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0. INTRODUCTION AND PRELIMINARY MA-
TERIAL

0.1 Syllabus

Introduction to determinant of a square matrix: existence and uniqueness. Proof of existence
by induction. Proof of uniqueness by deriving explicit formula from the properties of the
determinant. Permutation matrices. (No general discussion of permutations). Basic properties
of determinant, relation to volume. Multiplicativity of the determinant, computation by row
operations. [2]

Determinants and linear transformations: definition of the determinant of a linear transforma-
tion, multiplicativity, invertibility and the determinant. [0.5]

Eigenvectors and eigenvalues, the characteristic polynomial, trace. Eigenvectors for distinct
eigenvalues are linearly independent. Discussion of diagonalization. Examples. Eigenspaces,
geometric and algebraic multiplicity of eigenvalues. Eigenspaces form a direct sum. [2.5]

Gram-Schmidt procedure. Spectral theorem for real symmetric matrices. Quadratic forms and
real symmetric matrices. Application of the spectral theorem to putting quadrics into normal
form by orthogonal transformations and translations. [3]

0.2 Reading list

(1) T. S. Blyth and E. F. Robertson, Basic Linear Algebra (Springer, London, 2nd edition
2002).

(2) C. W. Curtis, Linear Algebra — An Introductory Approach (Springer, New York, 4th edition,
reprinted 1994).

(3) R. B. J. T. Allenby, Linear Algebra (Arnold, London, 1995).

(4) D. A. Towers, A Guide to Linear Algebra (Macmillan, Basingstoke 1988).

(5) S. Lang, Linear Algebra (Springer, London, Third Edition, 1987).

(6) R. Earl, Towards Higher Mathematics — A Companion (Cambridge University Press, Cam-
bridge, 2017)
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0.3 Introduction

Towards the end of the Linear Algebra I course, it was explained how a linear map T: V — V'
can be represented, with respect to a choice of basis, by a square n x n matrix where n = dim V.
When we make a choice of basis {ej,...,e,} for V| then a vector v € V' becomes represented
by a unique co-ordinate vector (cy,...,c,) € R™ such that

vV =c1e1+ -+ cpep
and 7" becomes represented by the matrix A = (a;;) where
Te; = ayer + -+ + api€n.

Note that the co-ordinates of Te; are the entries of the 7th column of A.
Given the same linear map T can be represented by infinitely many different matrices, at
least two questions arise:

e What do these different matrices have in common, given they represent the same linear
map”?

e Is there a best matrix representative — for purposes of computation or comprehension —
amongst all these different matrices?

The second question will lead us to a discussion of eigenvectors and diagonalizability. Should
we be able to find a matrix representative that is diagonal, then many calculations will be
considerably simpler. If this is possible, and it is an ‘if’, then the linear map is said to be
diagonalizable and the vectors in the basis are called eigenvectors. An eigenvector is a non-zero
vector v such that Tv = Av for some scalar A known as the eigenvalue of v.

Returning to the first question, we shall find that all the algebraic properties of T" apply to
each of its matrix representatives. If A and B are two matrices representing 7" then there is an

invertible matrix P such that
A=P'BP.

We can then show that each matrix representative has the same determinant, trace, rank,
nullity, eigenvalues and functional properties — e.g. T is self-inverse. Any calculation we make,
pertaining to the algebra of T, reassuringly yields the same answer. The matrix P is a change
of basis matrix providing an invertible change of variable.

However, the same cannot be said of geometric properties of 7. In general, an invertible
change of variable will alter lengths, angles, areas, volumes, etc.. If, say, we wish to change
variables to show a curve that isn’t in normal form — such as

P rayt+yi=1

— is in fact an ellipse, and determine its area, then we need to ensure that the area remains
invariant under the change of co-ordinates. The matrices that preserve the scalar product —
and so preserve angle, distance, area — are the orthogonal matrices. That is, P~! = PT. It is an
easy check to see that the only matrices which might be diagonalized by an orthogonal change
of variable are the symmetric matrices. At the end of the course we meet the important spectral
theorem which shows the converse: symmetric matrices can be diagonalized by an orthogonal
change of variable.
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0.4 Notation

(vi|va| | vy) denotes the m x n matrix with columns vy, vs,...,v, € R,
(ry/ry/ -+ /ry) denotes the m x n matrix with rows ry,re,...,r,, € R"
ey, e,,...,e, denotes the canonical basis for R".

L 4 denotes, for an m x n matrix A, the map R, — R, given by x — Ax.
M;(\) denotes the ERO that multiplies the ith row by A # 0.

S;; denotes the ERO that swaps the ith and jth rows.

A;;(\) denotes the ERO that adds A x (row i) to row j.

diag(aq, ..., a,) denotes the diagonal n X n matrix with entries o, ..., a,.
[A];; denotes the (i, j)th entry of a matrix A.

X 4(x) denotes the characteristic polynomial of a square matrix A.

FE\ denotes the eigenspace of the eigenvalue .
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1. DETERMINANTS.

1.1 Definitions

A square matrix has a number associated with it called its determinant. There are various
different ways of introducing determinants, each of which has its advantages but none of which
is wholly ideal as will become clearer below. The definition we shall use is an inductive one,
defining the determinant of an n x n matrix in terms of (n — 1) X (n — 1) determinants. Quite
what the determinant of a matrix signifies will be discussed shortly in Remark 11.

Notation 1 Given a square matrix A and 1 < I,J < n, we write Ary for the (n—1) x (n—1)
matriz formed by removing the Ith row and the Jth column from A.

Example 2 Let

1 =3 2
A= 0o 7 1
-5 1 3

Then (a) removing the 2nd row and 3rd column or (b) removing the 3rd row and 1st column,

we get o A23:<_15 _13); ) A31:<_73 ?)

Our inductive definition of a determinant is then:

Definition 3 The determinant of a 1 x 1 matriz (ay1) is simply aqy itself. The determinant
det A of an n x n matriz A = (a;;) is then given by

det A = ail det Au — 921 det A21 + asi det A31 — e+ (—1)”+1an1 det Anl-

Notation 4 The determinant of a square matriz A is denoted as det A and also sometimes as
|A|. So we may also write the determinant of the matriz A in Example 2 as

1 -3
0o 7
-5 1

W == N

Proposition 5 The determinants of 2 x 2 and 3 X 3 matrices are given by the following for-
mulae.

(a) For 2 x 2 matrices

ai; Q12

= Q11022 — A12G21.
a21 Q22
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(b) For 3 x 3 matrices

aix aiz Q13
Q21 G2 Q23 | = Q11022033 + G12023031 + A13G21032 — (12021033 — 413022031 — G11023032. (1-1)
a31 32 a3s3

Proof. (a) Applying the above inductive definition, we have det A;; = det(a) = ag and
det Ay; = det(a1z) = a2, so that

11 a2

= ay; det A1y — agy det A9y = ajia — a12a9.
Q21 Q22

(b) For the 3 x 3 case

Q2 a23 Q12 Aa13 Q12 Aa13
det AH = s det A21 = s det Agl =
az2 ass 32 Aa33 Q22 A23
so that
@11 a2 Qi3
o Qg2  A23 a2 a13 Q12 413
Qg1 G2 Qo3 | = a11 — Q91 + as;
azz2 ass 32 Aa33 Q22 Q23

a31 aszz2 ass

= 011(022033 - a23a32) - a21(a126l33 - 0»13@32) + Cl31(a1zaz3 - a13022)

using the formula for 2 x 2 determinants. This rearranges to (1.1). =

Example 6 Let Ry and Sy be the rotation and reflection matrices

Ry = <cosc9 —81116’)’ S, = <c0829 sin 20 )

sinf cos® sin 20 — cos 260

Ry represents rotation by 0 anti-clockwise about the origin and Sy represents reflection in the
line y = tan#. Note, for any 0, that

det Ry = cos® +sin? 0 = 1, det Sy = — cos® 20 — sin? 20 = —1.

Example 7 Returning to the matrix from Example 2, we have

/
~"

21 15 0
—1x1x1—(=3)x0x3—-2x7x(=5H)
— N N ’

~~ ~~

1 0 —170

2
0 7 1| = 1Ix7x34+(-3)x1x(=5)+2x0x1
1 3 —— N —_——

= 105.
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Remark 8 In the 2 x 2 and 3 X 3 cases, but only in these cases, there is a simple way to
remember the determinant formula. The 2 X 2 formula is the product of entries on the left-to-
right diagonal minus the product of those on the right-to-left diagonals. If, in the 3 x 3 case,
we allow diagonals to ‘wrap around’ the vertical sides of the matrixz — for example as below

N\ 7
\l Y l/ Y
\ /

— then from this point of view a 3 X 3 matrix has three left-to-right diagonals and three right-to-
left. A 3 x3 determinant then equals the sum of the products of entries on the three left-to-right
diagonals minus the products from the three right-to-left diagonals. This method of calculation
does not apply to n X n determinants when n > 4.

Definition 9 Let A be an n X n matriz. Given 1 < I,J < n the (I,J)th cofactor of A,
denoted C15(A) or just Cpy, is defined as Cry = (—1)""/ det A;; and so the determinant det A
can be rewritten as

det A = a11C11 + a21Co1 + - - + 41 Cra.

Proposition 10 Let A be a triangular matriz. Then det A equals the product of the diagonal
entries of A. In particular it follows that det I,, = 1 for any n.

Proof. This is left to Sheet 1, S3. =

Remark 11 (Summary of Determinant’s Properties) As commented earlier, there are
different ways to introduce determinants, each with their own particular advantages and disad-
vantages.

o With Definition 3, the determinant of an n X n matrix is at least unambiguously and
relatively straightforwardly given. There are other (arguably more natural) definitions
which require some initial work to show that they’re well-defined. For example, we shall
see that det has the following algebraic properties

(i) det is linear in the rows (or columns) of a matrixz (see Theorem 13(A)).
(i) if a matriz has two equal rows then its determinant is zero (see Theorem 13(B)).
(iii) det I,, = 1.

In fact, these three algebraic properties uniquely characterize a function det which assigns
a number to each n X n matrixz (Proposition 26). As a consequence of this uniqueness it
also follows that

(x) det AT = det A for any square matriz A (see Corollary 20).

The problem with the above approach is that the existence and uniqueness of such a func-
tion are still moot.
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e Using Definition 3 we avoid these issues, but unfortunately we currently have no real
sense of what the determinant might convey about a matrixz. The determinant of a 2 X 2
matrix is uniquely characterized by the two following geometric properties. Given a 2 X 2
matrix A, with associated map Ly, it is then the case that

(a) for any region S of the xy-plane, we have

area of La(S) = |det A| x (area of S). (1.2)

(b) The sense of any angle under Ly is reversed when det A < 0 but remains the same
when det A > 0.

We can demonstrate (a) and (b) by noting that the Jacobian of
(T (o@ b x\ [ av+by
ANy ) \Led y ) \ cx+dy

A f1, f2) _|a b

O(x,y) e df

These two properties best show the significance of determinants. Thinking along these
lines, the following properties should seem natural enough:

() det AB = det Adet B (Corollary 19).

(B) a square matriz is singular if and only it has zero determinant (Corollary 18).

equals

However, whilst these geometric properties might better motivate the importance of de-
terminants, they would be less useful in calculating determinants. Their meaning would
also be less clear if we were working in more than three dimensions (at least until we had
defined volume and sense/orientation in higher dimensions) or if we were dealing with
matrices with complex numbers as entries.

e The current definition appears to lend some importance to the first column; Definition
3 is sometimes referred to as expansion along the first column. From Sheet 1, P1 one
might (rightly) surmise that determinants can be calculated by expanding along any row
or column (Theorem 28).

e Finally, calculation is difficult and inefficient using Definition 3. (For example, the for-
mula for an n x n determinant involves the sum of n! separate products (Propositions 26
and 27(b)). We shall, in due course, see that a much better way to calculate determinants
18 via EROs. This method works well with specific examples but less well in general as too
many special cases arise; if we chose to define determinants this way, even determining
the general formulae for 2 x 2 and 3 X 3 determinants would become something of a chore.

In the following we rigorously develop the theory of determinants. These proofs are often
technical and not particularly illuminating and only a selection of the proofs will be covered
in lectures. I’d suggest the significant properties of determinants are (i), (ii), (iii), (%), (a),
(b), («), () above and these should be committed to memory. The next significant result
(or method) appears in Remark 21 where we begin the discussion of calculating determinants
efficiently.
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Notation 12 (a) We shall write (r1/--- /r,) for the n X n matriz with rows ry,--- ,r, € R™
(b) We shall write (vy| - - |v,) for the n x n matriz with columns vy,--- ,v, € R

col*
(c) We shall write ey, ..., e, for the standard basis of R™.
Theorem 13 The map det defined in Definition 3 has the following properties.
(A) det is linear in each row. That is, det C' = Adet A 4+ pdet B where

A = (ri/ - [rica/rifriga/ - /ry),
B = (ry/ - /rica/V/viza/ - [rn),
C = (ri/.../vici/Ar; +pv/ri/ ... /1),

(B) If A= (r1/--- /1) withx; =r; for some i # j, then det A = 0.
(B’) If the matriz B is produced by swapping two different rows of A then det B = — det A.

