recalling that κ > 0 we may thus identify

r(θ) =
r0

1 + e cos θ
, where r0 =

mh2

κ
> 0 . (6.21)

Regarding m and κ as fixed, the scale parameter r0 is thus determined by the specific angular
momentum h. The integration constant e in (6.19) is the eccentricity of the conic. This is (i)
an ellipse for 0 ≤ e < 1, with e = 0 being a circle, (ii) a parabola for e = 1, and (iii) a hyperbola
for e > 1. �

Notice that the time dependence is recovered by solving θ̇ = hu(θ)2 as

h t =

∫
dθ

u(θ)2
= r2

0

∫
dθ

(1 + e cos θ)2
, (6.22)

which gives t as a function of θ. (It’s possible to do the integral on the right hand side, but we
won’t pursue this further.)
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6.2.1 Conics

We now show that the solution to the Kepler problem reduces to the normal form for a conic.
We begin by expressing the polar form of a conic (6.21) in Cartesian coordinates x = r cos θ,
y = r sin θ, whereby

r0 = e r cos θ + r = e x+ r, hence r = r0 − e x . (6.23)

Squaring both sides then gives

x2 + y2 = (r0 − e x)2 . (6.24)

Rearranging yields
x2 + y2 = r2

0 − 2er0x+ e2x2,

and hence

(1− e2)

[
x2 +

2er0

1− e2
x

]
+ y2 = r2

0.

With
x0 = − e r0

1− e2
, k = r0/e

completing the square gives

(1− e2)(x− x0)2 + y2 = r2
0 +

e2r2
0

1− e2
=

r2
0

1− e2
=

e2k2

1− e2
,

which is the normal form for a conic section, with a shifted origin.

Its collapse onto an ellipse, hyperbola or parabola according to the value of e is lectured in
detail in Prelims Geometry. For completeness, the reduction is briefly reproduced below, but
this will not be lectured.

Ellipses: 0 ≤ e < 1: In this case we define

a =
r0

(1− e2)
, b =

r0

(1− e2)1/2
, x0 = − e r0

1− e2
= −e a < 0, (6.25)

Completing the square for (6.24) generates

(x− x0)2

a2
+
y2

b2
= 1 , (6.26)

which is plotted in Figure 14a.

This is the equation of an ellipse centred at (x0, 0), with a semi-major axis of length a and a
semi-minor axis of length b ≤ a. One of the two foci is located at the origin (x, y) = (0, 0), the
centre of attraction r = 0 for the inverse square law force.

When e = 0, we have a = b = r0, x0 = 0 and the ellipse is a circle centred at the origin.

Hyperbolae: e > 1: In this case we similarly define

a =
r0

(e2 − 1)
, b =

r0

(e2 − 1)1/2
, x0 =

e r0

e2 − 1
= e a > 0. (6.27)
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a -x0
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(a) An ellipse. The large black dot is the origin, which
is one of the foci and also the centre of attraction of the
inverse square law force. The centre of the ellipse is (x0, 0),
where x0 = −e a ≤ 0. The semi-major axis has length a,
while the semi-minor axis has length b ≤ a.

F
a

x0y=(b/a)(x-

y=-(b/a)(x-

)

x0)

x0

r0

(b) A hyperbola. The large black dot is again the
origin, focus, and centre of the force. The two
asymptotes are y = ±(b/a)(x−x0), which meet at
the point (x0, 0), where now x0 = e a > 0.

Figure 14: Conic sections.

Some algebra reveals that (6.24) reduces to

(x− x0)2

a2
− y2

b2
= 1 . (6.28)

This is the equation of a hyperbola, plotted in Figure 14b. .

There are two asymptotes y = ±(b/a)(x − x0), dropping the “1” from the right hand side of
(6.28), which meet at x = x0.

The focus is at the origin (x, y) = (0, 0), which is again the centre of the inverse square law
force.

Notice from (6.21) that r →∞ along the asymptotes for cos θ = −1/e, which has two solutions
θ = ±θ0, where θ0 = cos−1(−1/e) > π/2 and θ is the angle subtended at the origin.

Parabolae: e = 1: Equation (6.24) reads simply

y2 = r2
0 − 2r0x , (6.29)

which is the equation of a parabola. This is again an unbounded orbit, where now r →∞ for
cos θ = −1, i.e. θ = ±π.

6.2.2 The effective potential and energy

Let’s return to the original equation of motion (6.13) for r(t), but from an energy context.
Recalling that F (r) = −dV/dr we may write (6.13) as

mr̈ = −dVeff

dr
, (6.30)
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where we have introduced the effective potential (careful with signs!)

Veff(r) = V (r) +
mh2

2r2
. (6.31)

The equation of motion (6.30) now resembles motion in one dimension, with an effective
potential energy Veff . Indeed, we know that the energy of the particle

E =
1

2
m|ṙ|2 + V (r) =

1

2
m(ṙ2 + r2θ̇2) + V (r) (6.32)

is conserved. Substituting for θ̇ in terms of h using (6.12) gives

E =
1

2
mṙ2 + Veff(r) . (6.33)

The equation of motion (6.30) indeed implies this is conserved, as we learned in section 3.1.

O r

(r)Veff

r0

Figure 15: The effective potential Veff(r) for the Kepler inverse square law force problem,
crucially with κ > 0 so that the force is attractive. In this case Veff has a unique local minimum
at r = r0.

For the Kepler problem we have V (r) = −κ/r, with an attractive force such as gravity having
κ > 0. The effective potential is shown in Figure 15. A solution with r = r0 constant has r̈ = 0,
and thus from (6.30) r0 must be a critical point of the effective potential. One easily checks
that

dVeff

dr
(r0) = 0 =⇒ r0 =

mh2

κ
. (6.34)

Thus such a solution exists if and only if κ > 0. Of course an orbit with r = r0 constant is a
circle, and this is consistent with our general solution (6.21) with eccentricity e = 0. Being a
local minimum of the effective potential also means that this circular orbit is stable to small
perturbations of r, as we learned in section 3.3.

The energy Next we’d like to compute the conserved energy E in (6.33). For this we need ṙ,
which from (6.15) is

ṙ = −h du

dθ
=

he

r0

sin θ , (6.35)
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where in the last equality we have used the form of the solution in (6.20). Inserting this and
r = r0/(1 + e cos θ) into the energy

E =
1

2
mṙ2 − κ

r
+
mh2

2r2
, (6.36)

gives

E =
m

2

h2e2 sin2 θ

r2
0

− k

r0

(1 + e cos θ) +
mh2

2

(1 + e cos θ)2

r2
0

. (6.37)

Expanding the square and combining, this simplifies to

E =
m2

2r2
0

(1 + e2) +
1

r0

(−k +
mh2

r0

)e cos θ − k

r0

. (6.38)

Substituting for r0 using (6.34), the middle term disappears, and we find that E is indeed
constant:

E =
(e2 − 1)κ2

2mh2
. (6.39)

In particular we see that the bound orbits with 0 ≤ e < 1 (i.e. ellipses) have E < 0. But this
is also clear from the effective potential in Figure 15: for E < 0 the particle moves back and
forth between some rmin and rmax, and the orbit is bound, c.f. our discussion of motion in a
general potential in section 3.2. On the other hand for e > 1 we have E > 0 and the particle
has a minimum radius, but escapes to infinity. These are the hyperbolic orbits. The parabola
e = 1 is the limiting case with zero energy, for which the particle only just escapes to infinity.

6.2.3 Examples

Example (Geostationary orbit): A geostationary orbit is a circular orbit in the plane containing
the Earth’s equator, which co-rotates with the Earth. This means that a satellite following such
a trajectory lies directly above the same point on the Earth’s surface, maintaining the same
height. It hence has the same angular velocity as the Earth about its polar axis, namely θ̇ = 2π
radians per day. Using equation (6.12) we may write h = r2

0 θ̇, and since κ = GNMEm, where
ME is the mass of the Earth, (6.34) implies the radius satisfies

r0 =
mh2

κ
=

r4
0 θ̇

2

GNME

=⇒ r0 =

(
GNME

θ̇2

)1/3

' 4.22× 107 m = 42, 200 km .(6.40)

Here we’ve used GN ' 6.67× 10−11 N m2 kg−2, ME ' 5.97× 1024 kg, θ̇ ' 7.27× 10−5 s−1.

Example (Angle of deflection of a comet): A comet approaches the Sun from a very large
distance with speed v. If the Sun exerted no force on the comet it would continue with uniform
velocity on an undeflected path, giving a distance of closest approach to the Sun of p. Find the
actual path of the comet and the approximate angle through which it is deflected.

Solution: Figure 16 shows the comet’s path undeflected by gravity. At time t = −T , for some
large T � 0, we have ṙ = −v cosα and rθ̇ = v sinα = p v/R, where in the latter equation
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Figure 16: A comet approaching the Sun from a very large distance R with speed v. Without the
effect of gravity the comet travels undeflected with constant speed v, and its closest approach
is the distance p. Here p = R sinα, and the angle α is very small.

we have used p = R sinα. In particular the conserved specific angular momentum h may be
computed from these initial conditions as

h = r2θ̇ = p v . (6.41)

The general solution to the Kepler problem may be written

u(θ) =
κ

mh2
+ C cos θ +D sin θ . (6.42)

For this example it turns out to be more convenient to use this form, rather than (6.19). At time
t = −T we choose the axes so that θ = 0. In addition we have u = 1/R ' 0 and from (6.15)
also du/dθ = −ṙ/h = cosα/p ' 1/p. Inserting these initial conditions into (6.42) determines
the integration constants C and D, giving solution

u(θ) =
κ

mp2v2
(1− cos θ) +

1

p
sin θ . (6.43)

This is the path of the comet.

