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In Analysis II (previewed in Analysis I) one encounters the following proof of

exp(x+ y) = exp(x) exp(y), (1)

where exp(x) is defined by

exp(x) :=
∞∑
n=0

xn

n!
. (2)

Proof. First we show that (2) has infinite radius of convergence (by, e.g., the Ratio Test).
Then apply the Differentiation Theorem for power series to differentiate term by term:

d

dx
exp(x) =

∞∑
n=0

d

dx

xn

n!
=

∞∑
n=1

xn−1

(n− 1)!
=

∞∑
n=0

xn

n!
= exp(x).

Now differentiate F (x) := exp(x) exp(c − x) with respect to x using the Product Rule
and Chain Rule to get

d

dx
F (x) = exp′(x) exp(c− x) + exp(x) exp′(c− x)(−1)

= exp(x) exp(c− x)− exp(x) exp(c− x) = 0.

Now use the Constancy Theorem to deduce that the function F (x) is constant on R, so
exp(x) exp(c − x) = F (x) = F (0) = exp(0) exp(c). Substituting c = x + y and noting
that exp(0) = 1 now gives the result (1).

There are a couple of things that are rather unsatisfactory about this proof.

1. It uses a lot of machinery from Analysis II to prove something that is very simple,
and certainly should be accessible using just the methods of Analysis I.

2. It only works for real x and y. To generalise to complex numbers needs significant
extra effort.

To be fair, the conclusion of the Constancy Theorem also applies to complex functions,
and indeed much more will be proved in the Part A course Complex Analysis. But in
some sense that makes the 1st point above even worse — one needs to wait until the 2nd
year to see a complete proof of this basic identity.

Here we present two (non-examinable) proofs of (1) that rely only on results from
Analysis I and also work for complex numbers. The first is in some sense more natural
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and elementary1, but uses a different definition of the exponential. The second uses (2),
but is slightly more opaque. We then show the two definitions give the same function.

For the first proof we try to use the following definition2.

exp(x) = lim
n→∞

(
1 + x

n

)n
.

The hard part is showing that this converges. For real x it is not too difficult. A slight
generalisation of question 6 on problem sheet 1 of Analysis I shows that the sequence
is increasing in n for n > |x| and bounded above. It is a bit more tricky for complex
x however. To make life a little easier, we will just show convergence along a certain
subsequence. This will be enough and makes the algebra a bit simpler. Hence we will
define (using a different notation for exp as we haven’t shown it matches (2) yet)

e(x) := lim
n→∞

en(x), where en(x) :=
(
1 + x

2n

)2n
. (3)

We first observe that en(x) satisfies the following easy identity:

en+1(x) =
(
1 +

x/2

2n

)2n·2
= en

(
x
2

)2
. (4)

The following lemma shows that en(x) ≈ 1+ x for x small with an explicit error bound.

Lemma 1. For |x| ≤ 1
2
and any n ≥ 0, |en(x)− (1 + x)| ≤ |x|2.

Proof. We use induction on n, n = 0 is trivial as e0(x) = 1 + x. Now for |x| ≤ 1
2
and

n ≥ 0 write en(
x
2
) = 1 + x

2
+ η where, by induction, |η| ≤ |x

2
|2 = |x|2

4
. Then∣∣en+1(x)− (1 + x)

∣∣ = ∣∣en(x2 )2 − (1 + x)
∣∣ from (4)

=
∣∣(1 + x

2
+ η)2 − (1 + x)

∣∣ en(
x
2
) = 1 + x

2
+ η

=
∣∣x2

4
+ η(2 + x+ η)

∣∣ expand and simplify

≤ |x|2
4

+ |η|
(
2 + |x|+ |η|

)
triangle inequality

≤ |x|2
4

+ |x|2
4

(
2 + |x|+ |x|2

4

)
|η| ≤ |x|2

4

≤ |x|2
4

(
1 + 2 + 1

2
+ 1

16

)
|x| ≤ 1

2

≤ |x|2.

The next step is the crucial bit: showing en(x) converges.