Before proceeding to the main proof we will first prove the following.
Lemma 14 Together, properties (A) and (B) are equivalent to properties (A) and (B’).

Proof. Suppose that det has properties (A), (B). Let A = (r1/--- /r,) and B be produced by
swapping rows ¢ and j where ¢ < j. Then

0 = det(ry/--/rit+r;/ - /ritr;/ - [rn)  [by (B)]
= det(ry/ -+ /ri/ -+ Jribay/ - Jra) Fdet(ey/ o ey fribry /o /) by (A)]
= {det(ry/---/ri/ - /r;i/ - Jrn) +det(ry/ - Jri) - Jr; ) Jra)}
+{det(ry/ - /x;/ o fxif - Jen) £ det(ry/ - Jr; /o ey /o en)} o by (A)]
{0+ det A} + {det B + 0} [by (B)]
det A+ det B

and so property (B’) follows.
Conversely, if det has properties (A), (B’) and r; = r; for i # j then

det(rl/---/ri/---/rj/---/rn):det(rl/---/rj/---/ri/---/rn),

as the two matrices are equal, but by property (B’)

det(ry/ -« /rif - /r;/ - [rn) = —det(ry/ - [/ [rif -+ [rn),
so that both determinants are in fact zero. m

We continue now with the proof of Theorem 13.

Proof. (A) If n = 1 then (A) equates to the identity (Aaiyy + pv1) = Aai1) + p(v1). As
an inductive hypothesis, suppose that (A) is true for (n — 1) x (n — 1) matrices. We are
looking to show that the n x n determinant function is linear in the ith row. Note, for j # i,
that C;1(C) = ACj1(A) + uCji1(B) by our inductive hypothesis as these cofactors relate to
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(n —1) x (n — 1) determinants. Also C;1(C) = Ci1(A) = C;1(B) as Cy; is independent of the
1th row. Hence

detC' = apnCn(C)+ -+ (Maj + pv1)Cin(C) + - -+ + a4, Crr (C)
= a;n(AC11(A) + uC11(B)) + -+ XanCii(A) + pv1Ci(B) + -« - - + a1 (ACr1(A) + pnChri(B))
= MaCii(A) + -+ anCri(A)} + u{a1Cr11(B) + - -+ v1Ci(B) + -+ + a1 Cr1 (B) }
= Adet A+ pdet B.

We have therefore proved (A) for all square matrices. In what follows, note that if (B) is
true of certain matrices then so is (B’) as we have shown that (A) and (B) are equivalent to
(A) and (B’).

(B) For a 2 x 2 matrix, if r; = ry then

air a2
det A = = — = 0.
e ( 411 G ) 11012 — G12011
So (B) (and hence (B’)) hold for 2 x 2 matrices. Assume now that (B) (or equivalently (B’)) is
true for (n — 1) x (n — 1) matrices. Let A = (r;/--- /r,) with r; = r; where ¢ < j. Then

det A =a11C11(A) + -+ 4 Cr1(A) = a1 Cia(A) + a;1Cj1(A)

by the inductive hypothesis as Ax; has two equal rows when k # 7, j. Note that as r; = r;, with
one copy of each being removed from A;; and A;;, then the rows of A;; are the same as the
rows of Aj; but come in a different order. The rows of A;; and Aj; can be reordered to be the
same as follows: what remains of r; in A;; can be moved up to the position of r;’s remainder in
Aj;1 by swapping it j — i — 1 times, each time with the next row above. (Note that we cannot
simply swap the rows r; and r; in A to show det A = 0 as this would be assuming (B’) for n xn
matrices which is equivalent to what we’re trying to prove.) By our inductive hypothesis

det A = ailCﬂ(A) + aﬂle(A)
= (=1)"a; det Ajy + (—1)"a;; det Ajy [by definition of cofactors]
= (=1)"a; (=17t det Ajy + (=1)"a;; det Ajy [by j —i— 1 uses of (B’)]

(=1)7(a;; — a;1) det Aj; =0 [as a;1 = a;1 because r; = r;].
Hence (B) is true for n x n determinants and the result follows by induction. m

Corollary 15 Let A be an n x n matriz and A a real number.
(a) If the matriz B is formed by multiplying a row of A by A then det B = X\ det A.
(b) det(AA) = A" det A.
(c) If any row of A is zero then det A = 0.

Proof. (a) This follows from the fact that det is linear in its rows, and then if (a) is applied

consecutively to each of the n rows part (b) follows. Finally if r; = 0 for some 4, then r; = Or;
and so (c) follows from part (a). m
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Notation 16 We will denote the three EROs as:
(a) M;(\) denotes multiplication of the ith row by X\ # 0.
(b) S;; denotes swapping the ith and jth rows.
(c) Aij(N\) denotes adding A x (row i) to row j.

Lemma 17 (a) The determinants of the elementary matrices are

In particular, elementary matrices have non-zero determinants.
(b) If E, A are n x n matrices and E is elementary then det EA = det E det A.
(c) If E is an elementary matriz then det ET = det E.

Proof. We shall prove (a) and (b) together. If £ = M;(\) and then det EA = AdetA
by Corollary 15(a). If we choose A = I, then we find det M;(A) = A and so we also have
det FA = det E'det A when E = M;()\).

If E = S;; then by Theorem 13(B’) det FA = —det A. If we take A = I,, then we see
det S;; = —1 and then we also have det EA = det E det A when E = §;;.

If £E=A;;(\) and A= (ry/---/r,) then

det(FA) = det(ry/---/r;+Arj/ - /r;/ - /rp)
= det(ry/ - [r;) - r;) - [ra) + Adet(rr) - Jr;) - Jr;) - [Tn)
= detA+0
= det A.

The second equality follows from Theorem 13 (A), and the third from Theorem 13 (B). If we
take A = I, then det A;;(\) =1 and so det EA = det E'det A also follows when E = A;;(\).

(c) Note that M;(\) and S;; are symmetric and so there is nothing to prove in these cases.
Finally

det(A”()\)T) = det A]Z(A) =1 =det AU(A)
|

Corollary 18 (Criterion for Invertibility) A square matrixz A is invertible if and only if
det A # 0, in which case det(A™') = (det A)~1.

Proof. If A is invertible then it row-reduces to the identity; that is, there are elementary
matrices Ey, ..., Ey such that Ej--- F1 A = I. Hence, by repeated use of Lemma 17(b),

1=det] =det B x --- x det £/; x det A.

In particular det A # 0. Further as Ej -+ F; = A™! then det(A™!) = (det A)~!. If, however, A
is singular then A reduces to a matrix R with at least one zero row so that det R = 0. So as

before
det B, X --- xdet By xdet A=det R=0

for some elementary matrices F;. As det E; # 0 for each i, it follows that det A =0. =

DEFINITIONS 10



Corollary 19 (Product Rule for Determinants) Let A, B be n X n matrices. Then

det AB = det Adet B.

Proof. If A and B are invertible then they can be written as products of elementary matrices;
say A=F;...FE,and B=F|...F;. Then

det AB=detE; X --- xdet B}, x det F} x --- x det F; = det Adet B

by Lemma 17(b). Otherwise one (or both) of A or B is singular. Then AB is singular and so
det AB = 0. But, also det A x det B = 0 as one or both of A, B is singular. =

Corollary 20 (Transpose Rule for Determinants) Let A be a square matriz. Then
det AT = det A.

Proof. A is invertible if and only if AT is invertible. If A is invertible then A = FE; ... £}, for
some elementary matrices ;. Now AT = ET ... ET by the product rule for transposes and so,
by Lemma 17(c) and the product rule above,

det AT =det Ef x - x det E{ =detEj x --- x det F; = det A.

If A is singular then so is A” and so det A =0 = det A”. =

Remark 21 Currently we are still lumbered with a very inefficient way of evaluating determi-
nants in Definition 3. That definition is practicable up to 3 X 3 matrices but rapidly becomes
laborious after that. A much more efficient way to calculate determinants is using EROs and
ECOs, and we have been in a position to do this since showing det FA = det E x det A for
elementary E. An ECO involves postmultiplication by an elementary matrix but the product
rule shows they will have the same effects on the determinant. Spelling this out:

e Adding a multiple of a row (resp. column) to another row (resp. column) has no effect
on a determinant.

o Multiplying a row or column of the determinant by a scalar A multiplies the determinant
by .

e Swapping two rows or two columns of a determinant multiplies the determinant by —1.

The following examples will hopefully make clear how to efficiently calculate determinants using
EROs and ECOs.

Example 22 Use FROs and ECOs to calculate the following 4 X 4 determinants.

1 2 0 3 22 1 =3
4 -3 1 0 06 -2 1
0 2 5 -1 32 1 1
2 3 1 2 4 2 -1 2
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Solution.

1 2 0 3 1 2 0 3
4 -3 1 0| 0—111—12_‘2ﬂé__112
0 2 5 -1 |0 2 5 -1 |~ |
2 3 1 2 0 -1 1 —4
0 —10 32
=10 7 -9|=-1x _710 g':m,
-1 1 -4

where, in order, we (i) add appropriate multiples of the row 1 to lower rows to clear the rest of
column 1, (ii) expand along column 1, (iii) add appropriate multiples of row 3 to rows 1 and 2
to clear the rest of column 1, (iv) expand along column 1 and (v) employ the 2 x 2 determinant
formula.

2 2 1 -3 2 2 1 -3
06 -2 1| [0 6 -2 1| 61_?111
- 1 -1 1 ;= T T2 2
32 1 1 0 -1 -1 4 o 32
4 2 -1 2 0 -2 -3 8
0 —5 34
=2/ -1 -+ 4 —2':2 iﬂ—l%’,
0 -2 -3

where, in order, we (i) add appropriate multiples of row 1 to lower rows to clear the rest of
column 1, (ii) expand along column 1, (iii) add appropriate multiples of row 2 to rows 1 and 3
to clear the rest of column 1, (iv) expand along column 1 and (v) employ the 2 x 2 determinant
formula.

Alternatively, for this second determinant, it may have made more sense to column-reduce as
the third column has a helpful leading 1 and we could have instead calculated the determinant
as follows.

2 2 1 -3 00 1 0
06—21_410—2—5_11100_45
32 1 1 |10 1 4 6 4 1
42 -1 2 6 4 -1 —1
0 10 -21
= |1 0 4 :-'140 :gé':m(s.
0 4 -25

where, in order, we (i) add appropriate multiples of column 3 to other columns to clear the rest
of row 1, (ii) expand along row 1 (iii) add appropriate multiples of row 2 to rows 1 and 3 to
clear the rest of column 1, (iv) expand along column 1 and (v) employ the 2 x 2 determinant
formula. m

e We will demonstrate in Theorem 28 the as-yet-unproven equivalence of expanding along
any row or column.
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Example 23 Let a,z be real numbers. Determine the following 3 X 3 and n x n determinants.

zr 1 - 1

r a a 1 z --- 1

(a) |z = a |, (b) S
T r X S

11 -+ z

Solution. (a) Subtracting row 3 from the other rows, and expanding along column 1, we obtain

T a a 0 a—x a—=x G a—1

z x a|=|0 0 a—zx|=ux =x(a —1)%
0 a—x

T T x r x

Similarly for (b) if we note that the sum of each column is the same and then add the bottom
n — 1 rows to the first row (which won’t affect the determinant), we see it equals

z+n—1 z4+4n—-—1 -+ z4+n-—1
1 T 1
1 1 T
1 1 1
1 =z 1
= (z4+n-1) i
1 1 T
1 1 1
0 -1 0
= (r+n-—-1) :
0 0 ooz —1

where, in order, we (i) take the common factor of z+mn —1 out of the first row, (ii) subtract the
first row from each of the other rows, (iii) note the determinant is upper triangular to finally
obtain a result of (z +n—1)(z — 1) 1. m

We conclude this section by defining the Vandermonde! determinant useful in interpolation.

Example 24 (Vandermonde Matrix) For n > 2 and real numbers x1, ..., x, we define
1 x 22 - ot
1 a9 22 -0 bt
V,=1| 1 z3 af e oayt and then detV,, = H (x; — xj).
: : : - i>j
1 =z, 22 it

In particular, V,, is invertible if and only if the x; are distinct.