Setting u = 1/r = 0 gives the equation

κ

mp2v2
(1− cos θ) +

1

p
sin θ = 0 . (6.44)

Using double angle formulas we may rewrite this as

κ

mp2v2
sin2 θ

2
+

1

p
sin

θ

2
cos

θ

2
= 0 . (6.45)

Clearly one solution is θ = 0, but there is another solution satisfying

κ

mp2v2
sin

θ

2
+

1

p
cos

θ

2
= 0 =⇒ tan

θ

2
= −mpv

2

κ
. (6.46)

Setting θ = 2π − 2δ this may be rewritten as

tan δ =
mpv2

κ
=

p v2

GNMS

. (6.47)
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Figure 17: The actual path of the comet. The origin is at the Sun (large black dot), with the
θ = 0 axis horizontal, to the right (one should understand the dotted lines as extending to
infinity).

Here in the second equality we have inserted the value κ = GNMSm, where MS is the mass of
the Sun.

The undeflected path in Figure 16 has the comet coming in at an angle θ = 0 (in the limit
R → ∞), and going past the Sun to θ = π. On the other hand, the actual path sends the
comet back out to infinity at an angle 2π − 2δ. It follows that the comet is deflected through
an angle π − 2δ. See Figure 17. �

6.3 Kepler’s laws

In the late 16th century the Danish nobleman Tycho Brahe made accurate and comprehensive
planetary observations, which Johannes Kepler was then able to analyse. Using this empirical
data Kepler remarkably deduced the following three laws (published between 1609 and 1619):

K1: The path of each planet is an ellipse with the Sun at the focus.

K2: A straight line joining the Sun and a planet sweeps out equal areas in equal
times.

K3: The square of each planet’s period is proportional to the cube of the semi-major
axis of its elliptical orbit.

The force attracting a planet to the Sun is of course Newton’s inverse square law of gravitation,
which we solved in the previous subsection. Putting the Sun at the origin, this indeed turns out
to be the focus of an ellipse for bounded orbits. As we remarked earlier, just as the Sun attracts
the planet, by Newton’s third law the planet also attracts the Sun, which hence accelerates and
cannot be the origin of an inertial frame. This is true, but the Sun is so much more massive
(more than a factor of 103) than any planet that its centre can be taken to be approximately
fixed. We’ll discuss this more carefully in section 7.3. Notice that we are also ignoring the fact
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that in our solar system there are many planets, which also attract each other – but this is
again a subleading effect.

We thus take it as read that we have proven K1 from Newton’s laws. What about K2 and
K3?

r(t)

Sun

planet θδ

Aδarea

Figure 18: In a small time interval δt the angle subtended at the origin changes by a small
amount δθ = θ̇ δt, sweeping out an area δA.

Proof of K2: Kepler’s second law is a simple consequence of conservation of angular momen-
tum, expressed through equation (6.12). Recall the latter reads r2θ̇ = h = constant. A straight
line from the Sun to a planet is simply the position vector r(t). In a small time interval δt the
planet sweeps out a small triangle with base length r and height rδθ (see Figure 18), which has

area δA = 1
2
r · rδθ = 1

2
r2θ̇ δt. We thus deduce that

Ȧ =
1

2
r2θ̇ =

1

2
h = constant. (6.48)

Being a consequence only of conservation of angular momentum, Kepler’s second law holds for
any central force (even non-conservative ones). �

Proof of K3: The third law requires only a little more work. First we recall that the area of
an ellipse with semi-major axis a and semi-minor axis b is

A = πab . (6.49)

On the other hand, we know from K2 that this area is swept out at a constant rate Ȧ = 1
2
h.

Integrating this over one period we obtain

A =

∫
dA =

1

2
h

∫
dt =

1

2
hT . (6.50)

Thus the square of the period T is

T 2 =
4A2

h2
=

4π2a2b2

h2
=

4π2

GNMS

· a
2b2

r0

, (6.51)
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where in the last step we have substituted h2 = κr0/m = GNMSr0 using (6.21). Using (6.25)
we may tidy up the last geometric factor in (6.51) as a2b2/r0 = r3

0/(1 − e2)3 = a3, giving the
final formula

T 2 =
4π2a3

GNMS

. (6.52)

This is precisely Kepler’s third law, where the proportionality factor is 4π2/GNMS, where MS =
mass of the Sun. �
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7 Systems of particles

So far we have mainly been studying the motion of a single particle. What can we say about
the dynamics of many particles? Before discussing this, now is a good time to discuss the
non-uniqueness of inertial frames.

7.1 Galilean transformations

As discussed in section 1, in order to apply Newton’s second law we must first establish an
inertial reference frame. Such frames are not unique. Suppose we have an inertial frame
S, with respect to which positions are specified by a vector r = (x, y, z) from the origin O.
Consider the following transformations to a different frame S ′, with positions specified by r′:

spatial translations, r′ = r− x, where x is a constant vector,

constant rotations, r′ = R r, where R is a constant 3× 3 orthogonal matrix,

Galilean boosts, r′ = r− u t, where u is a constant velocity.

The first and second transformations simply translate the origin by a fixed distance, and rotate
the axes by a fixed rotation, respectively. The final transformation has the origins O, O′ moving
at a fixed relative velocity u.

If r(t) is the trajectory of a free particle (by definition, no forces act on it) in the frame S, then
d2

dt2
r = 0. It is a simple matter to check that for each r′(t) above one has d2

dt2
r′ = 0, and hence

the particle also moves with constant velocity in the new frame S ′. Any combination of the
above transformations thus maps an inertial frame to another inertial frame, generating the
Galilean transformation group.8 The freedom to make Galilean transformations is sometimes
useful when analysing the dynamics of more than one particle, as we shall see.

The insight of Galileo was that physics is invariant under Galilean transformations: the laws
of motion are the same in any inertial frame. This is known as Galileo’s principle of relativity.
For example, consider an observer standing on a train moving at constant velocity u, compared
to another observer at rest with respect to the Earth. These two inertial frames are in uniform
relative motion, so r′ = r − (u t + x), with u and x constant. The laws of motion (Newton’s
second law) inside the train are not any different from those for the observer at rest. However,
as the train turns through a bend in the track a reference frame at rest relative to the train is
accelerating, and this is observerd as a “fictitious force” by the passengers inside (luggage falls
over, it’s less easy to walk down the aisle, etc).

7.2 Centre of mass motion

A note on notation: Henceforth we will denote our inertial frame, in which we write down
Newton’s second law, as Ŝ, with origin Ô.

8Sometimes time translations t′ = t−s, where s is a constant, are also included in this set of transformations.
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Consider a system of N point particles. With respect to an inertial frame Ŝ, we denote the
position vector of the Ith particle from Ô by rI , which has mass mI and hence linear momentum
pI = mI ṙI , I = 1, . . . , N . We suppose that particle J exerts a force FIJ on particle I, for I 6= J .
Newton’s third law immediately tells us that FJI = −FIJ for each I 6= J . On the other hand
Newton’s second law for particle I reads

mI r̈I = ṗI = FI = Fext
I +

∑
J 6=I

FIJ . (7.1)

Here we have included an external force Fext
I , i.e. a force acting on particle I that is not due

to the other N − 1 particles in the system. We refer to the FIJ as internal forces.

When considering a single particle, the force F = Fext in Newton’s second law is by definition
always external. In this case we always have in mind that (a) something else is responsible for
producing that force, and (b) we are entirely ignoring the effect the particle has on whatever
that something else is (i.e. we are ignoring its back-reaction, under Newton’s third law). Of
course, whether or not it is reasonable to neglect the effects of the particle on the “external
system” that produces Fext depends on the circumstances. At the end of section 3.1 we briefly
discussed fluid drag in this context. At a molecular level the fluid is made up of fluid particles,
and the drag force is an effective external force, resulting from large numbers of collisions of
our object with the very small mass fluid particles. It is hardly reasonable to model this by
introducing N ∼ 1030 water molecules! A more subtle example is the Kepler problem in section
6.2. Here a particle of mass m is attracted by an inverse square law force F = −(κ/r2) er
directed towards the origin. In this context we were effectively regarding F as an external
force acting on the particle, ignoring the fact that the mass at the origin that produces F will
experience an equal and opposite force, and hence accelerate. We’ll come back to precisely this
point in the next subsection.

Definition The centre of mass of the system of particles is the point G, with position vector

RG ≡ 1

M

N∑
I=1

mIrI , (7.2)

where M =
∑N

I=1mI is the total mass. Similarly the total momentum of the system is

P ≡
N∑
I=1

pI = MṘG . (7.3)

The key point of this is the following:

Theorem The centre of mass of the system behaves like a point particle of mass M acted on
by the total external force. In particular, the dynamics of the centre of mass is independent of
the internal forces.

Proof: We compute

MR̈G = Ṗ =
N∑
I=1

ṗI =
N∑
I=1

(
Fext
I +

∑
J 6=I

FIJ

)
, (7.4)

58



the last equality using (7.1). However, due to Newton’s third law FIJ = −FJI , the N(N − 1)
terms in the sum

N∑
I=1

∑
J 6=I

FIJ = 0 (7.5)

cancel pairwise. Thus (7.4) becomes

MR̈G = Ṗ =
N∑
I=1

Fext
I = Fext , (7.6)

where Fext is by definition the total external force. �

This result explains why we can (often) so accurately model objects as point particles, even when
they manifestly are not. Whatever internal forces are acting within our object, for example
holding it together, they will cancel out of the centre of mass motion. In most of the problems
we have studied we have then really been modelling the centre of mass motion of an object,
and we’ve been applying Newton’s second law in the form (7.6).