1‘Elementary’ is a technical term here. It means the proof does not use advanced concepts and
theorems, but instead uses more basic techniques. It does not however mean the proof is simple or easy!

2Think ‘continuously compounded interest’.
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Lemma 2. For any fixed x ∈ C, en(x) converges as n → ∞.

Proof. We first note that for any n ≥ 0 and |x| ≤ 1
2
, |en(x)| ≤ 1 + |x| + |x|2 ≤ 7

4

by Lemma 1 and the triangle inequality. Now assume |x| ≤ 1
2
. We show that for all

n ≥ m ≥ 0,
|en(x)− em(x)| ≤

(
7
8

)m|x|2 (5)

by induction on m (simultaneously for all n > m). Lemma 1 is just the case m = 0 and,
assuming the result for m,

|en+1(x)− em+1(x)| =
∣∣en(x2 )2 − em(

x
2
)2
∣∣

=
∣∣en(x2 ) + em(

x
2
)
∣∣∣∣en(x2 )− em(

x
2
)
∣∣

≤
(
7
4
+ 7

4

)
· (7

8
)m

∣∣x
2

∣∣2 = (7
8
)m+1|x|2

for all n+ 1 > m+ 1. Hence (5) holds for all n ≥ m ≥ 0.

Now (7
8
)m|x|2 → 0 as m → ∞, so (en(x)) is a Cauchy sequence. Thus by the Cauchy

Convergence Criterion, (en(x)) converges as n → ∞ for any x ∈ C with |x| ≤ 1
2
.

For larger |x| we note that if en(x) converges as n → ∞ for any |x| ≤ K then en(x) =
en−1(

x
2
)2 converges for any |x| ≤ 2K by AOL. Hence we can inductively show (en(x))

converges as n → ∞ for |x| ≤ 2t

2
with t = 0, 1, 2, . . . in turn. But for any x ∈ C, |x| ≤ 2t

2

for some t. Thus (en(x)) converges as n → ∞ for all x ∈ C.

Having shown e(x) is well defined, the main result is relatively straightforward.

Theorem 3. For all x, y ∈ C, e(x+ y) = e(x)e(y).

Proof. We observe that

en(x)en(y)

en(x+ y)
=

(
(1 + x

2n
)(1 + y

2n
)

1 + x+y
2n

)2n
=

(
1 +

xy
4n

1 + x+y
2n

)2n
=

(
1 +

zn
2n

)2n
= en(zn), (6)

where zn = xy2−n

1+(x+y)2−n (and the denominator in (6) is nonzero for sufficiently large n).

But zn → 0 as n → ∞ by the fact that 2−n → 0 and AOL so, for sufficiently large n,
|zn| ≤ 1

2
. But then |en(zn) − (1 + zn)| ≤ |zn|2 by Lemma 1. But zn → 0, so en(zn) → 1

by sandwiching.

Now take (6) in the form en(x+ y)en(zn) = en(x)en(y) and apply AOL and Lemma 2 to
both sides to obtain e(x+ y) = e(x)e(y).

We remark that this proof uses the Cauchy Convergence Criterion, which was pretty
much inevitable as we wanted to show a sequence of complex numbers converged to
something we could not previously describe. (In the other proofs it is hidden away in
the various results that are used.) Other than that it just uses AOL, sandwiching, and
simple bounding techniques (triangle inequality and standard algebra).
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We also remark that once differentiation is introduced, Lemma 1 tells us precisely that
e′(0) = 1. Then e′(x) = e(x) can be deduced from the Chain Rule and Theorem 3:
e′(x+ c) = d

dx
e(x+ c) = d

dx
e(c)e(x) = e(c)e′(x), and set x = 0.

We now come to the second proof of (1). This uses more properties of series from Anal-
ysis I. We start with a general result from problem sheet 6 of Analysis I (and question 3
on the 2013 Prelims M2 exam!).