Solution. This is left to Sheet 1, Exercise 5. =

! After the French mathematician Alexandre-Théophile Vandermonde (1735-1796).

DEFINITIONS 13



1.2 Permutation Matrices

It was claimed in Remark 11 that the determinant function for n X n matrices is entirely
determined by certain algebraic properties. In light of Lemma 14, these properties are equivalent
to

(i) det is linear in the rows of a matrix.

(ii) if a matrix has two equal rows then its determinant is zero.
(ii)’ if the matrix B is produced by swapping two of the rows of A then det B = — det A.
(iii) det I, = 1.

To see why these properties determine det, we first consider the n = 2 case. Given a 2 x 2
matrix A = (a;;), we can calculate its determinant as follows. As det is linear in row 1 then

anp a | _ | an 0 0 ap
G21  G22 21 (22 G21 (22
which, as det is linear in row 2, equals
a0 a;p O 0 a 0 a
{ 0 ax + a1 0'}+{ az 0 +'0 a2 }
Again as det is linear in rows the above equals
10 10 01 01
11022 0 1 ‘—I—CL11CL21 10 ‘+a12a21 10 '+a12a22 01 '
Then, using (ii), this equals
10 n 01
11022 01 12021 1 0
which, using (ii)’, equals
Lo} 10
11022 0 1 12091 01!

Finally, using (iii), we’ve shown

ai1 aig

= Q11G22 — Q12021
A21 Aa22

If we were to argue similarly for a 3 x 3 matrix A = (a;;), we could first use linearity to expand
the determinant into a linear combination of 3% = 27 determinants, with entries 1 and 0, each
multiplied by a monomial ai;asjas,. But we can ignore those cases where 7, j, k involves some
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repetition as the corresponding determinant is zero. There would, in fact, be only 3! = 6
non-zero contributions giving us the formula

100 01 01((010 0 01
11022023 010 “+ ai2a93a31 0 01 001 “+ ai3a91a39 1 00
0 01 1 0 0]{100 010
010 001 1 00
+aigaziasz| 1 0 0 |4+ ajzanaz| 0 1 0 |+ ajjagsase| 0 0 1
0 01 1 00 010

The first determinant here is det I3 which we know to be 1. The other determinants all have
the same rows (1,0,0),(0,1,0), (0,0, 1) as I3 but appearing in some other order. In each case,
it is possible (if necessary) to swap (1,0,0) — which appears as some row of the determinant —
with the first row, so that it is now in the correct place. Likewise the second row can be moved
(if necessary) so it is in the right place. By a process of elimination the third row is now in the
right place and we have transformed the determinant into det I3. We know what the effect of
each such swap is, namely multiplying by —1, and so the six determinants above have values 1
or —1. For example,

010 100 1 00 0 01 1 00
001|=—={001]=101 0]=1, 01 0|=—=]01¢0|=-1
1 00 010 0 01 1 00 0 01

So finally we have, as we found in Proposition 5(b), that

ai; Q12 a3
Q21 G2z Q23 | = Q11022023 + (12023031 + A13021032 — Q12021033 — 113022031 — G11023032.
a31 Q23 a33

The general situation is hopefully now clear for an n x n matrix A = (a;;). Using linearity
to expand along each row in turn, det A can be written as the sum of n” terms

E det Bl...inalil st Qpg,

where P, ..; is the matrix whose rows are e;,,...,e; — that is the entries of P, ..;, are all
zero except entries (1,4;),...,(n,i,) which are all 1. At the moment each of iy,...,4, can
independently take a value between 1 and n, but most such choices lead to the determinant
det P, ...;, being zero as some of the rows e;,,...,e;, are repeated. In fact, det P;,..;, can only
be non-zero when
{ir,...,in} ={1,...,n}.

That is 41,...,1, are 1,...n in some order or equivalently the rows of P, .., aree;,...,e, in
some order.

Definition 25 Annxn matriz P is said to be a permutation matriz if its rows areey, ..., e,

i some order. This is equivalent to saying that each row and column contains a single entry 1
with all other entries being zero.
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Thus we have shown:

Proposition 26 The function det is entirely determined by the three algebraic properties (i),
(i1) and (i3). Further, the determinant det A of an n x n matriz A = (a;;) equals

det A = Z det PZlZn A4y * ° Angy, (13)
where the sum is taken over all permutation matrices P;,..., = (e;,/---/ei,).

We further note:

Proposition 27 (a) The columns of a permutation matriz are el ... el

(b) The number of n x n permutation matrices is n!.

(c) A permutation matrixz has determinant 1 or —1.

(d) When n > 2, half the permutation matrices have determinant 1 and half have determi-
nant —1.

in some order.

Proof. (a) The entries in the first column of a permutation matrix P are the first entries of
e, €y, ..., e, in some order and so are 1,0,...,0 in some order — that is the first column is e
for some i. Likewise each column of P is e! for some i. If any of the columns of P were the
same then this would mean that a row of P had two non-zero entries which cannot occur. So
the columns are all distinct. As there are n columns then each of el ... el appears exactly
once.

(b) This is equal to the number of bijections from the set {1,2,...,n} to itself.

(¢) The rows of a permutation matrix P are eq,...,e, in some order. We know that
swapping two rows of a matrix has the effect of multiplying the determinant by —1. We can
create a (possibly new) matrix P, by swapping the first row of P with the row e; (which
appears somewhere); of course no swap may be needed. The matrix P, has e; as its first row
and det P, = +det P depending on whether a swap was necessary or not. We can continue in
this fashion producing matrices P, ..., P, such that the first £ rows of P, are ey, ..., e in that
order and det P, = fdet P,_; in each case, depending on whether or not we needed to make
any swap to get e, to the kth row. Eventually then P, = I, and det P = +det P, =1 or —1
depending on whether an even or odd number of swaps had to be made to turn P into I,,.

(d) Let n > 2 and let Sj5 be the elementary n x n matrix associated with swapping the first
and second rows of a matrix. If P is a permutation matrix then S5 P is also a permutation
matrix as its rows are still e, ..., e, in some order; further

det Slgp = det 512 x det P = —det P.

For each permutation matrix P with det P = 1, we have S5 P being a permutation matrix
with det(S12P) = —1; conversely for every permutation matrix P with det P = —1 we have
Syo P being a permutation matrix with det(Sup) =1 As these processes are inverses of one
another, because S12(S12P) = P, there are equal numbers of determinant 1 and determinant
—1 permutation matrices, each separately numbering %n!. ]

We now prove a result already mentioned in Remark 11. Our inductive definition of the
determinant began by expanding down the first column. In fact it is the case that we will arrive
at the same answer, the determinant, whichever column or row we expand along.
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Theorem 28 (Equality of determinant expansions?) Let A = (a;;) be an n X n matrix
and let C;; denote the (i, j)th cofactor of A. Then the determinant det A may be calculated by
expanding along any column or row of A. So, for any 1 <1i < n, we have

det A = a;C1 + ag;Co + -+ + a4, Cri [this is expansion along the ith column/(1.4)
= a41Ci +apCih+ -+ ainCin [this is expansion along the ith row/.  (1.5)

Proof. We showed in Theorem 13 and Proposition 10 that det has properties (i), (ii), (iii),
and have just shown in Proposition 26 that these properties uniquely determine the function
det. Making the obvious changes to Theorem 13 and Proposition 10 it can similarly be shown,
for any ¢, that the function which assigns

a1;C1i + a2iCo + - -+ 4 i O (1.6)

to the matrix A = (a;;) also has properties (i), (ii), (iii). By uniqueness it follows that (1.6)
also equals det A. That is, expanding down any column also leads to the same answer of det A.
Then

det A = det AT = [AT]UOU(AT) + [AT]QiCQZ‘(AT) + -4 [AT]mOm(AT)
= anCin +apCin + - + ainCin
by expanding down the ith column of A”, but this is the same sum found when expanding
along the ith row of A. m

In practical terms, however, Laplace’s result isn’t that helpful. We have already discounted
repeated expansion along rows and columns of hard-to-calculate cofactors as a hugely inefficient
means to find determinants (see Remarks 11 and 21). However, it does lead us to the following
theorem of interest.

Theorem 29 (Existence of the Adjugate) Let A be an n x n matriz. Let C;; denote the
(i, j)th cofactor of A and let C' = (C;;) be the matriz of cofactors. Then

CTA=ACT =det A x I,.

In particular, if A is invertible, then

1 cT
det A

Proof. Note

n

[CTAli; = [CTalAlkj = D Craany.

k=1
When ¢ = j then

[CTA]ZZ = Z aki(]ki =det A

k=1

2This was proved by Pierre-Simon Laplace (1749-1827) in 1772, though Leibniz had been aware of this result
a century earlier.
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by Theorem 28 as this is the determinant calculated by expanding along the ¢th column. On
the other hand, if 7 # j, then consider the matrix B which has the same columns as A except
for the ith column of B which is a copy of A’s jth column. As the ith and jth columns of B
are equal then det B is zero. Note that the (k,7)th cofactor of B equals Cy; as A and B agree
except in the ith column; so if expanding det B along its ith column we see

0=detB = Z biiCli = Z ar;Cri = [CTA]ij-
k=1

k=1

So CTA =det A x I,,. That ACT = det A x I,, similarly follows. Finally if A is invertible, then
det A # 0, and (1.7) follows. m

Definition 30 With notation as in Theorem 29 the matriz CT is called the adjugate of A (or
sometimes the adjoint of A) and is written adjA.

Corollary 31 (Cramer’s Rule®) Let A be ann xn matriz, b in R%, and consider the linear

system (A|b). The system has a unique solution if and only if det A # 0, which is given by
CTb
X = :
det A
Proof. There is a solution if and only if L, is onto which is then unique if and only if the

kernel is trivial. That is A is invertible and the result follows from the previous theorem and
Corollary 18. =

Remark 32 Writing A = (a;;) and b = (b, ...,b,)T then Cramer’s Rule with n = 2 expressly
reads as

= birags — baayn Ty — baair — brag
1= —— 2= 0
detA detA
where det A = a11a99 — a12a21. When n = 3 Cramer’s rule reads as
Q22 A23 Q12 Aa13 Q12 Aa13
by — by + b3
. 32 Aa33 32 Aa33 Q22 A23
1 pu—
det A ’
Q21 A23 11 a3 11 a3
—by + by —bs
a31 as3 a31 as3 Q21 Q23
To =
det A ’
ag1 A22 a1l a2 aix a2
by — by + b3
. azy asg a31 asz Q21 Q22
3 =
det A ’

where det A = a11a22a33 + A12023031 + 13021032 — Q12021033 — Q13022031 — A11023032.

Cramer’s rule though is a seriously limited and impractical means of solving linear systems.
The rule only applies when the matrix A is square and invertible, and the computational power
required to calculate so many cofactors and det A make it substantially more onerous than
row-reduction.

3Named after the Swiss mathematician, Gabriel Cramer (1704-1752), who discovered this result in 1750.
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1.3 Determinants of Linear Maps

Definition 33 Let T: V — V be a linear map of a finite dimensional vector space V. Then
the determinant of T is defined by
det T'=det A

where A is a matriz representing T with respect to some basis for V.

Proposition 34 (a) The determinant of a linear map is well-defined.
(b) If S: V. — V is a second linear map then

det(ST) = det S x det T.

(¢) T:V — V is invertible if and only if det T # 0. If T is invertible then

1
~det T’
Proof. (a) As 7" may have many different matrix representatives, it is possible that different

representatives might have different determinants. However any two representatives, A and B,
of T are similar matrices so that A = P~!BP for some invertible matrix P. Specifically if

det (T_l)

A = ng and B = ]:T]:

then A = P 'BP where P = £I¢. By the product rule for determinants we have

det A = det (P'BP) = x det B x det P = det B,

det P

and hence each matrix representative of 7' has the same determinant.
(b) Say that S and T" are represented by A and B wrt the same basis for V. Then ST is
represented by AB wrt the same basis. So, by the product rule,

det (ST) = det (AB) = det A x det B = det S x det T

(c) Say that T is invertible. Then there is a linear map S: V' — V such that ST =1 =T'S.
So
1=detl =detS xdetT,

showing det T' # 0. Conversely say that det T' # 0. Let A be a matrix representing 7" wrt some
basis. So det A # 0 and A is an invertible matrix. Let S: V' — V be the linear map represented
by A~! wrt the same basis. Then ST is represented by A~'A = I wrt this basis, and T'S is
represented by AA™! = I wrt this basis. But the identity matrix represents the identity map
wrt all bases and so

ST=1=TS.