Definition A closed system is one in which all forces are internal, acting between the con-
stituents of the system. That is, Fext

I = 0, I = 1, . . . , N .

We then have the following important corollary:

Corollary For a closed system the total momentum is conserved, Ṗ = 0.

This is of course an immediate consequence of (7.6). When the total momentum is conserved

notice that the centre of mass moves with constant velocity ṘG = constant. This means that by
a suitable Galilean transformation (a Galilean boost and translation) we may take the centre
of mass to be RG = 0, the origin of our inertial frame.

Definition For a system with Fext = 0, the inertial frame in which the centre of mass RG = 0
is called the centre of mass frame. (This is unique up to an overall constant rotation of the
axes.)

Definition The total angular momentum L = LP of the system about a point P is

LP =
N∑
I=1

(rI − x) ∧ pI , (7.7)

where P has position vector x from the origin Ô. That is, L is the vector sum of the angular
momenta LI = (rI − x) ∧ pI for each particle I about P – see (4.19).
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Using the definition (7.7) we begin by computing

L̇P =
N∑
I=1

[(ṙI − ẋ) ∧ pI + (rI − x) ∧ ṗI ]

= −ẋ ∧P +
N∑
I=1

(rI − x) ∧ ṗI

= −ẋ ∧P +
N∑
I=1

(rI − x) ∧
(
Fext
I +

∑
J 6=I

FIJ

)
. (7.8)

Here in the second equality we have used ṙI ∧ pI = ṙI ∧ mI ṙI = 0. The third equality uses
Newton’s second law (7.1). In

∑N
I=1(rI − x) ∧

∑
J 6=I FIJ we again have 1

2
N(N − 1) pairs of

terms, which look like

(rI − x) ∧ FIJ + (rJ − x) ∧ FJI = (rI − rJ) ∧ FIJ , (7.9)

and we have used Newton’s third law. To get any further we need the strong form of Newton’s
third law:

N3 (strong form): If particle 1 exerts a force F = F21 on particle 2, then particle
2 also exerts a force F12 = −F on particle 1. Moreover, this force acts along the
vector connecting particle 1 to particle 2, F12 ∝ (r1 − r2).

r
O

I

rJ
FIJ

FJI

particle I

particle J

Figure 19: The strong form of Newton’s third law.

This clearly holds for the inverse square law forces of Newton (6.5) and Coulomb (6.6), but
there are examples that don’t satisfy this.9

Returning to (7.9), we see that if the strong form of Newton’s third law holds this is zero, and
hence (7.8) gives

L̇P = −ẋ ∧P +
N∑
I=1

(rI − x) ∧ Fext
I = −ẋ ∧P + τ ext

P , (7.10)

where τ ext
P is by definition the total external torque about P , c.f. (4.24).

There are two special cases where the first term on the right hand side of (7.10) is zero:

9Notably the magnetic component of the Lorentz force acting on a charged particle moving in the
electromagnetic field generated by another charged particle. But this is well beyond our syllabus!
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• (i) taking P = Ô gives x = 0,

• (ii) taking instead P = G we have ẋ ∧P = ṘG ∧P = ṘG ∧MṘG = 0.

We have thus proven the following:

Theorem Provided the strong form of Newton’s third law holds, the rate of change of total
angular momentum about either Ô/G equals the total external torque about Ô/G. That is,

L̇Ô/G = τ ext
Ô/G

. (7.11)

Corollary For a closed system satisfying the strong form of Newton’s third law, the total
angular momentum about the origin Ô of an inertial frame is conserved, L̇Ô = 0.

The main application of (7.11) will be to rigid body motion, which is the subject of section 8.3.
In particular the following result will be useful:

Proposition Consider the system of particles in a uniform gravitational field, with acceleration
due to gravity g. Assuming this is the only external force acting, the total external torque about
a point P with position vector x is

τ ext
P = −(RG − x) ∧Mg k . (7.12)

This is the same as the torque for a particle of mass M at the centre of mass RG (compare to
(4.24)). In particular, the torque about G (for which x = RG) is zero.

Proof: We simply compute

τ ext
P ≡

N∑
I=1

(rI − x) ∧ Fext
I =

N∑
I=1

(rI − x) ∧ (−mIg k) = −(RG − x) ∧Mg k , (7.13)

where we have used the definitions M =
∑N

I=1mI , MRG =
∑N

I=1mIrI in the final equality. �

7.3 The two-body problem

A closed system with a single point particle isn’t very interesting: there is no force acting, and
the particle moves with constant momentum. The two-body problem is a closed system of two
point particles. Newton’s second and third laws give

m1r̈1 = F12 , m2r̈2 = F21 = −F12 . (7.14)

Adding these two equations implies that the centre of mass

RG =
m1r1 +m2r2

m1 +m2

(7.15)
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moves with constant velocity, which we knew from the last subsection. On the other hand, if
we define r ≡ r1 − r2 so that

r1 = RG +
m2

m1 +m2

r , r2 = RG −
m1

m1 +m2

r , (7.16)

then from (7.14) we deduce

r̈ = r̈1 − r̈2 =

(
1

m1

+
1

m2

)
F12 =

m1 +m2

m1m2

F12 . (7.17)

Definition The reduced mass for the two-body problem is µ =
m1m2

m1 +m2

.

In terms of this the equation of motion (7.17) reads

µr̈ = F12 . (7.18)

Example: For the inverse square law force we have

F12 = − κ

|r1 − r2|3
(r1 − r2) = − κ

r2

r

r
.

We have thus effectively reduced the two-body problem to a problem for a single particle,
with position vector r(t) satisfying (7.18). The force on the right hand side is then effectively
an external force for this particle. Having solved this, the solution to the original two-body
problem is given by (7.16).

In fact we are always free to define r∗1 = r1 −RG, r∗2 = r2 −RG, which are the positions of the
two particles in the centre of mass frame. Recall this is a Galilean transformation, since ṘG =
constant. In this inertial frame (7.16) becomes

r∗1 =
m2

m1 +m2

r , r∗2 = − m1

m1 +m2

r . (7.19)

If the second mass is much larger than the first, m2 � m1, then these become r∗1 ' r, r∗2 ' 0,
while the reduced mass is µ ' m1. We may thus view what we did in solving the Kepler
problem in section 6.2 in two different ways:

• If we take the mass m = µ in (6.8), then in section 6.2 we were really solving (7.18) for the
two-body problem. This describes the exact internal relative motion of the two bodies.

• If we instead take the mass m2 � m1 then the solution in section 6.2 is the approximate
solution to the two-body problem in the centre of mass frame, where the larger mass m2

is at the origin.

Usually the latter is applicable, e.g. the Sun is more than 1000 times more massive than
any of the planets, while for a satellite or comet orbiting the Earth the factor is many orders
of magnitude larger still. What’s remarkable about the two-body problem is that the exact
solution and approximate solution we have described are mathematically equivalent, differing
only in which mass to use in Newton’s second law!
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8 Rotating frames and rigid bodies

In this final section we discuss two topics that involve rotation: the dynamics of rigid bodies in
sections 8.2 and 8.3, and Newton’s laws in a general (i.e. non-inertial) frame from section 8.4
to the end. We will only describe the basic features of rigid body motion, focusing on simple
examples; a general discussion is left to B7.1 Classical Mechanics (which also introduces and
exploits more powerful methods for solving the dynamics).

8.1 Rotating frames

Throughout this section there will always be two reference frames in the problem, and it is
important to make clear which is which from the outset:

A fixed inertial frame Ŝ: this has origin Ô and fixed coordinate axes with corre-
sponding basis vectors êi, i = 1, 2, 3.

A general frame S: this has origin O, with position vector x as measured from Ô,
and coordinate axes with corresponding basis vectors ei, i = 1, 2, 3.

Whenever we write down Newton’s laws of motion, we must do so using the inertial frame Ŝ.
This is the frame of an inertial observer, often called the laboratory frame by physicists, and
we regard it as fixed and time-independent. In particular this means that the basis vectors êi
are independent of time, d

dt
êi = 0, i = 1, 2, 3. When we introduce rigid bodies, the frame S

will rotate with the body, and hence will in general be non-inertial.

frame S

e

x

O

O

frame S

1

e2

e3

e1

e
2

e
3

(t)

Figure 20: The reference frame Ŝ is a fixed inertial frame. This is the frame in which we
formulate Newton’s laws of motion, and hence do the “observing”. With respect to this frame,
a general frame S has origin O at position vector x = x(t) as measured from Ô, and its
coordinate axes may be rotating, so that ei = ei(t).
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We may write the orthonormal basis vectors {ei} of the frame S as

ei(t) =
3∑
j=1

Rij(t) êj , i = 1, 2, 3 . (8.1)

As you learned in the Geometry course, the fact that both bases are orthonormal means that
R = (Rij) is an orthogonal matrix. The main result of this subsection is:

Proposition There is a (unique) vector ω = ω(t) such that

ėi = ω ∧ ei , i = 1, 2, 3 . (8.2)

ω = ω(t) is called the angular velocity of the frame S with respect to fixed inertial frame Ŝ.

We give two proofs below. The first doesn’t use orthogonal matrices directly, while the second
does. (The second proof appeared in the Geometry course.)