Lemma 4 (Cauchy Multiplication of absolutely convergent series). If
∑

ak and
∑

bk
converge absolutely and we define ck := a0bk + a1bk−1 + · · · + akb0 =

∑k
i=0 aibk−i, then∑

ck converges absolutely and

∞∑
k=0

ck =
∞∑
k=0

ak

∞∑
k=0

bk.

We remark that this is basically a theorem about rearranging terms in a series, summing
them up in a different order. As a result it should not come as much of a surprise that
the condition of absolute convergence is needed. The lemma would be false in general if
the sequences converged, but not absolutely.

Before writing out a formal proof of this lemma, let’s give the general idea of the proof.
We want to relate

n∑
k=0

ck =
n∑

k=0

k∑
i=0

aibk−i

to
n∑

i=0

ai

n∑
j=0

bj =
n∑

i=0

n∑
j=0

aibj

for some large n and let n → ∞. If we consider both sums as sums of terms of the form
aibj and arrange these terms in a grid, the first sum is summing over a triangle of terms,
while the second is summing over a square.

a0b0

a0b1

·

a0bn−1

a0bn

a1b0

·

·

a1bn−1

·

·

·

an−1b0

an−1b1

anb0

c0 c1 cn−1 cn

a0b0

·

a0bm

·

a0bn

·

·

·

·

·

amb0

·

ambm

·

·

·

·

·

·

·

anb0

·

·

·

anbn

We bound the difference (the sum of terms in the red triangle) by showing that the sum
of the absolute values of the terms here is small. Thus it helps to consider the case∑

|ai|
∑

|bj| first.
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Proof. Define c∗k =
∑k

i=0 |aibk−i| to be the ck corresponding to the case when we replace
ai and bj by their absolute values. Then

n∑
k=0

c∗k =
∑
i+j≤n

|ai||bj| ≤
n∑

i=0

|ai|
n∑

j=0

|bj|.

Letting n → ∞ and using absolute convergence of
∑

ai and
∑

bj, we see that
∑n

k=0 c
∗
k

is bounded, and so
∑

c∗k converges absolutely.

Now
n∑

i=0

ai

n∑
j=0

bj −
n∑

k=0

ck =
n∑

i=0

n∑
j=0

i+j>n

aibj,

and the terms aibj in the last sum all have n < i + j ≤ 2n. Thus, by the triangle
inequality, ∣∣∣∣ n∑

i=0

ai

n∑
j=0

bj −
n∑

k=0

ck

∣∣∣∣ ≤ n∑
i=0

n∑
j=0

i+j>n

|aibj| ≤
2n∑

k=n+1

c∗k =
2n∑
k=0

c∗k −
n∑

k=0

c∗k.

This last sum tends to 0 as n → ∞, so, by AOL and sandwiching,
∑

ck converges and∑∞
k=0 ck =

∑∞
k=0 ak

∑∞
k=0 bk.

For absolute convergence, note that by the triangle inequality, |ck| ≤ c∗k, so
∑

|ck| con-
verges by the Comparison Test.

Theorem 5. For all x, y ∈ C, exp(x+ y) = exp(x) exp(y).

Proof. For any x, y ∈ C the power series for exp(x) and exp(y) converge absolutely as
the series has infinite radius of convergence (by e.g., the Ratio Test). Hence by Lemma 4

exp(x) exp(y) =
∞∑
n=0

xn

n!

∞∑
n=0

yn

n!
=

∞∑
n=0

n∑
i=0

xi

i!
· yn−i

(n− i)!

=
∞∑
n=0

1

n!

n∑
i=0

(
n

i

)
xiyn−i =

∞∑
n=0

(x+ y)n

n!
= exp(x+ y),

where in the second line we have used the definition
(
n
i

)
= n!

i!(n−i)!
and the Binomial

Theorem.

Now we show that the e(x) defined earlier is actually the same as exp(x). (See also
Proposition 6.37 of the Analysis I lecture notes.)
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Theorem 6. For all x ∈ C, (1 + x
n
)n → exp(x) as n → ∞. In particular e(x) = exp(x).