Thus S = T~! and T is invertible. Finally, when T is invertible, we have
(det T7") (det T') = det (T7'T") = det I =1,

and the result follows. =
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Example 35 LetV = (1,z,22) be the space of real polynomials in x of degree at most 2. Define
DT:V -V by

(Df) (x) = f'(x),  (Tf)(2) = flz+1).
FEvaluate det D and detT.

Solution. As D(1) = 0 then D is not invertible and so det D = 0. Alternatively the matrix
for D wrt {1,z, 2%} is

010
00 2
000

D=

Y

and det D = 0® = 0 as this is an upper triangular matrix.
Now the matrix for T wrt the same basis is

1 11
T'=|(01 2
0 01

andsodetT =1°=1. m
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2. EIGENVALUES, EIGENVECTORS AND DI-
AGONALIZABILITY

Definition 36 An n x n matriz A is said to be diagonalizable if there is an invertible matriz
P such that P~ AP is diagonal.

Two questions immediately spring to mind: why might this be a useful definition, and how
might we decide whether such a matrix P exists? In an attempt to partially answer the first
question, we note

(P7'AP)" = (P'AP)(P7'AP) x --- x (P"'AP) = P'A*P,
as all the internal products PP~ cancel. Thus if P~'AP = D is diagonal then

AF = ppkp~t for a natural number &

and so we are in a position to easily calculate the powers of A. So ease of calculation is clearly
one advantage of a matrix being diagonalizable.

For now we will consider this reason enough to seek to answer the second question: how do we
determine whether such a P exists? Suppose such a P exists and has columns vy, vs,...,v,. As
P is invertible then the v; are independent. Further as AP = PD where D = diag(Aq, ..., \,)
then we have that

1th column of AP = Av; and ith column of PD = P(\el) = \v;.

So the columns of P are n independent vectors, each of which A maps to a scalar multiple of
itself. Thus we make the following definitions.

Definition 37 Let A be an nxn matriz. We say that a vector v # 0 in R, is an eigenvector'
of A if Av = Av for some scalar \. The scalar \ is called the eigenvalue of v and we will
also refer to v as a \-eigenvector.

Definition 38 n linearly independent eigenvectors of an n x n matriz A are called an eigen-
basis.

Remark 39 Let T:V — V be a linear map of a finite-dimensional vector space. The terms
eigenvalue, eigenvector and eigenbasis are well-defined for T. If v is a A-eigenvector of a matriz
A, then P~'v is a M-eigenvector of B = P~ *AP. So if A and B are matriz representatives of
T, then the eigenvalues of A and B are the same; the eigenvectors of A and B will be different
co-ordinate vectors, but represent the same vectors in V.

!The German adjective eigen means ‘own’ or ‘particular’. David Hilbert was the first to use the term in the
early 20th century. The term proper or characteristic is sometimes also used, especially in older texts.
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And we have partly demonstrated the following.
Theorem 40 An n x n matriz A is diagonalizable if and only if A has an eigenbasis.

Proof. We showed above that if such a P exists then its columns form an eigenbasis. Conversely
if vi,...,v, form an eigenbasis, with respective eigenvalues A1, ..., \,, we define

P=(vil o] va)

to be the n x n matrix with columns vy, ..., v,. Again P is invertible as its columns are linearly
independent. Then

Pe! =v; and  APe! = Av; = \iv; = \;Pel = P(\e]),

(2

so that P~1APe! = \;e! for each i or equivalently

PLAP = diag(\i, Aa, - .., An).

Note that ) is an eigenvalue of A if and only if the equation Av = Av has a non-zero solution
or equivalently if (Al,, — A)v = 0 has a non-zero solution. This is equivalent to AI,, — A being
singular, which in turn is equivalent to det(Al,, — A) = 0. Thus we have shown (a) below.

Proposition 41 Let A be an n x n matriz and A € R.
(a) X is an eigenvalue of A if and only if x = X\ is a root of det(xI,, — A) = 0.
(b) det(zI,, — A) is a polynomial in x of degree n which is monic (i.e. leading coefficient is 1).
(c) If det(xl, — A) = 2" + c,q12™ 1 4 -+ + ¢o then
co=(—1)"det A and  ¢,_1 = —trace(A).

Proof. (b) Note

T —an —Qai2 T —Q1n
—a21 T —Aag - —Q2n
det(zl, — A) = _
—an1 —ap2 tet T — Qpp

This determinant is the sum of n! products that take one entry from each row and each column.
The largest power of x is produced from the product of the diagonal entries

(x —an)(x—aw) - (z— ap,). (2.1)

The greatest power of x here is ™ and the coefficient of x™ is 1. All other products give
polynomials in x of degree strictly less than n.
(c) By setting x = 0 we see that

co = det (—A) = (—1)" det A.

Contributions to the #"~! term only come from the product of the diagonal entries (2.1). If
one diagonal entry is omitted from a product then necessarily a second diagonal entry is also
omitted and thus the greatest power of z from such a product can be 2" 2. The coefficient of
2" from (2.1) is

—a11] — Qg — **+ — Apy = —trace(A).
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Definition 42 Let A be a real n X n matriz. Then the characteristic polynomial of A is
Xa(x) =det(xl, — A).

Example 43 Find the eigenvalues of the following matrices.

3 2 —4 5 -3 -5
A:<11); B:(}‘ll); C=|101 4 |; D= 2 9 4
00 3 -1 0 7

Solution. By Proposition 41(a) this is equivalent to finding the real roots of the matrices’
characteristic polynomials.
(a) The eigenvalues of A are 0 and 2 as

. xr—1 —1 . . 2 4 _ .
xXalz) = 1 r-1 ' =(zr—-1) 1=uz(x—2).
(b) Similarly note
- xr—1 1 . . 2 .2
Xp(7) = 1 x_l'—(ﬂﬂ +1==x 2z + 2.

Now xp(z) has no real roots (the roots are 1 £+ i) and so B has no eigenvalues.

(c) As C' is triangular then we can immediately see that y-(z) = (z — 3)(x — 1)(z — 3). So
C' has eigenvalues 1, 3, 3, the eigenvalue of 3 being a repeated root of x(x).

(d) Finally D has eigenvalues 6, 6,9, the eigenvalue of 6 being repeated as xp(x) equals

r—95 3 5 r—6 r—6 -6 1 1 1

-2 -9 -4 |=| -2 -9 -4 |=(x—-6)| -2 -9 -4

1 0 x—17 1 0 x—17 1 0 x—7
1 0 0

= (x—6)| =2 z—-7 -2 |=(x—6)
1 -1 x-38

r—7 =2
-1 -8

' = (x—6)*(x —9).

|
Here follow some basic facts about eigenvalues, eigenvectors and diagonalizability.

Proposition 44 Let A be an n X n matrixz and \ € R.

(a) The A-eigenvectors of A, together with 0, form a subspace of RY,. This is called the \-
etgenspace, usually denoted E).

(b) For 1 <i <k, let v; be a \;-eigenvector of A. If Ay, ..., \x are distinct then vy, ..., vy are
independent.

(c) The distinct eigenspaces of A form a direct sum in R ,. This direct sum equals RZ, if and
only if A is diagonalizable.
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Proof. (a) This is ker (A — Al,,) and kernels are subspaces.

(b) may be proven by induction as follows. Note that v; # 0 (as it is an eigenvector) and so
v makes an independent set. Suppose, as our inductive hypothesis, that vy, ..., v; are linearly
independent vectors and that

vy 4+ v+ aivier =0 (2.2)
for some reals a, ..., a;11. If we apply A to both sides of (2.2), we find
AV + NV + @i Aip1vier = 0. (2.3)
Now subtracting A;;; times (2.2) from (2.3) we arrive at

Oél(>\1 — )\i-i—l)vl R Oéz()\z — )\i-i—l)vi = O

By hypothesis vi,...,v; are linearly independent vectors and hence «;(\; — Aiy1) = 0 for
1 <j<i. AsAy,..., )\ are distinct then a; = 0 for 1 < j <4 and then by (2.2) a;41 = 0. We
have shown that vq,...,v;;; are linearly independent vectors and so (b) follows by induction.

(c) The first part is a consequence of the argument in (b). A is diagonalizable if and only
if this direct sum contains an eigenbasis. ®

Corollary 45 If an n x n matriz has n distinct eigenvalues then it is diagonalizable.

Proof. Let A\{,..., )\, denote the distinct eigenvalues. For each ¢ there is a \;-eigenvector v;
and by Proposition 44(b) vy,...,v, are independent. There being n of them they form an
eigenbasis. m

e It is important to note this is a sufficient, but not a necessary condition for diagonaliz-
ability. For example, I,, is diagonal (and so diagonalizable) but has eigenvalue 1 repeated
n times.

Example 46 Determine the eigenvectors and diagonalizability of the matrices A, B,C, D from
Ezxample 43. Comment on the direct sum of the eigenspaces.

Solution. (a) We determined that A has eigenvalues A = 0 and 2. Note that

veos e (E1)((4):
A = 2 kef(_ll —11):<<1)>

(1,—1)" and (1,1)7 form an eigenbasis and if we set

B 1 1 1 (00
P_(—ll) then PAP—(O2).

Note that we could have created an invertible matrix P by swapping its columns and we would
have found P~'AP = diag(2,0). The eigenvalues appear in the diagonal of P~ AP in the order
the corresponding eigenvectors appear in the columns of P.

EIGENVALUES, EIGENVECTORS AND DIAGONALIZABILITY 24



Note that Ey, ® Fy = R?

col*

(b) B has no real eigenvalues and so no eigenvectors. Consequently B is not diagonalizable.
(At least not using a real matrix P; however see Example 47.) The direct sum of the eigenspaces
is {0} .

(c) C has eigenvalues 1, 3, 3. Note

0 2 —4 1 0
A = 3: ker0—24:<0,2>
0 0 0 0 1
2 2 —4 1
A = 1: ker | O 0 4 :< —1 >
00 2 0
An eigenbasis is (1,0,0)", (0,2,1)" and (1, —1,0)". Setting
10 1
P=|02 -1 then P 'CP = diag(3,3,1).
01 0

Note that F3 & F; = R3,).
(d) D has eigenvalues 6,6,9. Note that

-1 -3 -5 1
A = 6: ker 2 3 4 :< -2 >

-1 0 1 1

-4 -3 -5 -2
A= 9: ker 2 0 4 :< 1 >

-1 0 =2 1

The 6-eigenvectors are non-zero multiples of (1,—2,1)7 and the 9-eigenvectors are non-zero
multiples of (—2,1,1)%. As we can find no more than two independent eigenvectors, then there
is no eigenbasis and D is not diagonalizable. In fact, we will shortly see that as soon as we
noted the multiplicity two eigenvalue 6 yielded only one independent eigenvector then we could
have known D is not diagonalizable. =

Example 47 Find a complex matriz P such that P~1BP is diagonal, where B is as given in
Ezxample 435.

Remark 48 When we defined ‘diagonalizability’ in Definition 36 we were, strictly speaking,
defining ‘diagonalizability over R’. We would say that B is not diagonalizable over R as no
such matriz P with real entries exists, but B is diagonalizable over C as such a complex matriz
P does ezxist.

Solution. The roots of xg(z) = (z — 1)? + 1 are 1 & i. When the field of scalars is C, then
these are distinct complex eigenvalues and we know that B is diagonalizable over C. Note that

(5 )-(())
w1 )(0))
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So we may take

p(t1 and find Plpp—( 't 0 )
7 0 1—1

Note that Fy,; ® B, ;= C%,. m
Examples 43 and 46 cover the various eventualities that may arise when investigating the
diagonalizability of matrices. In summary, the checklist when testing a matrix for diagonaliz-

ability is as follows.

Algorithm 49 (Determining Diagonalizability over R and C)

(a) Let A be an n x n matriz. Determine its characteristic polynomial x 4.

(b) If any of the roots of x 4 are not real, then A is not diagonalizable over R.

(¢) If all the roots of x 4 are real and distinct then A is diagonalizable over R.

(d) If all the roots of x4 are real, and for each root \ there are as many independent \-
eigenvectors as repeated factors of x — X\ in x 4(x), then A is diagonalizable over R.

(c)’ If the roots of x 4 are distinct complex numbers then A is diagonalizable over C.

(d)’ If for each root \ of x4 and there are as many independent \-eigenvectors in CL, as
repeated factors of x — X\ in x 4(x), then A is diagonalizable over C.

(c), and the same result (c¢’) for complex matrices, were proven in Corollary 45.
(d), and it complex version (d’), will be proven in Corollary 52.

So a square matrix can fail to be diagonalizable using a real invertible matrix P when

e not all the roots of x 4(z) are real — counting multiplicities and including complex roots,
X 4(x) has n roots. However we will see (Proposition 51) that there are at most as many
independent \-eigenvectors as repetitions of A as a root. So if some roots are not real
we cannot hope to find n independent real eigenvectors. This particular problem can be
circumvented by seeking an invertible complex matrix P instead.

e some (real or complex) root A of x4(x) has fewer independent A-eigenvectors (in RZ or

1) than there are factors of x — X in x 4(z).