Proof 1: The fact that {ei} is an orthonormal basis means that

ei · ej = δij =

{
1 if i = j

0 otherwise
. (8.3)

Differentiating this with respect to time t thus gives

ėi · ej + ei · ėj = 0 . (8.4)

In particular taking i = j gives the three equations ė1 · e1 = ė2 · e2 = ė3 · e3 = 0. This means
that ėi is orthogonal to ei for each i = 1, 2, 3, and hence we may write

ė1 = γ e2 − β e3 , ė2 = α e3 − λ e1 , ė3 = ν e1 − µ e2 , (8.5)

where α, β, γ, λ, µ and ν are functions of time t. The remaining content of (8.4) gives

ė1 · e2 + e1 · ė2 = 0 =⇒ λ = γ ,

ė2 · e3 + e2 · ė3 = 0 =⇒ µ = α ,

ė3 · e1 + e3 · ė1 = 0 =⇒ ν = β . (8.6)

It follows that

ė1 = γ e2 − β e3 , ė2 = α e3 − γ e1 , ė3 = β e1 − α e2 , (8.7)

which may be written more succinctly as (8.2), where ω = (α, β, γ) = α e1 + β e2 + γ e3, and
we have used e1 ∧ e2 = e3, plus the cyclic permutations e2 ∧ e3 = e1, e3 ∧ e1 = e2. �

Proof 2: The alternative proof of this Proposition instead takes the time derivative of (8.1):

ėi =
3∑
j=1

Ṙij êj =
3∑

j,k=1

ṘijRkj ek =
3∑

k=1

(ṘRT)ik ek , (8.8)
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where in the second equality we have used the fact that R is orthogonal, and hence R−1 = RT.
In the Geometry course the angular velocity vector ω was instead introduced by noting that
(ṘRT) is an anti-symmetric matrix, so that we can write

ṘRT =

 0 γ −β
−γ 0 α

β −α 0

 . (8.9)

Then (8.8) is equivalent to (8.2) with ω = (α, β, γ) – to see this just look at (8.7): the three
rows of (8.9) give the right hand sides of the three equations in (8.7), respectively. �

Example: Consider the special case in which

R(t) =

 cos θ(t) sin θ(t) 0

− sin θ(t) cos θ(t) 0

0 0 1

 , (8.10)

so that e1 = cos θ(t) ê1 + sin θ(t) ê2, e2 = − sin θ(t) ê1 + cos θ(t) ê2, e3 = ê3. This is a rotation

about the third axis ê3 = e3 by an angle θ = θ(t). Then we compute ė1 = θ̇ e2, ė2 = −θ̇ e1,

ė3 = 0, and hence from (8.2) that ω = θ̇ e3. �

We can gain some more intuition for the formula (8.2) by thinking about the position vector r

of a particle. Suppose for simplicity that the two origins coincide (for all time), so that O = Ô.
We have two bases, {ei} and {êi}, and we may expand the same vector r in both bases as
r =

∑3
i=1 ri ei =

∑3
i=1 r̂i êi. Here ri are the components of r in the frame S, while r̂i are the

components in the frame Ŝ. In section 1.1 we would have referred to the position vector in the
two frames as r and r̂, respectively, because we wanted to emphasize that it is the components
ri and r̂i that we measure in the frames. However, r and r̂ are the same vector, just expressed
in different bases. The velocity of the particle in the inertial frame Ŝ is

ṙ =
3∑
i=1

ṙi ei +
3∑
i=1

ri ėi =
3∑
i=1

ṙi ei +
3∑
i=1

riω ∧ ei

=

(
dr

dt

)
S

+ ω ∧ r . (8.11)

Here we have introduced:

Definition The time derivative of r = r(t) in the frame S is

(
dr

dt

)
S
≡ ṙ1 e1 + ṙ2 e2 + ṙ3 e3.

That is, we simply differentiate the components of r in the orthonormal basis {ei} for S.

We should then never simply write “ṙ” when there are two general reference frames being used,
because whether or not something is moving depends on who is doing the measuring. However,
when we do write “ṙ” we will always mean the time derivative in the inertial frame Ŝ. Then
(8.11) more properly reads
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Proposition (The Coriolis formula)(
dr

dt

)
Ŝ

=

(
dr

dt

)
S

+ ω ∧ r , (8.12)

where ω is the angular velocity of S relative to Ŝ.

For rigid body dynamics we will be interested in the velocity of points r that are fixed relative
to the rotating frame S. By definition this means that the first term on the right hand side of
(8.12) is zero, and hence we may simply write

ṙ = ω ∧ r . (8.13)

To get some geometric intuition for this, consider the change δr in r in a small time interval
δt. This is δr = ω ∧ r δt. By definition of the cross product, this vector is orthogonal to both
ω and r, and has modulus |δr| = |r| sinα · |ω| δt, where α is the angle between ω and r – see

Figure 21. As seen in Ŝ, the change δr in the position vector r of a point fixed in the frame S
in the time interval δt is hence obtained by rotating r through an angle |ω| δt about the axis
parallel to the vector ω.

ω

r

δ

δt| |

ω

r

sinr|

α

α|

Figure 21: As seen in the inertial frame Ŝ, the position vector r of a point P fixed in the frame
S changes by δr = ω ∧ r δt in a small time interval δt. This is a rotation of r through an angle
|ω|δt about an axis parallel to the vector ω. The direction of rotation is given by the right
hand rule.

The above picture leads to the following:

Definition In general we may write ω = ω n, where ω = ω(t) = |ω| is the angular speed, and
n = n(t) is the instantaneous axis of rotation.

8.2 Rigid bodies

A rigid body may be defined as any distribution of mass for which the distance between any
two points is fixed. A simple model for this is to take a finite number of point particles,
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as in section 7.2, but with the constraint that the position vectors rI (I = 1, . . . , N) satisfy
|rI − rJ | = cIJ = constant. This ensures that the body retains its size, shape and distribution
of mass. One might imagine the rI as the positions of atoms in a solid, with the constraints
arising from inter-molecular forces. We assume these constraint forces satisfy the strong form
of Newton’s third law. For now we will stick with this point particle model, but later we will
model a rigid body as a continuous distribution of matter, which may be regarded as a limit
of the point particle model in which the number of particles tends to infinity.

Choose a point O that is fixed in the body. For example, in the point particle model this could
be one of the particles, although as we shall see below it will often be convenient to take this to
be the centre of mass. We denote the position vector of O as x = x(t), where this is measured

from the origin Ô of the inertial frame Ŝ. We may then write

RI = x + rI , I = 1, . . . , N , (8.14)

so that RI and rI are the positions of the body particles, as measured from Ô and O,
respectively. See Figure 22.

ω

R

O

P

Ô

x

I

ω

O

P

Ô

I

rI

x

(i) (ii)

I

rI

R I

Figure 22: We fix a point O in the rigid body, which is taken to be the origin of the rest frame
S of the body. The frame S has angular velocity ω, and its origin O has position vector x
relative to the origin Ô of an inertial frame Ŝ. The body particles PI have position vectors rI ,
measured from O. Figures (i) and (ii) show the same body at two different times.

Definition The rest frame S of the rigid body is a reference frame, with origin O, with respect

to which the rI are fixed (at rest), i.e.

(
drI
dt

)
S

= 0 for all I = 1, . . . , N .

The existence of such a frame is really equivalent to what we mean by a rigid body in the first
place. Provided the matter distribution is not all along a line, the rest frame is defined uniquely
by the body, up to a constant rotation of its axes and a translation of the origin by a constant
vector (relative to S).
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Using the Coriolis formula (8.12) we then have the important result that

ṘI = ẋ + ṙI = vO + ω ∧ rI . (8.15)

Here vO = ẋ is the velocity of O, as measured in the inertial frame Ŝ, while ω is the angular
velocity of the rest frame S with respect to Ŝ.

As we already mentioned, a natural choice for O is the centre of mass G of the body. This
means that x = RG, in the notation of section 7.2.10 From (7.2) and (8.14) we have

RG =
1

M

N∑
I=1

mIRI =
1

M

N∑
I=1

mI(RG + rI) = RG +
1

M

N∑
I=1

mIrI , (8.16)

which implies the constraint

N∑
I=1

mIrI = 0 (8.17)

on the rI . Let’s re-examine the formulas for the total momentum (linear and angular) from
section 7.2, and also look at the total kinetic energy. We take O = G, unless otherwise stated.

Linear momentum

We already know from (7.3) that P = MṘG = MvG, but it’s interesting to see this explicitly
in our current set up:

P =
N∑
I=1

mIṘI =
N∑
I=1

mI(ṘG + ω ∧ rI) = MṘG + ω ∧

(
N∑
I=1

mIrI

)
= MṘG .(8.18)

Here we’ve used equation (8.15) with x = RG in the second equality, while the last equality uses
the constraint (8.17). The total momentum is hence as if the whole mass M were concentrated
at the centre of mass G.

Angular momentum

The total angular momentum about the centre of mass O = G is by definition

LG =
N∑
I=1

rI ∧mIṘI =
N∑
I=1

mIrI ∧ (ṘG + ω ∧ rI) =
N∑
I=1

mIrI ∧ (ω ∧ rI) . (8.19)

We emphasize again that we have chosen to compute the angular momentum about O = G,
not about the origin Ô of the inertial frame. That latter would be LÔ, and have RI in place
of rI after the first equals sign. The last equality follows from the constraint (8.17). Using the
vector identity rI ∧ (ω ∧ rI) = (rI · rI)ω − (rI · ω)rI , we may hence write

LG =
N∑
I=1

mI [(rI · rI)ω − (rI · ω)rI ] . (8.20)

10Notice that in this section we are denoting the positions of the particles measured from the origin Ô of the
inertial frame by RI . Thus one should replace rI by RI in the formulas in section 7.2.
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Definition The inertia tensor I = I(O) = (I(O)
ij ) of the rigid body, about a point O fixed in

the body, is defined as

Iij =
N∑
I=1

mI [(rI · rI)δij − rI i rI j] . (8.21)

Here rI =
∑3

i=1 rI i ei are the position vectors of the body particles, in the rest frame basis
{ei}.