Direct proof without assuming Theorems 3 and 5. Use the Binomial Theorem(
1 +

x

n

)n

= 1 +

(
n

1

)(x
n

)
+

(
n

2

)(x
n

)2

+ · · ·+
(
n

n

)(x
n

)n

. (7)

We note that for each fixed k(
n

k

)(x
n

)k

=
n(n− 1) · · · (n− k + 1)

nk · k!
xk =

xk

k!

k−1∏
j=0

(
1− j

n

)
→ xk

k!
, (8)

as n → ∞ by AOL. But we are not done yet! We can’t apply AOL to the whole
expression (7) as the number of terms grows with n. Instead we show that terms for
large k are small enough that we can throw away most of the terms and only lose at most
some small ε.

To do this we note that in (8) we actually always have |
(
n
k

)
(x
n
)k| ≤ |xk

k!
|, so each term in

the binomial expansion of (1 + x
n
)n is no larger than the corresponding term in exp(x).

So fix ε > 0 and pick N large enough such that
∑∞

k=N+1 |
xk

k!
| < ε

4
. We can do this as the

series for exp(x) converges absolutely. Now pick n0 > N large enough so that for each
k = 1, . . . , N and each n ≥ n0 ∣∣∣∣(nk

)(x
n

)k

− xk

k!

∣∣∣∣ < ε

2N
.

We can do this for each k = 1, . . . , N separately and just take the maximum of the n0’s
that are needed (N here is fixed, so there are only finitely many k’s). Then for n ≥ n0,∣∣∣∣(1 + x

n

)n

− exp(x)

∣∣∣∣ = ∣∣∣∣ N∑
k=0

((
n

k

)(x
n

)k

− xk

k!

)
+

n∑
k=N+1

(
n

k

)(x
n

)k

−
∞∑

k=N+1

xk

k!

∣∣∣∣
≤

N∑
k=1

∣∣∣∣(nk
)(x

n

)k

− xk

k!

∣∣∣∣+ n∑
k=N+1

∣∣∣∣(nk
)(x

n

)k
∣∣∣∣+ ∞∑

k=N+1

∣∣∣∣xk

k!

∣∣∣∣
≤

N∑
k=1

∣∣∣∣(nk
)(x

n

)k

− xk

k!

∣∣∣∣+ n∑
k=N+1

∣∣∣∣xk

k!

∣∣∣∣+ ∞∑
k=N+1

∣∣∣∣xk

k!

∣∣∣∣
<

N∑
k=1

ε

2N
+

ε

4
+

ε

4
= ε.

As ε was arbitrary, (1 + x
n
)n → exp(x) as n → ∞. As e(x) we defined as a limit of a

subsequence of this sequence, we see that e(x) = exp(x) also.

Note that we could have used this as an alternative proof of Lemma 2. However it uses
results on convergence of power series and the Binomial Theorem, whereas the proof of
Lemma 2 did not.

6



Once we have (1) for all complex x and y, it is easy to quickly deduce standard results
about both exp and the trigonometric functions.

For example, we can use the power series definitions of cosx and sinx to prove for all
complex x,

eix = cosx+ i sinx,

e−ix = cosx− i sinx,

or equivalently define (for any complex x)

cosx =
eix + e−ix

2
sinx =

eix − e−ix

2i
.

Addition formulae follow immediately:

cos(x+ y) + i sin(x+ y) = ei(x+y) = eixeiy = (cosx+ i sinx)(cos y + i sin y)

= (cosx cos y − sinx sin y) + i(cosx sin y + sinx cos y),

cos(x+ y)− i sin(x+ y) = e−i(x+y) = e−ixe−iy = (cosx− i sinx)(cos y − i sin y)

= (cosx cos y − sinx sin y)− i(cosx sin y + sinx cos y).

Solving these simultaneous equations (add and subtract) then gives that for all x, y ∈ C

cos(x+ y) = cos x cos y − sinx sin y,

sin(x+ y) = cos x sin y + sinx cos y.

Other trigonometric formulae can be derived in a similar manner, valid for all complex
numbers.
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