The latter problem cannot be circumvented, however this latter possibility is reassuringly un-
likely. If a matrix’s entries contain experimental data or randomly selected entries — rather
than being a contrived exercise — then x4 (z) will almost certainly have distinct complex roots
and so A will be diagonalizable using a complex invertible matrix P.

Definition 50 Let A be an n x n matriz with eigenvalue .

(a) The algebraic multiplicity of \ is the number of factors of x — X in the characteristic
polynomial x 4().

(b) The geometric multiplicity of \ is the maximum number of linearly independent \-
eigenvectors. This equals the dimension of the A-eigenspace.

Proposition 51 The geometric multiplicity of an eigenvalue is less than or equal to its alge-
braic multiplicity.
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Proof. Let g and a respectively denote the geometric and algebraic multiplicities of an eigen-
value A of an n x n matrix A. There are then ¢g independent A-eigenvectors vy, vy, ..., v, which
we can extend these vectors to n independent vectors vq,...,v,. If we put v{,...,v, as the
columns of a matrix P then, arguing as in Theorem 40, we have

M, B
puar= (4 8)
where B is a g X (n— g) matrix and C is (n— g) X (n — g). By the product rule for determinants
we have

Xalx) = det(zl, — A)
= det(P(zl, — P 'AP)P™)
= det(zl, — P"'AP)
r— N1, —B
- det<( 0 a:]n_g—0>
= (z=A)xc(@).

So there are at least ¢ factors of x — A\ in x 4(z) and hence ¢ > ¢. m

Corollary 52 Let A be a square matriz with all the roots of x4 being real. Then A is di-
agonalizable if and only if, for each eigenvalue, its geometric multiplicity equals its algebraic
multiplicity.

Proof. Let the distinct eigenvalues of A be \q,..., \;, with geometric multiplicities g1, ..., g
and algebraic multiplicities aq, ..., a;. By the previous proposition
g+t g<a+--+ap=degxy =n, (2.4)

the equalities following as all the roots of y, are real. We can find g; linearly independent
\;i-eigenvectors VY'), .. Vgl for each ¢. If g; = a; for each ¢ then we have n eigenvectors in
all, but if g; < a; for any i then g; + -+ + gr < n by (2.4), so we will not be able to find n
independent eigenvectors and no eigenbasis exists. It remains to show that if g; = a; for each ¢

then these n eigenvectors are indeed independent. Say that
k G
(i), () _
DD vy =
i=1 j=1

for some scalars a . We can rewrite this as

k

gi
Z w; =0, where w; = Z ay)vj(»l).
j=1

i=1

As the dlstlnct elgenspaces form a direct sum it follows that w; = 0 for each i; then, as the
vectors v1 - vgl are independent, each ag-l) = 0 for each 7 and j. Hence these n vectors are
indeed 1ndependent and so form an eigenbasis. m
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If we recall the matrices A, B, C, D from Example 43, we can now see that A meets criterion
(c) and so is diagonalizable; B meets criterion (b) and so is not diagonalizable over R but
does meet criterion (c)’ and is diagonalizable over C; matrix C' meets criterion (d) and so is
diagonalizable over R; matrix D fails criteria (c) and (d) and so is not diagonalizable over
R, specifically because the eigenvalue A = 6 has a greater algebraic multiplicity of 2 than its
geometric multiplicity of 1. This problem remains true when using complex numbers and so D
is also not diagonalizable over C as D fails (c¢’) and (d).

Remark 53 (Diagonalizability over a general field) We can decide on the diagonalizabil-
ity of a matrixz over a general field by following the same procedures as above. Firstly all the
roots of the characteristic polynomial need to be in the field, and then for each eigenvalue the
algebraic multiplicity needs to equal the geometric multiplicity. For example the matriz

1 -1
s=(1 3
has characteristic polynomial (x —1)* + 1 = 22 — 2z + 2.
e Quer C this is diagonalizable as B has distinct roots 1 + i.

e The same would be true over the field Q [i] = {q1 + ¢ | ¢1,¢2 € Q}.

e Qver R and Q the characteristic polynomial has no roots and so B is not diagonalizable.

o Over Zsy the characteristic polynomial equals x> but the 0-eigenspace, <(1, 1)T>, 15 1-
dimensional. As go =1 < 2 = ag then B is not diagonalizable.

e Quer Zs the characteristic polynomials has no roots as —1 = 2 has no square root and so
B is not diagonalizable.

e Over Zs we note —1 = 4 = 2% and so 2* —2x + 2 = (x + 1) (x — 3). As B has distinct

etgenvalues it is diagonalizable.

Example 54 Show that the matriz A below is diagonalizable and find A™ where n is a positive
integer.

2 2 =2
A= 1 3 -1
-1 1 1

Solution. Adding column 2 of 21 — A to column 1, we can see that y ,(z) equals

r—2 =2 2 r—4 =2 2
-1 -3 1 = |z—4 -3 1
1 -1 z-1 0 -1 z-1
r—4 =2 2

= 0 z—-1 -1 |=(x—4)(z—2)z.
0 -1 z-1
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Hence the eigenvalues are A = 0,2,4. That they are distinct implies immediately that A is
diagonalizable. Note

-2 =2 2 1
A=0: ker [ -1 -3 1 :< 0 >;
1 -1 -1 1
0 -2 2 0
A=2: ker | =1 -1 1 :< 1 >;
1 -1 1 1
2 =2 2 1
A =4 ker [ -1 1 1 :< 1 >
1 -1 3 0

So three independent eigenvectors are (1,0,1)%, (0,1,1)%, (1,1,0)%. If we set

1

1
P = 1 sothat Pl1==-[ -1 1 1 |,
0 2

===
e =)

then P~1AP = diag(0,2,4) and P~'A"P = (P7'AP)" = diag(0,2",4"). Finally A" equals

1 01 0 0 O 1 1 -1 1
011 0 2" 0 -1 -1 1 1
110/\oo 4 /21 1 1
22n71 22n71 _22n71
— 22n—1 _ 2n—1 2n—1 + 22n—1 2n—1 _ 22n—1
_2n—1 2n—1 2n—1
|
Example 55 Let
6 1 2
A= 0 7 2
0 -2 2

(a) Show that A has two eigenvalues Ay and \o. Is A diagonalizable?
(b) Show further that A*> = (A + A2)A — M A\ol. Are there scalars ag, ay, . .., a,, for some n,
such that

an A"+ ap 1 A"+ ol = diag(1,2,3) 2

Solution. (a) We have
r—6 -1 -2

xal@)=] 0 2-7 =2 |=(@-6){(z—-"7)(r—2)+4}=(x—6)*(x—3).
0 2 x-2
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As one of the eigenvalues is repeated then we cannot immediately decide on A’s diagonalizability.
Investigating the repeated eigenvalue we see

0 -1 -2 1 0
A = 6: ker [ 0 —1 —2 :< o], 2 >
0 2 4 0 —1

and this is sufficient to confirm that A is diagonalizable. Further

A% — (A + ) A+ Aol

= A2 —9A+ 18]
36 9 18 6 1 2 18 0 0

= | 0 4 18| -9l 0 7 2|+ 0o 18 0 |=0.
0 —18 0 0 —2 2 0 0 18

So A? = 9A — 181 can be written as a linear combination of A and I, and likewise
A? =9A% — 184 = 81A — 1801

can also be written as such a linear combination. More generally (say using a proof by induction)
we find that any polynomial in A can be written as a linear combination of A and /. However
if diag(1,2,3) = aA + SI for some «, 5 then, just looking at the diagonal entries, we’d have

6+ (0 =1, Ta+ 3 =2, 2004 = 3,

and, with a quick check, we see this system is inconsistent. Hence diag(1,2,3) cannot be
expressed as a polynomial in A and no such scalars ag, a, ..., a, exist. &

Example 56 Determine x, and vy, where xo =1, yg = 0 and
Tpn+1 = Tn — Yn and Yn+1 = Tp + Yn fO’f’ n 2 0.

Solution. We can rewrite the two recurrence relations as a single recurrence relation involving

a vector, namely
.\ (1 -1 o\ (1 =1\" [ x
Yn 11 Yn—1 11 Yo )

From Example 47 we have

(1 -1 (141 0 (i1
P (1 1)P—( 0 1—2’) where P_(l z)

So
(1) - ()
GO s
_ %( (1—1—1)71—_1—(1—1)“ z(l—z.)n—z(l_—i-'z?l )
i(l—d)"—i(l4+09)™ (14" +(1—19)

1 2Re(1+4)" 2Im(1+414)"
- ( (1+14)" 2Re(1+z')”)
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By De Moivre’s theorem, and noting 1 + i = /2cis (7/4), we have
z, \ [ Re(1+4)" Im(1+14)" 1\ [ Re(l+d)™\ _ on/2 €08 (nm/4)
yn ) \Im(1+4)" Re(l+1)" 0) \Im(1+9" ) sin (nw/4) )

We briefly return to our first question from the start of the section: why might diago-
nalizability be a useful definition? We have seen that it can be computationally helpful, but
representing a linear map by a diagonal matrix also helps us appreciate the effect of the linear
map.

For each choice of basis of a finite dimensional vector space, a linear map is represented
by a certain matrix. So a sensible question is: is there a preferential basis to best describe
the linear map? Certainly if we can produce a diagonal matrix representative this is optimal.
But we recall that some matrices are not diagonalizable; this, in turn, invites the more refined
question: into what preferred forms might we be able to change those matrices with a sensible
choice of co-ordinates?

Every square complex matrix is similar to a triangular matrix. In fact, we can do much
better that this with the Jordan normal form being a very descriptive canonical form for
complex matrices. Working over other fields the best we can do is the Frobenius normal form
or the rational canonical form. These are results covered in the second year.
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3. THE SPECTRAL THEOREM

In the previous two chapters we have solely been interested in making an invertible change of
variable. That is, the change of basis matrix P need only be invertible. When we make an
invertible change of variable, algebraic properties such as

e determinant, trace, eigenvalues, dimension, rank, invertibility
are all preserved. However geometric properties are not typically preserved such as:

e length, angle, area and volume, scalar product, normal forms of curves and surfaces.
For example the curve with equation

22 P =1,
under the invertible change of variable
X =2x, Y = 3y,
takes on the equation
X% y?

Sor =
R

What was a circle with area m has become an ellipse with area 6.
Should we wish to make changes of variable which preserve geometric properties then we
need to make an orthogonal change of variable.

Definition 57 An n x n matriz P is orthogonal if P~! = PT.
This is equivalent to the columns (or rows) of P being unit length and mutually perpen-

dicular. That is to say, the columns (or rows) of P form an orthonormal basis of R, (or
R™).

Proposition 58 The orthogonal matrices are precisely the matrices which preserve the scalar
product. That s

Px. -Py=x-y foralxyecR_, = P s orthogonal.
Proof. Let P be an orthogonal matrix. Then

Px-Py=(Px) Py =x"P"Py =x"y =x-y.

Conversely assume Px - Py =x -y for all x,y € R? . If we set x = e} and y = e]T then
[P"P],. = e:P"Pe] = Pe] - Pe] = e -ef =eje] =d;=|I];.
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As this is true for each i, j then PTP = I and so P is orthogonal. m

A first question then is: what matrices can be diagonalized by an orthogonal change of
variables? Say that
P'AP=D

where D is diagonal and P is orthogonal. Then A = PDP~! = PDPT, so
AT = (PDPT)" = PTTDTPT = PDPT = A.

Thus if a matrix A is orthogonally diagonalizable it is necessarily symmetric. The converse
happens to be true and is known as the spectral theorem:

e Spectral Theorem: Let A be an n X n symmetric matrix. Then the roots of x, are
real and A has an eigenbasis consisting of mutually perpendicular unit vectors. That is,
A has an orthonormal eigenbasis.

We prove a first result towards the proof. Recall that eigenvectors associated with distinct
eigenvalues are independent — the corresponding result for symmetric matrices shows that
they’re perpendicular.

Proposition 59 Let A be a real n X n symmetric matriz. If v and w are eigenvectors of A
with associated eigenvalues A and p, where A # p, then v - w = 0.

Proof. We have that Av = A\v and Aw = yw where A # . Then, as A is symmetric, we have
Weow=MWw=(Av)Tw=UAv)w=vIATw =viAw = v yw = puv - w.
AsA# pthenv-w=0. =

Example 60 Let

=N

(1)

(a) Find an orthogonal matriz P such that PT AP is diagonal.
(b) Show that the curve x* + xy + y*> = 1 is an ellipse, and find its area. Sketch the curve.