Notice the inertia tensor is defined in the rest frame of the body, and so is intrinsic to the body
itself, and in particular independent of time t. It is also manifestly symmetric, I = IT. Note
also that the definition depends on a choice of origin O, fixed in the body. The point of the
definition is that we may now write the total angular momentum (8.20) in matrix notation as

LG = I(G)ω =
3∑

i,j=1

I(G)
ij ωj ei . (8.22)

Kinetic energy

The total kinetic energy of the body, as measured in the inertial frame, is

T =
N∑
I=1

1

2
mI |ṘI |2 =

1

2

N∑
I=1

mI

[
|ṘG|2 + 2ṘG · (ω ∧ rI) + (ω ∧ rI) · (ω ∧ rI)

]
.(8.23)

The middle term on the right hand side is again zero, using the constraint (8.17). On the other
hand we may rewrite the last term using the vector identify

(ω ∧ rI) · (ω ∧ rI) = ω · (rI ∧ (ω ∧ rI)) . (8.24)

Recalling the formula (8.20), we have thus shown that

T =
1

2
M |ṘG|2 +

1

2
ω · LG . (8.25)

That is, the total kinetic energy is the sum of two terms: the first is due to the centre of mass
motion relative to Ô, and is again is as though all the mass was concentrated at the centre of
mass. The second term is the rotational kinetic energy about G.

Definition The rotational kinetic energy about the centre of mass G is

Trot =
1

2
ω · LG =

1

2
ωTI(G)ω =

1

2

3∑
i,j=1

I(G)
ij ωi ωj . (8.26)

These general formulae are very pretty, but they are also quite abstract. We conclude this
subsection with some simple examples. Here we usually have in mind a continuous distribution
of matter, rather than a point particle model. This assumes the distribution of mass in the
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Linear motion Angular (rotational) motion

Mass M Inertia tensor I = “rotational mass”

Linear velocity Ṙ Angular velocity ω

Linear speed |Ṙ| Angular speed ω = |ω|
Linear momentum P = MṘ Angular momentum L = I ω

Kinetic energy 1
2
M |Ṙ|2 Rotational kinetic energy 1

2
ωTI ω

Equation of motion: Ṗ = Fext Angular equation of motion L̇ = τ ext

Table 1: Contrasting linear motion with angular (rotational) motion. Each linear quantity has a
corresponding angular counterpart. The inertia tensor should be viewed as a sort of “rotational
mass”. The equations of motion in the last line will be used in subsection 8.3 below.

body is defined by a density ρ(r), so that the mass δm in a small volume dx dy dz centred at
r = (r1, r2, r3) = (x, y, z) is δm = ρ(r) dx dy dz. Here r is measured from O. This effectively
replaces mI → δm and rI → r in the point particle model, where now r is a continuous variable
that is integrated over. The Riemann integral is, after all, the limit of a sum in this way. The
total mass hence becomes

M =

∫∫∫
body

ρ(r) dx dy dz . (8.27)

Similarly, the inertia tensor (8.21) becomes

Iij =

∫∫∫
body

ρ(r) [(r · r)δij − rirj] dx dy dz . (8.28)

Here r = (r1, r2, r3) = (x, y, z), so that the last equation more explicitly reads

I =

∫∫∫
body

ρ(r)

 y2 + z2 −xy −zx
−xy z2 + x2 −yz
−zx −yz x2 + y2

 dx dy dz . (8.29)

Note carefully the form of the terms in this matrix.

Definition The moment of inertia about an axis n through O is I = nT I n.

In particular, the diagonal entries in (8.29) are the moments of inertia about the three axes.
The off-diagonal entries are called the products of inertia.

Example (Uniform rectangular cuboid): We will only consider uniform distributions of mass,
in which the density ρ = constant. If we take the cuboid to have side lengths 2a, 2b, 2c and
mass M , then ρ = M/(8abc). The centre of mass is the origin of the cuboid, and we take
Cartesian axes aligned with the edges. It is then straightforward to see that the products of
inertia in this basis are zero; for example

I12 = − M

8abc

∫ a

x=−a

∫ b

y=−b

∫ c

z=−c
xy dx dy dz = 0 . (8.30)
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We next compute∫ a

x=−a

∫ b

y=−b

∫ c

z=−c
ρ x2 dx dy dz =

M

8abc

[
1

3
x3

]a
−a

2b · 2c =
Ma2

3
. (8.31)

The integrals involving y2 and z2 are of course similar, and we deduce that

I(G) =


1
3
M(b2 + c2) 0 0

0 1
3
M(c2 + a2) 0

0 0 1
3
M(a2 + b2)

 . (8.32)

�

The inertia tensor (8.32) is diagonal in this last example. Since I is always a real symmetric
matrix, by the Spectral Theorem in Linear Algebra II there is always a change of basis by a
(constant) orthogonal matrix P such that P I PT is diagonal.

Definition In this latter basis I =

 I1 0 0

0 I2 0

0 0 I3

, and the eigenvalues Ii of I, i = 1, 2, 3, are

called the principal moments of inertia. The corresponding eigenvectors, with which the axes
ei are aligned, are called the principal axes.

A rigid body thus in general determines its own natural choice of rest frame: the origin is the
centre of mass G, while the axes are the principal axes. In this frame the inertia tensor about
G is diagonal. This is the natural choice of rest frame, but it isn’t always the most convenient
choice.

We may also consider two-dimensional bodies, such as a thin flat disc, or one-dimensional bodies
such as a rigid rod. In this case one replaces the density ρ by a surface density, or line density,
respectively, and integrates over the surface or curve, respectively.

Example (Thin uniform disc): As a two-dimensional example, consider a thin uniform disc
of radius a and mass M . Thus the surface density is ρ = M/(πa2), and due to the rotational
symmetry the centre of mass must be at the origin of the disc. Taking this to be the origin,
with the disc lying in the (x, y) plane at z = 0, we may introduce polar coordinates x = r cos θ,
y = r sin θ in this plane. We then compute

I11 =

∫∫
ρ y2 dx dy =

M

πa2

∫ a

r=0

∫ 2π

θ=0

r2 sin2 θ r dr dθ =
1

4
Ma2 . (8.33)

Notice here that the integrand is ρ(y2 + z2) = ρ y2, as the body is two-dimensional and lies
in the plane z = 0. By symmetry we must have I11 = I22 (which is easy enough to check
explicitly), and we also compute

I33 =

∫∫
ρ (x2 + y2) dx dy =

M

πa2
· 2π

∫ a

r=0

r2 r dr =
1

2
Ma2 . (8.34)
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Two of the products of inertia (I13 and I23) are obviously zero, because the disc lies in the
plane z = 0. The less obvious one is

I12 = −
∫∫

ρ xy dx dy = − M

πa2

∫ a

r=0

∫ 2π

θ=0

r3 sin θ cos θ dr dθ = 0 . (8.35)

Thus

I(G) =


1
4
Ma2 0 0

0 1
4
Ma2 0

0 0 1
2
Ma2

 . (8.36)

The axes we chose at the start are hence the principal axes, as the inertia tensor is diagonal. �

Example (Uniform rod): As a one-dimensional example, let’s consider a heavy rod of length l,
mass M , and hence uniform line density ρ = M/l. The centre of mass lies in the centre of the
rod, but let us instead compute the moment of inertia about an axis n perpendicular to the
rod, passing through one end of the rod. We take r = (x, 0, 0), so that x ∈ [0, l] parametrizes
the distances of points in the rod from one end at x = 0. We note that y = z = 0, and thus
from (8.29) every entry in the inertia tensor Iij is zero, apart from I22 = I33 ≡ I. This is the
moment of inertia about any axis n perpendicular to the rod (for example n = e2 or n = e3,
or more generally any direction n = cosψ e2 + sinψ e3 lying in the (y, z) plane). Using the
analogue of (8.29) for a line density we then compute

I =

∫ l

x=0

ρ x2 dx =
M

l
·
[

1

3
x3

]l
0

=
1

3
Ml2 . (8.37)

We shall use this result in the heavy pendulum example in the next subsection. �

8.3 Simple rigid body motion

In this section we study some simple examples of rigid body motion. In general the instanta-
neous axis of rotation (the direction that ω = ω(t) points) itself can depend on time: think
of throwing a chopping board into the air (the inertia tensor in this case is modelled by the
uniform rectangular cuboid example). Here we content ourselves with studying some simpler
situations in which the axis of rotation is fixed, so n = ω/|ω| is a time-independent vector.
The rotation is then described purely by the angular speed ω(t) = |ω(t)|.
Before we can discuss dynamics, we first need to know the equations of motion. The centre of
mass G of the rigid body satisfies Newton’s second law in the form (7.6): that is

MR̈G = Ṗ = Fext , (8.38)

where Fext is the total external force acting on the body. The novel part of the motion for
a rigid body is of course its rotation. But we have already derived the equation for this too:
(7.11) gives

L̇G = τ ext
G , (8.39)
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where τ ext
G is the total external torque about G. Let’s see how to use these in practice.

