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0. INTRODUCTION AND PRELIMINARY MA-
TERIAL

0.1 Syllabus

Introduction to determinant of a square matrix: existence and uniqueness. Proof of existence
by induction. Proof of uniqueness by deriving explicit formula from the properties of the
determinant. Permutation matrices. (No general discussion of permutations). Basic properties
of determinant, relation to volume. Multiplicativity of the determinant, computation by row
operations. [2]

Determinants and linear transformations: de…nition of the determinant of a linear transforma-
tion, multiplicativity, invertibility and the determinant. [0.5]

Eigenvectors and eigenvalues, the characteristic polynomial, trace. Eigenvectors for distinct
eigenvalues are linearly independent. Discussion of diagonalization. Examples. Eigenspaces,
geometric and algebraic multiplicity of eigenvalues. Eigenspaces form a direct sum. [2.5]

Gram-Schmidt procedure. Spectral theorem for real symmetric matrices. Quadratic forms and
real symmetric matrices. Application of the spectral theorem to putting quadrics into normal
form by orthogonal transformations and translations. [3]

0.2 Reading list

(1) T. S. Blyth and E. F. Robertson, Basic Linear Algebra (Springer, London, 2nd edition
2002).
(2) C. W. Curtis, Linear Algebra – An Introductory Approach (Springer, New York, 4th edition,
reprinted 1994).
(3) R. B. J. T. Allenby, Linear Algebra (Arnold, London, 1995).
(4) D. A. Towers, A Guide to Linear Algebra (Macmillan, Basingstoke 1988).
(5) S. Lang, Linear Algebra (Springer, London, Third Edition, 1987).
(6) R. Earl, Towards Higher Mathematics – A Companion (Cambridge University Press, Cam-
bridge, 2017)
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0.3 Introduction

Towards the end of the Linear Algebra I course, it was explained how a linear map T : V ! V
can be represented, with respect to a choice of basis, by a square n£n matrix where n = dimV.
When we make a choice of basis fe1, . . . , eng for V, then a vector v 2 V becomes represented
by a unique co-ordinate vector (c1, . . . , cn) 2 Rn such that

v = c1e1 + ¢ ¢ ¢+ cnen

and T becomes represented by the matrix A = (aij) where

Tei = a1ie1 + ¢ ¢ ¢+ anien.

Note that the co-ordinates of Tei are the entries of the ith column of A.
Given the same linear map T can be represented by in…nitely many di¤erent matrices, at

least two questions arise:

² What do these di¤erent matrices have in common, given they represent the same linear
map?

² Is there a best matrix representative – for purposes of computation or comprehension –
amongst all these di¤erent matrices?

The second question will lead us to a discussion of eigenvectors and diagonalizability. Should
we be able to …nd a matrix representative that is diagonal, then many calculations will be
considerably simpler. If this is possible, and it is an ‘if’, then the linear map is said to be
diagonalizable and the vectors in the basis are called eigenvectors. An eigenvector is a non-zero
vector v such that Tv = λv for some scalar λ known as the eigenvalue of v.

Returning to the …rst question, we shall …nd that all the algebraic properties of T apply to
each of its matrix representatives. If A and B are two matrices representing T then there is an
invertible matrix P such that

A = P¡1BP.

We can then show that each matrix representative has the same determinant, trace, rank,
nullity, eigenvalues and functional properties – e.g. T is self-inverse. Any calculation we make,
pertaining to the algebra of T , reassuringly yields the same answer. The matrix P is a change
of basis matrix providing an invertible change of variable.

However, the same cannot be said of geometric properties of T. In general, an invertible
change of variable will alter lengths, angles, areas, volumes, etc.. If, say, we wish to change
variables to show a curve that isn’t in normal form – such as

x2 + xy + y2 = 1

– is in fact an ellipse, and determine its area, then we need to ensure that the area remains
invariant under the change of co-ordinates. The matrices that preserve the scalar product –
and so preserve angle, distance, area – are the orthogonal matrices. That is, P¡1 = P T . It is an
easy check to see that the only matrices which might be diagonalized by an orthogonal change
of variable are the symmetric matrices. At the end of the course we meet the important spectral
theorem which shows the converse: symmetric matrices can be diagonalized by an orthogonal
change of variable.
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0.4 Notation

(v1 jv2 j ¢ ¢ ¢ jvn) denotes the m£ n matrix with columns v1,v2, . . . ,vn 2 Rm
col

(r1 / r2 / ¢ ¢ ¢ / rm) denotes the m £ n matrix with rows r1, r2, . . . , rm 2 Rn

e1, e2, . . . , en denotes the canonical basis for Rn.
LA denotes, for an m£ n matrix A, the map Rn

col ! Rm
col given by x 7! Ax.