Solution. (a) Note

When
1 1l 1
A= —: ker(2 2>:< >;
2 5 3 ~1
A= = ker( 22 = )
2 5 =3 1

Note that the %—eigenvectors and %—eigenvectors are perpendicular to one another — this was

bound to be the case by the previous proposition. The eigenvectors (1, —1)T and (1, l)T cannot
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be the columns of an orthogonal matrix, but if we normalize them to unit vectors then they
form the columns of an orthogonal matrix. Thus we set

= 5)

noting this matrix rotates the plane by 7/4 clockwise about the origin. We then have
20 )G ) s
1 : 1)\ -11
7))
3 -1 1
1)-(5 1)
3 0 2

(b) The equation 2 + xy 4+ y* = 1 can be rewritten as

(1))
()-r(3)

the equation 1 = (zy) A (zy)" becomes

PTAP =

N | = Ml)_‘%‘

TN TN

O~ il 2 N
_ =

N [= =t
— D=

Making the change of variable

1
1=(XY)PTAP(XY)" = 5X2 + gw.
This is the equation of an ellipse with semi-axes of length a = v/2 and b = /2 /3 and with area

Tab = —.

V3

We can say the curve is an ellipse, and calculate its area, as the change of variable is orthogonal.
The XY-axes are given by

X-axis or Y = 0 is in the direction of P (1, O)T, so is the line y = x;
Y-axis or X = 0 is in the direction of P (0,1)", so is the line = + y = 0.
A sketch of the ellipse, with the XY -axes labelled, is given in Figure 1 below.

Figure 1: 22 +ay +y? =1
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When an n X n matrix has distinct eigenvalues then we can find n eigenvectors which are
independent and so form an eigenbasis; we can create an invertible matrix P with those eigen-
vectors as the columns of P. Similarly when a symmetric n x n matrix has distinct eigenvalues
then we can find n eigenvectors which are orthogonal (and thus independent) and so form an
eigenbasis; the matrix P with those eigenvectors as its columns will not in general be orthogo-
nal, but if we normalize the eigenvectors — scale them to unit length — then the matrix P will be
orthogonal as its columns will be mutually perpendicular and unit length (i.e. orthonormal).

When an n x n matrix has repeated eigenvalues then there may not be any eigenbasis.
This cannot happen when a symmetric square matrix has repeated eigenvalues, but this result
is reasonably sophisticated. In particular, we will need to prove the following for symmetric
matrices:

e The roots of the characteristic polynomial are real.
e The direct sum of the eigenspaces is the entire space.

e Each eigenspace has an orthonormal basis.
We begin by demonstrating the first result
Proposition 61 Let A be a real n X n symmetric matriz. The roots of x 4(x) are real.

Proof. Let A be a (potentially complex) root of x 4. Then by (an appropriate complex version
of) Proposition 41(a), there is a non-zero complex vector v in Cf,; such that Av = Av. As the
entries of A are real, when we conjugate this equation we obtain AV = A\v. As A = AT, and

by the product rule for transposes, we see
Wy =)y =(A4%)Tv =vTATv =vTAv = v v = \W'v.

T

Now for any non-zero complex vector v = (vy,vs,...,v,)" we have

VTV:V-v:v_lvl+---+v_nvn=|U1|2+"'+|Un|2>0-

As (A= MN)¥Tv =0 then A = X and so A is real. m

We now move on to the third bullet point: we will demonstrate that any subspace of R"
has an orthonormal basis. This result then applies to eigenspaces as they are subspaces. Our
first result is to show how an orthonormal set can be constructed from a linearly independent
one.

Say that vq,vs,..., Vv, is an independent set in R™; we shall construct an orthonormal basis
W1, Wa, ..., W such that
(Vi,Va, ..., V;) = (W1, Wa,..., W;) for 1 <i<k.

There are, in fact, only limited ways of doing this. As (w1) = (v;) then w; is a scalar multiple
of vi. But as wy is a unit vector then wy; = £v;/|vy]. So there are only two choices for w;
and it seems most natural to take wy = v/ |vy| (rather than needlessly introducing a negative
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sign). With this choice of w; we then need to find a unit vector wy perpendicular to w; and
such that (wy, we) = (vq,vy) . In particular, we have

Vo = awy + Sws for some scalars «, (.
We require wy to be perpendicular to w; and so o = vy - wy as wy - w; = 1. Note that
y2 = Bwy = vy — (Vo - W1) W

is the component of vy perpendicular to vi, and y, # 0 as w; is independent of vo. We then
have wy = ty5/ |y2|. Again we have two choices of ws but again there is no particular reason
to choose the negative option.

Vo

A

Y2

Figure 2: GSOP example

The diagram above hopefully captures the geometric nature of this process. v; spans a line and
so there are only two unit vectors parallel to it with w; = v/ |vy| being a more natural choice
than its negative. (vi,vs) is a plane divided into two half-planes by the line (v;) and there
are two choices of unit vector in this plane which are perpendicular to the line. We choose wy
to be that unit vector pointing into the same half-plane as vy does. Continuing, (v, vy, v3) is
a three-dimensional space divided it into two half-spaces by the plane (vi,vy). There are two
choices of unit vector in this space which are perpendicular to the plane. We choose w3 to be
that unit vector pointing into the same half-space as vs does. This process is known as the
Gram-Schmidt orthogonalization process (GSOP),! with the rigorous details appearing below.

Named after the Danish mathematician Jorgen Pedersen Gram (1850-1916) and the German mathematician
Erhard Schmidt (1876-1959). The orthogonalization process was employed by Gram in a paper of 1883 and
by Schmidt, with acknowledgements to Gram, in a 1907 paper, but in fact the process had also been used by
Laplace as early as 1812.

THE SPECTRAL THEOREM 36



Theorem 62 (Gram-Schmidt Orthogonalization Process (GSOP)) Let vy,...,vy be
independent vectors in RZ | (or R"™). Then there are orthonormal vectors w, ..., wy such that,

for each 1 < i < k, we have
<W17”'7Wi> = <V17"'7Vi>‘ (31)

Proof. We will prove this by induction on ¢. The result is seen to be true for ¢ = 1 by taking
wy = vi/|vy|. Suppose now that 1 < I < k and that we have so far produced orthonormal
vectors wy, ..., wy such that (3.1) is true for 1 < i < I. We then set

I
Yi+1 = Vit1 — Z(VI—H F W)W

j=1
Note that, for 1 <7 < 1,
I
Y41 Wi = Vi - W, — Z(VI—H “W;)0i = Vg1 Wi — Vg o Wy = 0. (3.2)
j=1
So yr.1 is perpendicular to each of wy, ..., w;. Further y;,; is non-zero, for if y;,; = 0 then
I
Vigl = Z(V}+1 cwi)w; dsin (wy,..., W) = (V1,..., V)
j=1
which contradicts the linear independence of vy,..., vy, vy, If we set wyiy =yri1/ |yreal, it
follows from (3.2) that wy, ..., w;,; form an orthonormal set. Further
<W1, e >W1+1> = <W1, sy WP, YI+1> = (Wl, sy W, VI+1> = (Vl, e >VIaVI+1>

and the proof follows by induction. m

n

n.) has an orthonormal basis.

Corollary 63 Every subspace of R" (or R

Proof. If U is a subspace of R" then it has a basis vy, ..., v,. By applying the GSOP process,
an orthonormal set wq, ..., w, can be constructed from them which is a basis for U as

(Wi, ooy Wy) = (Vi ..o, vg) = UL
|

Corollary 64 An orthonormal set can be extended to an orthonormal basis.

Proof. Let wy,...,w; be an orthonormal set in R™. In particular it is linearly independent
and so may be extended to a basis wy,..., Wg, Vi1, ..., Vv, for R”. The GSOP can then be
applied to construct an orthonormal basis x1,...,Xx, from this basis. The nature of the GSOP

means that x; = w; for 1 < ¢ < k and so our orthonormal basis is an extension of the original
orthonormal set. m
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We now prove the earlier second bullet point, that the eigenspaces of a symmetric matrix
A form a direct sum for the entire space. Eigenvectors from different eigenspaces are auto-
matically orthogonal to one another (Proposition 59) and via GSOP we now know there exists
an orthonormal basis for each eigenspace. We will show the union of the orthonormal bases
for the eigenspaces then makes an orthonormal eigenbasis. All this is equivalent to showing
that there is an orthogonal matrix P such that PT AP is diagonal — we create P by having the
orthonormal eigenbasis as its columns.

Theorem 65 (Spectral Theorem?) Let A be a real symmetric n xn matriz. Then there exists
an orthogonal n x n matriz P such that PT AP is diagonal.

Proof. We shall prove the result by strong induction on n. When n = 1 there is nothing to
prove as all 1 X 1 matrices are diagonal and so we can simply take P = I;.

Suppose now that the result holds for r x r real symmetric matrices where 1 < r < n. By
the fundamental theorem of algebra, the characteristic polynomial x 4 has a root A in C, which
by Proposition 61 we in fact know to be real. Let X denote the A-eigenspace, that is

X={veR}, |Av=\v}.

col

So X = ker(A— \I) is a non-zero subspace, as \ is an eigenvalue, and has an orthonormal basis

Vi,...,Vy. Extend this to an orthonormal basis vy, ..., v, for R?, and set P = (vq| ... | vy),
which is orthogonal.
Now PTAP is the matrix of L4 with respect to the basis vq,...,v,. For 1 < i < m we

have Av; = \v; and therefore the ith column of PT AP is \e!. Further PT AP is symmetric as
(PTAP)" = PTATPTT = PTAP,
by the product rule for transposes and as A is symmetric. Hence
PTAP = diag (\l,,, M),

where M is a symmetric (n —m) X (n —m) matrix. By our inductive hypothesis there is an
orthogonal (n—m) x (n—m) matrix @ such that Q7 M Q is diagonal. If we set R = diag (I,,, Q)
then R is orthogonal, PR is orthogonal and

(PR)"A(PR) = R"PTAPR
= diag (I,,, Q") diag (\,,,, M) diag (In, Q)
= diag (An, Q" MQ)

is diagonal. This concludes the proof by induction. =

2 Appreciation of this result, at least in two variables, dates back to Descartes and Fermat. But the equivalent
general result was first proven by Cauchy in 1829, though independently of the language of matrices, which were
yet to be invented. Rather Cauchy’s result was in terms of quadratic forms — a quadratic form in two variables
is an expression of the form ax? + bxy + cy?.
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Corollary 66 Let A be a symmetric n X n real matriz. Then there exists an invertible matrix
S such that
STAS = dlag (Ik, —Il, Om) s

where k+1+m =mn. Then k + 1 is the rank of A and k — [ is called the signature of A.
Proof. By the spectral theorem there is an orthogonal matrix P such that
PTAP = diag (Dy, —Dy,0,,)

where Dy and D; are diagonal matrices with positive entries. (The columns of P can be
rearranged in the order of positive-eigenvalue eigenvectors, then negative, then zero.) There
are natural, invertible square roots v/ Dj, and /D, for these two matrices and then set

Q=ding ((VDr) " (VD) 1)

Setting S = QP yields the required result. m

-1

Remark 67 (Off syllabus) Sylvester’s law of inertia, proved in 1852, shows that the rank
and signature of A are independent of the choice of S.

Corollary 68 A real symmetric matrixz A is said to be:
e positive definite if x' Ax > 0 for all x # 0;
e positive semi-definite if xT Ax > 0 for all x;
e negative definite if x' Ax < 0 for all x # 0;
e negative semi-definite if x' Ax <0 for all x;
e indefinite otherwise.

From the spectral theorem we see that these correspond respectively to the eigenvalues of A
being (i) all positive, (ii) all non-negative, (iii) all negative, (iv) all non-positive, (v) positive,
negative and possibly zero.

Remark 69 (Hermitian matrices) There is a version of the spectral theorem over the com-
plex numbers. The standard inner product on C™ is given by

(z,W) =2-W = 211 + -+ + 2,Wy,.

So the equivalent of the orthogonal matrices are the unitary matrices which satisfy U~! = T
These are precisely the matrices that preserve the complex inner product. And the equivalent of
symmetric matrices are the hermitian matrices® which satisfy M = M. The complex version
of the spectral theorem then states that, for any hermitian matriz M there exists a unitary matrix
U such that U MU is diagonal with real entries. Hermitian matrices are particularly important
. quantum theory as they represent observables such as position and momentum. Heisenberg’s
uncertainty principle is a consequence of two hermitian matrices not commuting.