Example (Cylinder rolling down an inclined plane): Consider a uniform circular cylinder of
length l, radius a and mass M . The cylinder rolls under gravity, without slipping, down a plane
inclined at an angle ϕ to the horizontal. Determine the motion of the cylinder.

Solution: Since the motion is effectively two-dimensional, we only need to consider the vertical
plane through a line of greatest slope of the inclined plane and the centre of mass G of the
cylinder. This is shown in Figure 23.

N

Mg

G

O

x

P1

P2
F

P1

θ

a

φ

Figure 23: A cross-section through a circular cylinder rolling down a plane inclined at an angle
ϕ to the horizontal. The radius of the cylinder is a, and the distance travelled down the plane
from a fixed origin Ô is x. The point of contact with the plane is labelled P2, and a fixed point
on the cylinder is labelled P1. The angle between the radius vectors at P1 and P2 is θ, which is
the angle through which the cylinder has rolled. A frictional force F acts at P2 up the plane;
a normal reaction N also acts at P2. The gravitational force Mg acts downwards at the centre
of mass G.

What does it mean to say that the cylinder rolls without slipping? By definition, this means
that if x is the distanced travelled down the slope and θ is the angle through which the cylinder
has turned, then these are related by

x = a θ . (8.40)

The point here is that a θ is the length of circle segment between points P1 and P2 shown in
the Figure. The rotation is purely along the axis of symmetry of the cylinder, which points
into the page in Figure 23, through G. Taking this to be the e3 direction, the angular velocity
vector is

ω = (0, 0, θ̇) . (8.41)
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We next need the inertia tensor of the cylinder, about G. This is (see Problem Sheet 7)

I(G) =


1
12
Ml2 + 1

4
Ma2 0 0

0 1
12
Ml2 + 1

4
Ma2 0

0 0 1
2
Ma2

 . (8.42)

Thus the angular momentum of the cylinder about G is simply

LG = (0, 0, I3 θ̇) , where I3 =
1

2
Ma2 . (8.43)

Notice here that the axis of rotation is a principal axis, so we only need to know the moment of
inertia about this axis for the problem, which is I3 = 1

2
Ma2. The rotational form of Newton’s

second law, in the form (8.39), requires us to find the external torque τ ext
G about G. There are

three forces acting: the normal reaction N, the weight Mg, and we have included a frictional
force F of magnitude F = |F| at the point of contact P2 – see Figure 23. Physically, the friction
force is required in order for the cylinder not to slip. The first two of these forces both pass
through G, and thus have zero moments about G: this is immediate for N, while for the weight
Mg we are using the Proposition at the end of section 7.2. Thus the only contribution to the
torque is from the friction force:

τ ext
G =

−−→
GP2 ∧ F = aF e3 . (8.44)

The sign here is easily fixed using the right hand rule. Equation (8.39) thus gives

L̇G = (0, 0, I3 θ̈) = τ ext
G = (0, 0, a F ) =⇒ I3 θ̈ = aF . (8.45)

On the other hand, Newton’s second law for the centre of mass (8.38) gives

Mẍ = −F +Mg sinϕ . (8.46)

Here the centre of mass motion is in a straight line down the plane, so that RG(t) = (x(t), 0, 0).
We may eliminate F and θ in (8.45) using (8.45) and (8.40), giving

Mẍ = − I3

a2
ẍ+Mg sinϕ (8.47)

and hence the equation of motion

ẍ =
Ma2

I3 +Ma2
g sinϕ =

2

3
g sinϕ . (8.48)

It’s interesting to compare this result to that for a point particle, sliding down the inclined
plane without friction. In this case the equation of motion is ẍ = g sinϕ. The acceleration of
the rolling cylinder is thus reduced by a factor of 2/3 compared to the point particle. �

One can equivalently solve the last problem by thinking about energy. For this we need to
know the gravitational potential energy of a rigid body:
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Proposition The total gravitational potential energy of a rigid body in a uniform gravitational
field is as if all the mass was located at the centre of mass G. That is,

V = MgZG , (8.49)

where ZG is the z coordinate of the centre of mass G.

Proof: Here we’re of course taking a uniform gravitational field of strength g in the downward
z direction. Thinking of the rigid body as made up of masses δm = ρ(r) dx dy dz at positions

R = RG + r = (X, Y, Z) relative to the origin Ô of an inertial frame, these each have potential
energy δmg Z. The total potential energy is hence

V =

∫∫∫
body

ρ(r) g Z dx dy dz = MgZG , (8.50)

where the last step follows since by definition (7.2)

MRG =

∫∫∫
body

ρ(r) R dx dy dz , (8.51)

and RG = (XG, YG, ZG). �

Recall from (8.25) and (8.26) that the kinetic energy is

T =
1

2
M |ṘG|2 +

1

2

3∑
i=1

I(G)
ij ωi ωj . (8.52)

Example (Rolling cylinder again): The cylinder in our example rotates about a fixed axis e3

with principal moment of inertia I3. Then (8.52) simplifies to

T =
1

2
M |vG|2 +

1

2
I3 ω

2 =
1

2
Mẋ2 +

1

2
I3 θ̇

2 . (8.53)

From (8.50) the gravitational potential energy is

V = MgZG = −Mg x sinϕ . (8.54)

Thus the total energy is

E = T + V =
1

2

(
M +

I3

a2

)
ẋ2 −Mg x sinϕ , (8.55)

where we have substituted for θ in terms of x using (8.40). Since there is a frictional force F
acting one might be worried that this energy is not conserved. However, the point of contact
P2 is always instantaneously at rest, which means that the friction does no work. As usual
the normal reaction also does no work, and so energy is indeed conserved. We can see this by
taking the time derivative of (8.55)

Ė =

(
M +

I3

a2

)
ẋ ẍ−Mg ẋ sinϕ = ẋ

[
I3 +Ma2

a2
ẍ−Mg sinϕ

]
. (8.56)
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Thus energy is conserved if the equation of motion (8.48) holds. �

Example (Heavy pendulum): A heavy pendulum consists of a uniform rigid rod of mass M
and length l, pivoted freely at one end at the origin O. The rod swings freely in a vertical
plane under gravity. Determine the equation of motion for θ, the angle the rod makes with the
vertical.

Solution: Notice in this example that we may take the origin Ô of the inertial frame to be the
same point as the end of the rod O. It’s then easier to consider the angular momentum about
O, rather than about G.

The diagram in this case is identical to that for the simple pendulum, Figure 11, except that
the mass M is now distributed uniformly along the rod, rather than a point mass m at the
end of the rod. We make use of the same polar coordinates (5.5) in the plane of motion, i.e.
er = − cos θ k + sin θ i, eθ = sin θ k + cos θ i, where the vector j points into the page in Figure
11. The latter is the axis of rotation of the rod, so we may immediately write the angular
velocity vector ω = −θ̇ j. Here the sign is most easily checked using the right hand rule. We
calculated the moment of inertia about the axis j through O in (8.37), giving I = 1

3
Ml2. Thus

the angular momentum is LO = −I θ̇ j.

Notice that we cannot apply (8.39), because we are working about the end of the rod O = Ô

rather than G. However, we may instead use (7.11) with P = O = Ô, which says L̇O = τ ext
O .

The total external torque here just arises from the weight of the rod, and we may hence use
the Proposition at the end of section 7.2. This says the torque is the same as that for a point
mass M at the centre of mass G, which is half way along the rod:

τ ext
O =

−→
OG ∧ (−Mg k) = − l

2
er ∧Mg k =

1

2
Mgl sin θ j , (8.57)

where in the last step we have used er ∧k = − sin θ j. Putting everything together, the angular
equation of motion reads

L̇O = −I θ̈ j =
1

2
Mgl sin θ j = τ ext

O . (8.58)

Using I = 1
3
Ml2 hence gives the equation of motion

θ̈ = −3g

2l
sin θ . (8.59)

There is an extra factor of 3/2 compared with a simple pendulum of the same mass M and
length l – see (5.8). In other words, a heavy pendulum behaves exactly the same as a simple
pendulum with 2/3 of the length. �

8.4 Newton’s laws in a non-inertial frame

Throughout these lectures we’ve emphasized that Newton’s laws (in particular the second law)
should always be formulated in an inertial frame. By definition, this is a frame of reference
in which Newton’s first law holds. On the other hand, we’ve also mentioned that the Earth
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is rotating about its axis once per day, and that the Earth accelerates about the Sun on its
elliptical (in fact roughly circular, with eccentricity eEarth ' 0.0167) orbit. A fixed frame
relative to the surface of the Earth is then only approximately an inertial frame. What effect
does this have, and more generally can we formulate Newton’s laws in a general reference frame?

We begin with the same set up as section 8.1: Ŝ is a fixed inertial frame with origin Ô, and S
is another frame whose origin O is at position vector x(t), measured from Ô. See Figure 20.

Suppose that a point particle has position vector R measured from Ô, and r measured from
O, as in (8.14). Then

R = x + r . (8.60)

Recall also from section 8.1 that

Definition The time derivative of a vector q = q(t) in a frame S is(
d

dt

)
S

q =
3∑
i=1

q̇i ei , (8.61)

where q =
∑3

i=1 qi ei and {ei} is the orthonormal basis for S. That is, we differentiate the
components of q in this basis, with respect to time t.

The Coriolis formula (8.12) relates the time derivatives of the same vector q in S and Ŝ as(
dq

dt

)
Ŝ

=

(
dq

dt

)
S

+ ω ∧ q , (8.62)

where ω = ω(t) is the angular velocity of S relative to Ŝ. By definition then the accelerations

â and a of our particle, as measured in the frames Ŝ and S, respectively, are

â =

(
d

dt

)2

Ŝ
R =

(
d

dt

)2

Ŝ
(x + r) =

(
d2x

dt2

)
Ŝ

+

(
d2r

dt2

)
Ŝ
,

a =

(
d

dt

)2

S
r . (8.63)

In order to write down Newton’s second law in the frame S we need the following result:

Proposition The accelerations in the two frames are related by

â = a +

(
dω

dt

)
S
∧ r + 2ω ∧

(
dr

dt

)
S

+ ω ∧ (ω ∧ r) + A , (8.64)

where we have defined A =
(

d2x
dt2

)
Ŝ
, which is the acceleration of O relative to Ŝ.
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Proof: We compute

â =

(
d

dt

)2

Ŝ
(x + r) = A +

(
d

dt

)2

Ŝ
r

=

(
d

dt

)
Ŝ

[(
dr

dt

)
S

+ ω ∧ r

]
+ A

= a + ω ∧
(

dr

dt

)
S

+

(
d

dt

)
S

(ω ∧ r) + ω ∧ (ω ∧ r) + A

= a +

(
dω

dt

)
S
∧ r + 2ω ∧

(
dr

dt

)
S

+ ω ∧ (ω ∧ r) + A . (8.65)

Here in the third equality we have used the Coriolis formula (8.62) for one of the two time

derivatives for Ŝ. The fourth equality then uses the formula again, with the final step using the
product rule for derivatives. For example, you can check from the definition that

(
d
dt

)
S (b∧c) =(

db
dt

)
S ∧ c + b ∧

(
dc
dt

)
S , for any two vectors b, c. �

Notice that using the Coriolis formula (8.62) we have(
dω

dt

)
Ŝ

=

(
dω

dt

)
S

+ ω ∧ ω =

(
dω

dt

)
S
, (8.66)

so that the time derivative of ω is the same in either frame.

Newton’s second law for a particle of mass m in the inertial frame Ŝ is

mâ = F , (8.67)

where F is the external force acting. Substituting for â in terms of a using (8.64), we thus
have:

Theorem Newton’s second law in the frame S is

ma = F−m
(

dω

dt

)
S
∧ r− 2mω ∧

(
dr

dt

)
S
−mω ∧ (ω ∧ r)−mA . (8.68)

Here the particle’s position measured from the origin O of S is r, A is the acceleration of O,
and ω is the angular velocity of S (relative to the inertial frame Ŝ).

The additional terms on the right hand side of (8.68) may be interpreted as “fictitious forces”:

F1 = −m
(

dω

dt

)
S
∧ r , F2 = −2mω ∧

(
dr

dt

)
S
,

F3 = −mω ∧ (ω ∧ r) , F4 = −mA . (8.69)

These may be regarded as corrections to the force in F = ma due to the fact that the frame S is
accelerating. The force F1 is known as the Euler force, and arises from the angular acceleration
of S. The Euler force is hence zero for a frame rotating at constant angular velocity,

(
dω
dt

)
S = 0.

The force F2 is known as the Coriolis force, and is interesting in that it depends on the velocity
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v =
(

dr
dt

)
S of the particle as measured in S. We discuss this force in more detail in section 8.5.

The force F3 is the centrifugal force. It lies in a plane through r and ω, is perpendicular to
the axis of rotation ω, and is directed away from the axis. This is the force you experience
standing on a roundabout, that seems to throw you outwards. Finally, F4 is simply due to the
acceleration of the origin O. For example, this force effectively cancels the Earth’s gravitational
field in a freely falling frame.

F

ω

3

r
O

F1= -mωr

e3

e1

e2

e3

e2 =mω2r e1

Figure 24: The Euler force F1 and centrifugal force F3 in a roundabout frame. Here O = Ô,
e1 is a unit vector directed radially outwards, e2 is a unit vector orthogonal to this in the
horizontal plane of the roundabout, and e3 is a unit vector in the direction of the axis of
rotation. The position vector of particle of mass m is R = r = r e1. The Euler force is then
F1 = −mω̇ e3 ∧ r = −mω̇r e2 while the centrifugal force is −mω e3 ∧ (ω e3 ∧ r) = mω2r e1.

Corollary The frame S is inertial if and only if A = 0 = ω. That is, the origin O is not
accelerating, and the basis is not rotating.

* Proof: First note that the frame S being inertial means that any particle with no force
acting (F = 0) moves at constant velocity in the frame S. If A = 0 = ω then (8.68) with
F = 0 immediately gives a = 0, and hence the particle moves with constant velocity in S.
Conversely, suppose that F = 0 and a particle moves with constant velocity r(t) = u t + r0 in
S. Here u and r0 are arbitrary constant vectors in S (effectively integration constants from
integrating a = 0). First setting u = r0 = 0 (so the particle is fixed at the origin of S), we
immediately deduce from substituting r ≡ 0 into (8.68) that A = 0. Next, for fixed time t = t0
we may set r0 = −u t0 (so the particle is at the origin of S at time t0), and again substitute for
r(t) = u t+ r0 into (8.68). Evaluated at time t = t0, the only term that survives is the Coriolis
term −2mω(t0) ∧ u, which must be zero for all u. But this implies that ω(t0) = 0, and since
t0 was arbitrary hence ω ≡ 0. �

Newton’s second law (8.68) may be used to solve dynamics problems in rotating frames. In
principle this is straightforward, but in practice one needs to be careful! In the two examples
that follow the origin O of the rotating frame S may be taken to coincide with Ô, so that x = 0
and the position vectors in the two frames are equal R = r.
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Example (Bead on a rotating, smooth, straight horizontal wire): Consider a bead (point

particle) that slides on a frictionless straight horizontal wire. The wire is fixed at O = Ô, and
rotates in a horizontal plane at constant angular velocity ω. Determine the motion of the bead.

O
x

ω = ωe3

mg

N

e1

e2

Figure 25: The bead on the rotating horizontal wire. The forces acting on the bead are −mg e3

and the normal reaction N perpendicular to the wire.

Solution: We choose the rotating basis {ei} for S as follows: e1 is a unit vector pointing along
the wire, e2 is a unit horizontal vector normal to the wire, and e3 is a unit vector vertically.
The position of the bead is hence r = R = x e1, while the angular velocity of the frame is
ω = ω e3. Denoting the normal reaction of the wire on the bead by N, the total “real force”
acting on the bead is

F = N−mg e3 . (8.70)

However, the frame is rotating, so we must use Newton’s second law in the form (8.68). Since
ω is constant and A = 0 the second and last terms on the right hand side of (8.68) are zero,
and we have

mẍ e1 = F− 2mω ẋ e2 +mω2x e1 . (8.71)

Here we’ve used
(

dr
dt

)
S = ẋ e1, so that the Coriolis force is

F2 = −2mω ∧
(

dr

dt

)
S

= −2mω e3 ∧ ẋ e1 = −2mω ẋ e2 , (8.72)

while the centrifugal force is

F3 = −mω ∧ (ω ∧ r) = −mω2 e3 ∧ (e3 ∧ x e1) = mω2 x e1 . (8.73)

As in section 5.1, the wire being smooth means that the normal reaction N has no component
along the wire, N · e1 = 0. Thus taking the dot product of (8.71) with e1 gives simply

mẍ = mω2 x . (8.74)
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The general solution is

x(t) = A eωt +B e−ωt . (8.75)

For example, if the bead starts at a distance x = a from O with ẋ = 0 at time t = 0, then

x(t) =
a

2
(eωt + e−ωt) = a coshωt . (8.76)

The bead hence flings outwards along the wire, with x(t) growing exponentially with t. �

Example (Bead on a rotating smooth hoop): A circular hoop of radius a rotates at constant
angular velocity ω about a vertical diameter. A bead slides smoothy on the hoop and has
a position vector which makes an angle ϕ with the vertical, as in Figure 26. Show that the
equation of motion is

ϕ̈+
(g
a
− ω2 cosϕ

)
sinϕ = 0 . (8.77)

O

ω = ωe3

mg

N

e1

e3

φ r

Figure 26: The bead on the rotating hoop. Here the figure shows the hoop at the instant at
which it passes through the plane of the page. The component N2 of the normal reaction N of
the hoop on the bead points into the page at this instant, which is the e2 direction.

Solution: We take the origins O = Ô to be the centre of the hoop, and the frame S to be the
rest frame of the hoop. In particular we take e1 to be a horizontal unit vector and e3 to be a
vertical unit vector, which define the (rotating) plane of the hoop. We may then parametrize
the position of the bead as

r = R = a sinϕ e1 − a cosϕ e3 . (8.78)

We then compute the velocity and acceleration of the bead with respect to the rotating frame:(
dr

dt

)
S

= a ϕ̇ cosϕ e1 + a ϕ̇ sinϕ e3 ,

a =

(
d2r

dt2

)
S

= a(ϕ̈ cosϕ− ϕ̇2 sinϕ) e1 + a(ϕ̈ sinϕ+ ϕ̇2 cosϕ) e3 . (8.79)
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Denoting N the normal reaction of the hoop on the bead, the force on the bead is again given
by (8.70). The angular velocity is ω = ω e3, and Newton’s second law (8.68) hence reads

ma = ma(ϕ̈ cosϕ− ϕ̇2 sinϕ) e1 +ma(ϕ̈ sinϕ+ ϕ̇2 cosϕ) e3 (8.80)

= F− 2mω e3 ∧ (a ϕ̇ cosϕ e1 + a ϕ̇ sinϕ e3)−mω e3 ∧ [ω e3 ∧ (a sinϕ e1 − a cosϕ e3)] .