3 After the French mathematician, Charles Hermite (1822-1901).
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Remark 70 We saw earlier that the theory of diagonalization applies equally well over any
field, mainly because it is part of theory of vector spaces and linear maps. By contrast the
spectral theorem is best set in the context of inner product spaces and so there is a spectral
theorem only for symmetric matrices over R and for Hermitian matrices over C, these being
the linear maps which respect the inner product. There is a more detailed comment on this
matter at the end of the chapter.

Example 71 For the matriz A below, find orthogonal P such that PT AP is diagonal.

A:

— == O

1
0
1
1

O~ =

1
1
0
1

Solution. The characteristic polynomial of A is x4(z) = (z + 1)3(z — 3). A unit length 3-
eigenvector is vi = (1,1,1, 1)T /2 and the —1-eigenspace is x1 + x9 + 23 + 4 = 0. So a basis
for the —1-eigenspace is

(1,-1,0,00",  (0,1,-1,00",  (0,0,1,=1)"

However to find the last three columns of P, we need an orthonormal basis for the —1-
eigenspace. Applying the GSOP to the above three vectors, we arrive at

vo=(1,-1,0,00" /v2,  vi=(1,1,-2,00" /v6,  vi=(1,1,1,-3)" /V12.

Such a required matrix is then P = (vy |va|vs|vy). ®

Algorithm 72 (Orthogonal Diagonalization of a Symmetric Matrix) Let M be a sym-
metric matrix. The spectral theorem shows that M is diagonalizable and so has an eigenbasis.
Setting an eigenbasis as the columns of a matrixz P will yield an invertible matriz P such that
P~YMP is diagonal — in general though this P will not be orthogonal.

If v is an eigenvector of M whose eigenvalue is not repeated, then we replace it with v/ |v|.
This new eigenvector is of unit length and is necessarily orthogonal to other eigenvectors with
different eigenvalues (Proposition 59). If none of the eigenvalues is repeated, this is all we need
do to the eigenbasis to produce an orthonormal eigenbasis.

If X is a repeated eigenvalue then we can find a basis for the A-eigenspace. Applying the
GSOP to this basis produces an orthonormal basis for the A-eigenspace. Again these eigenvectors
are orthogonal to all eigenvectors with different eigenvalues. We can see now that the previous
non-repeated case is simply a special case of the repeated case: the Gram-Schmidt process for a
single vector involving nothing other than normalizing it.

Once the given basis for each eigenspace has had the GSOP applied to it, the entire eigenbasis
has now been made orthonormal. We may put this orthonormal eigenbasis as the columns of a
matriz P which will be orthogonal and such that P~*MP = PTMP is diagonal.

Example 73 Find a 2 x 2 real symmetric matriz M such that M?* = A where

(5 %)

THE SPECTRAL THEOREM 40



Solution. The characteristic polynomial of A is
det(z] —A) = (z —3)(x —5) — (—V3)? =22 -8z + 12 = (z — 2) (x — 6).

Determining the eigenvectors we see

e () (V) e 2 (F9)

veo (L) ((B)) e ()

So, with P = (v | v3) , we have PT AP = diag(2, 6), which has a clear square root of diag(v/2, v/6). Thus

we might choose
: v 1(3/2+V6 3v2—-6
M:Pdlag<\/§,\/6>P _Z<3f—\/6 \/§+3¢6>'
[

Below are some important examples of symmetric matrices across mathematics and a de-
scription of their connection with quadratic forms.

Example 74 (Gram matrices) The Gram matriz M for an inner product ( , ) on a vector
space with basis {v1,...,v,} has (i,j)th entry
[M]ij = (vi,v)) -

This is a symmetric, positive definite matrixz — because of the properties of inner products — and
conversely any symmetric, positive definite matrixz is the Gram matriz of an inner product.

Example 75 (Inertia matriz in dynamics) A rigid body, rotating about a fixed point O
with angular velocity w has kinetic energy

T = leIOw,
2
where Iy is the inertia matrix
A —-D —-F
Iy=| -D B -—-F |,
-F —-F C

where

A = ///p(y2+z2)d‘/, B:///p(a:2—|—z2)dv, C:///p(:c2+y2)dv
D = ///pyde, E:///pxzdv, F:///pxydv,

and where p denotes density and R is the region that the rigid body occupies. For a spinning
top, symmetrical about its axis with O on the axis, the eigenvectors of Iy are along the axis with
two eigenvectors orthogonal to that. Wrt this basis 1y = diag(A, A, C), but the spectral theorem
applies to any rigid body, however irreqular the distribution of matter.
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Example 76 (Covariance and correlation matrices in probability and statistics) The
covariance matriz 3 is a symmetric, positive semi-definite matriz giving the covariance between
each pair of elements of a random vector. Given a random vector X = (Xj,... ,Xn)T the
covariance matriz X is defined by

X];; = cov [Xi, Xj] = B[(X; — B(X3))(Y; — B(X;))]
or equally
¥ = BXX"] - B(X)EX)T.

It follows from the spectral theorem that every symmetric positive semi-definite matriz is a
covariance matriz. The matriz is important in the theory of principal component analysis

(PCA).

The correlation matrixz C' is similarly defined with
cov [X;, Xj]
s = S XKoo X))
o(Xi)o(X;)

C' is a symmetric, positive semi-definite matrixz with all its diagonal entries equalling 1.

One of the most important applications of the spectral theorem is the classification of
quadratic forms.

Definition 77 A quadratic form in n variables xq,xs,...,x, is a polynomial where each
term has degree two. That is, it can be written as a sum

E CLZ'j.'L’Z'JZ'j
i<y

where the a;; are scalars. Thus a quadratic form in two variables x,y is ax* + bxy + cy* where
a,b,c are scalars.
The following is a co-ordinate-free way of defining quadratic forms. A quadratic form on a

vector space V' equals
B(v,v)

where B: 'V xV — R is a bilinear map.

The connection with symmetric matrices is that we can write

E Qi XiT5 = XTAX

i<

where xT = (21,79, ...,2,) and A is the symmetric matrix
ai; 1=]
1 . .
[Al;; = 30 i<
§aﬂ- 1>

Thus, for example,

az’® + bry + cy? = (v y) (

Nl Q
o Nlo
N——
VRS
< 8
N——
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Definition 78 When the spectral theorem is applied to quadratic forms it is often referred to
as the principal axis theorem.

There are many important examples of quadratic forms, some of which you may have met
already:

Example 79 (Conics) The general degree two equation in two variables has the form
Az + Bry+Cy* +Dx+ Ey+ F =0

where A, ..., F are real scalars and A, B,C are not all zero. This equation can be put into
normal forms as follows. Firstly we can rewrite the equation as

(x,y)M(§)+(D,E)<§)+F:O, where M:(Bf}2 BC/,2>. (3.3)

Note that M is symmetric. By the spectral theorem we know that there is a 2 X 2 orthogonal
matrix P which will diagonalize M. If we set

(3)-r(v)

(X,Y)PTMP(if)Jr(D,E)P()}f)JrF:O,

then (3.3) becomes

As P is orthogonal then this change of variable will not change any geometric aspects: distances,
angles and areas remain unaltered. In these new variables X, Y, and with PTMP = diag(A, C)
and (D, E)P = (D, E), our equation now reads as

AX? 4+ CY?+ DX +EY +F =0.
We can now complete any squares to put this equation into normal form.

e FEllipses have normal form

? oy
e Hyperbolae have normal form
22

e Parabolae have normal form
y* = dax (a>0).
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Each ellipse, hyperbola, parabola can be uniquely put into one of the above forms by an
1sometry of the plane. The general degree two equation also leads to some degenerate cases such
as parallel lines, intersecting lines, repeated lines, points and the empty set.

y y
y=—bx/a y=bx/a
D' b D N ,
// - \\\\ \\\ D D
/// \\\ \\
_a F F
ai\ * - & x Fe—,f\'a - X
\\ // / :
\\\\ . / /
~ S ///// P //
—b -
Figure 3a — ellipse

-2

Figure 3c — parabola Figure 3d — degenerate case

Example 80 (Quadrics) The spectral theorem applies equally well to the general degree two
equation in three variables x,y, z. The normal forms for the non-degenerate cases are

e FEllipsoids have normal form

.',C2 ,y2 22

e Hyperboloids of one sheet have normal form

2 2 2
$_2+%_Z_2:1 (a=>b>0,¢>0).
a C

e Hyperboloids of two sheets have normal form
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e FElliptic paraboloids have normal form

e Hyperbolic paraboloids have normal form

2 2

%+%—z:0 (a=b>0).
2 2
Yy

E—E—Z: (CL,b>O)

FEach of these non-degenerate cases be uniquely put into one of the above forms by an

1sometry of the space.

The general degree two equation in three variables also leads to

some degenerate cases such as parallel planes, intersecting planes, repeated planes, points,
cones, elliptic parabolic and hyperbolic cylinders and the empty set.

Fig. 4a: ellipsoid

a? oy 22
a—2—|—b—2—|—c—2—1

Fig. 4b: elliptic paraboloid
z = a’z? + V?y?

Fig. 4c: hyperbolic paraboloid
2 = a2 — by

Fig. 4d: 2 sheets hyperboloid

Figure 4e: 1 sheet hyperboloid

Fig. 4f: double cone

2 2 2
X 2
vz

a? b2 c

fE2 2 22
2t -G=1

2 _ a2 2
z _?_I_yb?

Example 81 Show that the equation 13x* + 13y* + 1022 + 4yz + 4zx + S8xy = 1 defines an

ellipsoid and find its volume.
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Solution. Let

13 4 2
A= 4 13 2
2 2 10

so that
xT Ax = 132 + 13y* + 102% + 4yz + 4zx + Szy.

Note that x 4(x) equals

r—13 4 —2 r—9 9-2 0 1 -1 0

4 r-13 -2 |=| -4 2-13 -2 |=(x-9)| 4 r—-13 -2

—2 -2 2-10 -2 =2 2-10 -2 -2 z-10
1 0 0

=(z-9)| -4 z2-17 -2 |=(z—-9)(2* — 272+ 162) = (v — 9)(x — 18)(z — 9).

-2 -4 x-10
This means that there is an orthogonal matrix P such that
PTAP = diag(9,9,18).
If we set x = PX then we see our quadric now has equation
9X2 +9Y? +1822 = XTPTAPX =1,
which is an ellipsoid. Further we have

b—1 c——1
) 3> 3\/§

and so, noting the orthogonal change of variable won’t change the ellipsoid’s volume, that

volume equals
oLyl 1 _ 2
3737 3y2 81

4m
3
|

Example 82 (a) Find an orthogonal matriz P such that PT AP is diagonal where

1 -1 -1
A= -1 1 -1
-1 -1 1
(b) Consider the real-valued functions f and g defined on R? by
f(x) = z* + y2 + 22— 2uy — 2xz — 2yz, g(x) = —y2 +9222 4 2\/593%

where x = (z, v, z)T. Is there an invertible matriz Q) such that f(Qx) = g(x)? Is there such an
orthogonal matriz Q¢
(c) Sketch the surface f(x) = 1.
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Solution. (a) The characteristic polynomial x 4(z) equals (z + 1) (z — 2)? so that the eigen-
values are —1,2,2. The —1-eigenvectors are multiples of (1,1, 1)T and the 2-eigenspace is the
plane = + y + z = 0. So an orthonormal eigenbasis for A is

(1,1,1)" (1,—1,0)" (1,1,-2)"
V3 V2 o V6
from which we can form the required

V3 o1
-3 1
0 —2

P=

w

5)-
S

(b) We then have that
f(Px) = (Px)TA(Px) = x"PTAPx = —a® + 2y + 222,
Now we similarly have

V2

0 0 T
g(X): (l’,y,Z) \/§ _1 0 y
0 0 2 z

and this matrix (call it B) has characteristic polynomial xz(z) = (z +2) (z — 1) (x — 2) . This
means that there is an orthogonal matrix R such that

g(Rx) = —22° + 1> + 22°.

We can then see that the (invertible but not orthogonal) map S which sends (z,y,2)" to

(2/v2,V2y, 2)T satisfies
g(RSx) = —2(z/V2)? = (V2y)? + 222 = —22 + 2% + 222

That A and B have the same number of eigenvalues of each sign means that there is an
invertible change of variables connecting the functions f and g, but as A’s and B’s eigenvalues
are not identical there is no orthogonal change of variable connecting f and g.

(c¢) The quadric surface f(x) = 1 is a hyperboloid of one sheet, as in Figure 4e, with the
new x-axis being the axis of the hyperboloid. m

Example 83 (Hessian matrix) Let f(x,y) be a function of two variables with partial deriv-
atiwes of all orders. Taylor’s theorem in two variables states

fla+d,b+¢) = fla,b)+(f.(a,b)d+ f,(a,b)e) +% (fru(@,b)8* + 2f4y (a,b) 0 + fyy(a,b)e?) + Ry

where Rs is a remainder term that is at least total order three in 61 and d5. A critical point
or stationary point (a,b) is one where

fz(a,b) =0 = f,(a,b).
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In geometric terms this would mean that the tangent plane to the surface z = f (z,y) is hori-
zontal. At a critical point, we then have

fla+0,b+¢)= f(a,b) + % (fou(a,0)8* + 2[4y (a,b) b + fyy(a,b)e?) + Rs

and so the local behaviour of f near a critical point is determined by the quadratic form

fmz52 +2fxy5€+fyy52 = (5 8) ( ;z: §iz ) ( g ) .

Jay  Jyy
is known as the Hessian'. As H is symmetric, we know that we can make an orthogonal
change of variables (0,¢) — (A, E) so that the above quadratic form becomes

The symmetric matriz

AA? + B2
where \, i are the eigenvalues of H. We then see that:

e there is a (local) minimum at (a,b) if A\, u > 0;
e there is a (local) maximum at (a,b) if A\, p < 0;

e there is a saddle point at (a,b) if A\, u have different signs.

When H 1is singular then the critical point is said to be degenerate, and its classification depends
on the cubic terms (or higher) in Taylor’s theorem.

Example 84 (Norms) Given an inner product space V', then the norm squared HUH2 = (v,v)
is a positive definite quadratic form on' V. For a smooth parameterized surface r (s,t) in R? then
the tangent space T, at a point p equals the span of rs and ry. The restriction of HUH2 to T, is

the quadratic form
(, 8) = |lars + fri||* = Ea® + 2Faf + G5?
where

E=r,-rg, F=r, 1, G=r 1

and s known as the first fundamental form.

We conclude this chapter with some comments charting the direction of spectral theory into
the second year linear algebra and beyond into third year functional analysis. You should
consider all these remarks — and the subsequent epilogue — to be beyond the Prelims
syllabus but they may make interesting further reading to some.

4 After the German mathematician Ludwig Hesse (1811-1874).
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Remark 85 (Adjoints) As commented earlier, the spectral theorem is most naturally stated in
the context of inner product spaces; a more sophisticated version of the theorem appears in the
second year A0 Linear Algebra course. The version we have met states that a real symmetric
matriz (or complex Hermitian matriz) is diagonalizable via an orthogonal change of variable.

If we seek to extend this theorem to linear maps on vector spaces, our first problem is that
there is no well-defined notion of the ‘transpose of a linear map’ and so no notion of a symmetric
linear map. The determinant of a linear map T is well-defined precisely because the determinant
is the same for any matrix A representing T wrt a first basis and B representing T wrt a second
basis. This is because A = P~*BP, where P is the change of basis matriz, and so

1
det A = det (P’lBP) = et P det Bdet P = det B.
e

However if we wished to define the transpose TT of T as the linear map represented by AT wrt
the first basis and also the linear map represented by BT wrt the second basis, then in general
these are different linear maps because

AT £ p7iBTP,
This can be circumvented if we only consider orthogonal changes of variable P. In this case
A=P'BP = A"=P"B"P

So, should we only use orthonormal bases and orthogonal changes of variable, then we can
define the ‘transpose’ of a linear map. But this discussion takes place more naturally in an
inner product space and that ‘transpose’ is instead referred to as the adjoint of T written T™*.

Given a linear map T:V — V of a finite-dimensional inner product space V, its adjoint
T*:V — V is the unique linear map satisfying

(Tv,w) = (v, T*w) for all v,w e V.
This compares with the algebraic identity
Mv-w=v-Mw

for a square matriz M and co-ordinate vectors v, w.
If we choose an orthonormal basis vy, ...,v, for V, and let A and B respectively be the

matrices for T and T wrt this basis, then
[Al;; = (Tvj,vi) = (v, T"v;) = [B] ;.-

1] Jt

So the matrix for T* is that of the transpose of the matriz for T. The ‘symmetric’ linear maps
are then those satisfying T' = T™, the so-called self-adjoint linear maps which satisfy

(Tv,w) = (v, Tw) for allv,w e V.

The second year version of the spectral theorem states:
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e Spectral theorem for self-adjoint maps. Let T: V — V be a self-adjoint linear map
on a finite-dimensional inner product space. Then all the eigenvalues of T are real and
there is an orthonormal eigenbasis of V.

Example 86 (See Sheet 4, Exercise P3.) The nth Legendre polynomial P,(x) satisfies Legen-
dre’s equation
d?y dy
2 _
(1—x)@—2x£+n(n+l)y—0
where n is a natural number. This can be rewritten as
d

d
Ly=— 1 L=—|(1-2%)—|.
Yy n(n+ 1)y where e [( z?) d:c}

So P,(z) can be viewed as an —n(n + 1)-eigenvector of the differential operator L. Further it
can be shown that
(Pp(x), Pp(x)) =0 when n # m,

where the inner product { , ) is defined by

1
(r9) = | (o)
-1
so that the Legendre polynomials are in fact orthogonal eigenvectors; further still it is true that

<Lylay2> = <y1,Ly2) )

showing L to be self-adjoint.

Remark 87 (Spectral Theory — infinite-dimensional spaces) Whilst the space R[z| of
polynomials is infinite dimensional, the above example is not at a great remove from orthogonally
diagonalizing a real symmetric matrix — after all any polynomial can be written as a finite linear
combination of Legendre polynomials.

In contrast, Schrédinger’s equation in quantum theory has the form

This equation was formulated in 1925 by the Austrian physicist, Erwin Schrodinger (1887-1961).
The above is the time-independent equation of a particle in the interval 0 < x < a. The wave
function v is a complex-valued function of x and W(:ﬂ)\Q can be thought of as the probability
density function of the particle’s position. m is its mass, h is the (reduced) Planck constant,
V(z) denotes potential energy and E is the particle’s energy.

A significant, confounding aspect of late mineteenth century experimental physics was the
emission spectra of atoms. (By the way, these two uses of the word ‘spectrum’ in mathematics
and physics appear to be coincidental.) As an example, experiments showed that only certain
discrete, quantized energies could be released by an excited atom of hydrogen. Classical physical
theories were unable to explain this phenomenon.
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Schrédinger’s equation can be rewritten as Hiy = Ei with E being an eigenvalue of the
differential operator H known as the Hamailtonian. One can again show that

<H¢1> ¢2> = <¢1a H¢2>
where

(@, ¥) = /Oa o(z)(x) dz.

And, when V s constant, it’s straightforward to show that the only non-zero solutions of
Schrédinger’s equation above are

n?m?h?

Y, (r) = A, sin (@) where E=E,=V 4+ ——,
2ma?

a
and n 18 a positive integer and A, is a constant. If \¢n(x)|2 18 to be a pdf then we need
A, = \/2/7, and again these 1, are orthonormal with respect to the above complex inner
product. Note also that the energy E can only take certain discrete values E,, .

In general, though, a wave function need not be one of these eigenstates 1, and may be a
finite or indeed infinite combination of them. For example, we might have

o0 =R (0 2)

for which |(x)? is a pdf. How might we write such ¢(z) as a combination of the 1, (x)? This
s an infinite-dimensional version of the problem the spectral theorem solved — how in general
to write a vector as a linear combination of orthonormal eigenvectors — and, in the infinite
dimensional case is the subject of Fourier analysis, named after the French mathematician
Joseph Fourier (1768-1830). In this case Fourier analysis shows that

= 8v/15
$@) = D amitn(s)  ubere  an=55.

If the particle’s energy is measured, it will equal one of the permitted energies E,, and the effect
of measuring this energy is to ‘collapse’ the above wave function v to one of the eigenstates

Yo,.q. It is the case that
Z |Oé2n+1\2 =1
0

(this is Parseval’s Identity which is essentially an infinite dimensional version of Pythagoras’
Theorem). The probability of the particle having enerqy Eony1 is \a2n+1|2. The role of mea-
surement in quantum theory is very different from that of classical mechanics; the very act of
measuring some observable characteristic of the particle actually affects and changes the wave
function.

From the more general point of view, it is important that these wave functions lie not just
m an infinite-dimensional complex inner product space, but that this space is a Hilbert space,
meaning it is complete — Cauchy sequences are convergent. There is a (somewhat technical)
version of the spectral theorem for Hilbert spaces which is the subject of the third year functional
analysis courses.
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3.1 Epilogue — Singular Value Decomposition (Off-syllabus)

We conclude with an important related theorem, namely the singular value decomposition
theorem which applies not just to square matrices. The theorem is important in numerical
analysis, signal processing, pattern recognition and in particular is used in the Trinity term
Statistics and Data Analysis course when discussing principal component analysis.

Recall that, given an m x n matrix A of rank r then there exist an invertible m x m matrix
P and an invertible n x n matrix () such that

PAQ = ( 0 . Orinr ) :

m—r,r Omfr,nfr

The matrix P results from the elementary matrices used to put A into RRE form, and then
ECOs can be used to move the r leading 1s to the first  columns and clear out the rest of the
rOWS.

A natural alternative question is: what form can A be put into if P and () are required to
be orthogonal instead?

Theorem 88 (Singular Value Decomposition (SVD)’) Let A be an m x n matriz of rank
r. Then there exist an orthogonal m X m matrix P and an orthogonal n X n matrixz () such that

D 0
paa= (2 0). -
where D 1is an invertible diagonal v X r matriz with positive entries listed in decreasing order.

Proof. Note that AT A is a symmetric n x n matrix. So by the spectral theorem there is an
n X n orthogonal matrix () such that

QTATAQ — ( 0 A Or,n—r )’

n—r,r Onfr,nfr

where A is a diagonal r X r matrix with its diagonal entries in decreasing order. Note that
AT A has the same rank 7 as A (Sheet 4, Exercise S3), and that the eigenvalues of AT A are
non-negative, the positive eigenvalues being the entries of A. If we write

Q=(Q1 Q)
where ()1 is n X r and @3 is n X (n — ), then
QTATAQ, = A; Q3 ATAQy = 0; QTQ1 = I; Q1Q1 + QxQ5 = I,

the last two equations following from Q’s orthogonality. Now (AQs)" (AQ,) = 0 from the
second equation and hence AQy = 0,,,,—, by Sheet 4, Exercise S3 again.

’The SVD was independently proved by Beltrami in 1873 and Jordan in 1874.

EPILOGUE - SINGULAR VALUE DECOMPOSITION (OFF-SYLLABUS) 52



If A = diag (A1,...,A) then we may set D = diag (\/)\71, cel \/)TT) , so that D? = A. We
then define P; to be the m x r matrix

P1 == AQlDil.

Note that

We are almost done now as, by the transpose product rule and because D is diagonal, we

have
PP = (AQ,D™")" (AQ:D™') = D'QTATAQ, D™ = D'AD ™ = I,

and also that
PIAQ, = PP D=1,D=D.

That PIT P, = I, means the columns of P; form an orthonormal set, which can be extended to

an orthonormal basis for R7’,. We put these vectors as the columns of an orthogonal m x m

matrix PT = ( P P ) and note that
P2TAQ1 = P2TP1D = Om—r,rD = Om—r,r

as the columns of P are orthogonal. Finally we have that PA(Q) equals
PT PT
2 2

— PITAQl 0rn—r - D [ —
B (— Om—r,n—r B [ — Om—r,n—r '
|

Example 89 Find the SVD of

10 2 1
A= ( 0 21 -1 )
Solution. Firstly
1 0 1 0 2 1
r. | 0 2 10 2 1 10 4 2 =2
ATA= 2 1 021 -1) |2 2 5 1
1 -1 1 -2 1 2

AT A has characteristic polynomial
ot — 1223 + 352% = 2%(x — 5)(z — 7).

We can then take

L L _2z __4
e L
0o
vio 3
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so that QT AT AQ = diag(7,5,0,0). We then set P, = AQ;D~! to give

Sk o
S—
I
A/
S
-
SN—

and so
1 1
popr—(% 9
V2 V2
n

Remark 90 With notation as in Theorem 88, the pseudoinverse (or Moore-Penrose inverse)

of A is
-1
AT =Q ( D Orm—r ) P.

Onfr,r Onfr,mfr

The following facts are then true of the pseudoinverse.
(a) If A is invertible then A=t = AT,

(b) (A7) = (AD)".

(c) (AB)* # BT A* in general.

(d) The pseudoinverse has the following properties.

(I) AATA=A; (II) ATAAT =A%, (III) AA" and ATA are symmetric.

(e) AT is the only matriz to have the properties I, II, III.
(f) AA™ is orthogonal projection onto the column space of A.
(g) If the columns of A are independent then AT = (AT A)~L1AT.
(h) For b € R set xo = Atb. Then

|Ax — b| > |Ax¢ — b| for all x in R

col*
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