Once again notice that we only have the Coriolis and centrifugal terms as “fictitious forces” on
the right hand side. Computing the wedge products in (8.80) simplifies the latter to

ma(ϕ̈ cosϕ− ϕ̇2 sinϕ) e1 +ma(ϕ̈ sinϕ+ ϕ̇2 cosϕ) e3 = N−mg e3 − 2mω a ϕ̇ cosϕ e2

+mω2 a sinϕ e1 . (8.81)

The normal reaction N has a radial component Nr (see Figure 26) and a component N2 into
the page. Thus

N = Nr(− sinϕ e1 + cosϕ e3) +N2 e2 . (8.82)

We could now equate components of e1, e2 and e3 in (8.81) to give three scalar equations for
the three unknowns ϕ, Nr and N2. Eliminating Nr and N2 would then give an equation for ϕ.
However, a quicker method is to note that N is orthogonal to the tangent of the circular hoop,
so that taking the dot product of (8.81) with this tangent vector will immediately eliminate N.
The tangent vector is

t = cosϕ e1 + sinϕ e3 , (8.83)

and taking the dot product with (8.81) gives (using cos2 ϕ+ sin2 ϕ = 1)

ma ϕ̈ = −mg sinϕ+mω2 a sinϕ cosϕ . (8.84)

Dividing through by ma then gives the required equation of motion (8.77). �

8.5 * The Coriolis force

We are unlikely to have time to discuss the content of this section in lectures: you may treat it
as starred.

You might have noticed in these last two examples that the only fictitious force that entered the
equations of motion (8.74), (8.77) was the centrifugal force F3 in (8.69). The Coriolis force F2

instead determined the normal reaction. For example, in the last example N2 = 2mω a ϕ̇ cosϕ,
which is precisely due to the Coriolis force (look at the e2 component of (8.81)). In general the
Coriolis force is

F2 = FCoriolis = −2mω ∧ v , (8.85)

where v =
(

dr
dt

)
S is the velocity of the particle as measured in the rotating frame S. It is

this velocity dependence that leads to some of the more peculiar features of the dynamics,
compared to the other fictitious forces. In fact mathematically the Coriolis force is equivalent
to the magnetic component of the Lorentz force law (2.17), with the angular velocity playing
the role of the magnetic field. The dynamics generated by the two forces is hence similar. The
effects of both Coriolis and centrifugal forces in a frame fixed to the rotating surface of the
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ω = ωe3

N
e1 e3

e2θ

O

Figure 27: A frame S fixed to the surface of the rotating Earth. The angular velocity ω = 2π
radians per day, or ω ' 7× 10−5 s−1. The latitude of the origin O of S is θ.

Earth are both rather small in everyday life (the Euler force F1 being even more negligible, as
the rate of rotation of the Earth is very nearly constant at ω = 2π radians per day). In this
section we consider a famous set up that demonstrates the dynamics driven by the Coriolis
force on Earth: Foucault’s pendulum.

What does it mean to have a reference frame S fixed to the surface of the rotating Earth? This
is shown in Figure 27. We take e1 to be a unit vector pointing North, and e2 a unit vector
pointing West. e3 is a radial vector from the centre of the Earth pointing outwards, so that on
the surface of the Earth this is a unit vector pointing up. On the other hand, the Earth rotates
about its axis ê3, so that the angular velocity is ω = ω ê3. If we are at a constant latitude θ,
then the relation between these vectors is

ê3 = cos θ e1 + sin θ e3 . (8.86)

In this case the origin O is moving in a circle about the Earth’s axis, and is thus accelerating
with respect to the centre of mass of the Earth. Taking the centre of mass of the Earth to be
the origin Ô of an inertial frame (hence ignoring its motion about the Sun), the acceleration A
in Newton’s second law (8.68) is a centripetal acceleration for this circular motion. From (4.8)
this has magnitude |A| = dω2, where d is the distance to the axis. This is hence largest at the
equator, where d = RE ' 6× 106 m. Using ω ' 7× 10−5 s−1 we compute |A|max ' 0.03 m s−2.
This is very small compared to g ' 10 m s−2, but indeed the effective value of g at the equator
is slightly smaller than that at the poles due to this effect.

Now consider a pendulum in our rotating frame S. We take the origin O to be at a distance l
directly below the pivot (unlike for our previous discussions of pendula), so that when hanging
vertically the mass m sits at the origin. We denote the position vector of the mass as r =
(x, y, z) in the basis {ei}. See Figure 28. The light rod constraints these coordinates via
x2 + y2 + (l − z)2 = l2.

In this problem we’re only interested in the effect of the Coriolis force on the motion of the
pendulum, which turns out to be the most important term on the right hand side of (8.68).
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T

O

mg

l

e1

e2

e3

Figure 28: Foucault’s pendulum. The position of the mass m is r = (x, y, z) = x e1 +y e2 +z e3,
with coordinates constrained via x2 + y2 + (l − z)2 = l2.

We may thus write the equation of motion (8.68) as

m

(
d2r

dt2

)
S
' T−mg e3 − 2mω ∧

(
dr

dt

)
S
, (8.87)

where T is the tension in the rod. Since we’ll now only be computing time derivatives in the
frame S, we’ll write this more succinctly as (writing also “=” rather than “'”)

mr̈ = T−mg e3 − 2mω ∧ ṙ , (8.88)

where ṙ = (ẋ, ẏ, ż), r̈ = (ẍ, ÿ, z̈). The tension T has magnitude T = |T|, and the geometry of
Figure 28 implies this is hence

T = T
(
−x
l
e1 −

y

l
e2 +

l − z
l

e3

)
. (8.89)

Using (8.86) the angular velocity is ω = ω cos θ e1 + ω sin θ e3 = (ω cos θ, 0, ω sin θ), and
computing the wedge product ω ∧ ṙ the equation of motion (8.88) hence gives the following
coupled ODEs

mẍ = −x
l
T + 2mω ẏ sin θ ,

mÿ = −y
l
T + 2mω(ż cos θ − ẋ sin θ) ,

mz̈ =
l − z
l

T−mg − 2mω ẏ cos θ . (8.90)

This is a complicated system, but let’s look at the equations for a very long pendulum, making
small oscillations. This means that the dimensionless quantities x/l and y/l are both small.
On the other hand, the constraint equation implies that (for z < l)

z

l
= 1−

√
1− x2

l2
− y2

l2
' x2

2l2
+
y2

2l2
+ · · · . (8.91)
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Thus z/l is second order in x/l, y/l, and we can hence take z/l ' 0 in this approximation. The
last equation in (8.90) then gives the tension as

T ' mg + 2mω ẏ cos θ ' mg . (8.92)

Here the second approximation follows from the fact that ω ' 7× 10−5 s−1 while g ' 10 m s−2:
the second term in T in (8.92) is the same order of magnitude as the first term if ẏ ' 300, 000
miles per hour! As in the example of a point charge moving in a constant magnetic field
in section 2.4, it is next useful to introduce the complex coordinate ζ = x + iy. Using
the approximations we’ve made, the first two equations in (8.90) then become the real and
imaginary parts of

ζ̈ ' −g
l
ζ − 2ω sin θ i ζ̇ . (8.93)

Compare this with (2.24) for a charged particle moving in a magnetic field. Substituting the
ansatz ζ = ept into (8.93) gives the quadratic equation

p2 + 2iω sin θ p+
g

l
= 0 , (8.94)

with roots

p = −iω sin θ ±
√
−ω2 sin2 θ − g

l
= −iω sin θ ± i

√
g

l

(
1 +

ω2

g/l
sin2 θ

)1/2

' −i

(
ω sin θ ±

√
g

l

)
. (8.95)

Again, the last approximation follows since ω2 is extremely small compared with g/l, for
terrestrial lengths l. The solutions may hence be written as

ζ(t) = x(t) + i y(t) ' e−iω sin θ t (C cos ω0 t+D sin ω0 t) , (8.96)

where C and D are complex integration constants, and ω0 =
√
g/l is the usual frequency of

small oscillations for the simple pendulum.

The term in brackets on the right hand side of (8.96) in general traces out an ellipse in the (x, y)
plane. Our usual simple pendulum confined to the (x, z) plane has C and D real, for which
this ellipse degenerates to a line. The phase e−iω sin θ t causes the ellipse to rotate in the (x, y)
plane. In the Northern hemisphere with θ > 0 this rotation is clockwise (viewed from above),
while in the Southern hemisphere with θ < 0 the rotation is anticlockwise. The period of the
rotaton is T = 24/| sin θ | hours, which is minimized at the North and South poles, θ = ±π

2
.

Foucault built his original pendulum in 1851, in the Panthéon in Paris. It consisted of a 28 kg
metal bob with a 67 m long wire, suspended from the top of the dome. An exact replica has
been permanently swinging in the Panthéon since 1995 (apart from quite recently when repair
work was carried out). Paris has a latitude of θ ' 48◦, for which we calculate the period
T ' 32 hours. Said differently, in a single day the pendulum motion has rotated through 270◦.
Thus if the simple pendulum starts swinging North–South (i.e. in a vertical plane), then at
the same time the following day it will be swinging East–West. This beautifully matches the
(approximate) solution we have found in this subsection.
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The Coriolis force also plays an important role in the weather, for example being responsible for
the circulation of air around an area of low pressure, which is hence in the opposite directions
in the Northern and Southern hemispheres. That’s why the direction of spin of a hurricane
depends on whether it formed in the Northern or Southern hemisphere, and why hurricanes
don’t form at all near the equator at θ = 0. �
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