Mi(λ) denotes the ERO that multiplies the ith row by λ 6= 0.
Sij denotes the ERO that swaps the ith and jth rows.
Aij(λ) denotes the ERO that adds λ £ (row i) to row j.
diag(α1, . . . , αn) denotes the diagonal n £ n matrix with entries α1, . . . , αn.
[A]ij denotes the (i, j)th entry of a matrix A.
χA(x) denotes the characteristic polynomial of a square matrix A.
Eλ denotes the eigenspace of the eigenvalue λ.
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1. DETERMINANTS.

1.1 De…nitions

A square matrix has a number associated with it called its determinant. There are various
di¤erent ways of introducing determinants, each of which has its advantages but none of which
is wholly ideal as will become clearer below. The de…nition we shall use is an inductive one,
de…ning the determinant of an n£ n matrix in terms of (n¡ 1)£ (n¡ 1) determinants. Quite
what the determinant of a matrix signi…es will be discussed shortly in Remark 11.

Notation 1 Given a square matrix A and 1 6 I, J 6 n, we write AIJ for the (n¡ 1)£ (n¡ 1)
matrix formed by removing the Ith row and the Jth column from A.

Example 2 Let

A =

0

@
1 ¡3 2
0 7 1

¡5 1 3

1

A.

Then (a) removing the 2nd row and 3rd column or (b) removing the 3rd row and 1st column,
we get

(a) A23 =

µ
1 ¡3

¡5 1

¶

; (b) A31 =

µ
¡3 2
7 1

¶

.

Our inductive de…nition of a determinant is then:

De…nition 3 The determinant of a 1£ 1 matrix (a11) is simply a11 itself. The determinant
detA of an n£ n matrix A = (aij) is then given by

detA = a11 detA11 ¡ a21 detA21 + a31 detA31 ¡ ¢ ¢ ¢+ (¡1)n+1an1 detAn1.

Notation 4 The determinant of a square matrix A is denoted as detA and also sometimes as
jAj . So we may also write the determinant of the matrix A in Example 2 as

¯
¯
¯
¯
¯
¯

1 ¡3 2
0 7 1

¡5 1 3

¯
¯
¯
¯
¯
¯
.

Proposition 5 The determinants of 2 £ 2 and 3 £ 3 matrices are given by the following for-
mulae.
(a) For 2£ 2 matrices ¯

¯
¯
¯
a11 a12
a21 a22

¯
¯
¯
¯ = a11a22 ¡ a12a21.
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(b) For 3£ 3 matrices

¯
¯
¯
¯
¯
¯

a11 a12 a13
a21 a22 a23
a31 a32 a33

¯
¯
¯
¯
¯
¯
= a11a22a33 + a12a23a31 + a13a21a32 ¡ a12a21a33 ¡ a13a22a31 ¡ a11a23a32. (1.1)

Proof. (a) Applying the above inductive de…nition, we have detA11 = det(a22) = a22 and
detA21 = det(a12) = a12, so that

¯
¯
¯
¯
a11 a12
a21 a22

¯
¯
¯
¯ = a11 detA11 ¡ a21 detA21 = a11a22 ¡ a12a21.

(b) For the 3£ 3 case

detA11 =

¯
¯
¯
¯
a22 a23
a32 a33

¯
¯
¯
¯, detA21 =

¯
¯
¯
¯
a12 a13
a32 a33

¯
¯
¯
¯, detA31 =

¯
¯
¯
¯
a12 a13
a22 a23

¯
¯
¯
¯,

so that
¯
¯
¯
¯
¯
¯

a11 a12 a13
a21 a22 a23
a31 a32 a33

¯
¯
¯
¯
¯
¯
= a11

¯
¯
¯
¯
a22 a23
a32 a33

¯
¯
¯
¯ ¡ a21

¯
¯
¯
¯
a12 a13
a32 a33

¯
¯
¯
¯+ a31

¯
¯
¯
¯
a12 a13
a22 a23

¯
¯
¯
¯

= a11(a22a33 ¡ a23a32)¡ a21(a12a33 ¡ a13a32) + a31(a12a23 ¡ a13a22)

using the formula for 2£ 2 determinants. This rearranges to (1.1).

Example 6 Let Rθ and Sθ be the rotation and re‡ection matrices

Rθ =

µ
cos θ ¡ sin θ
sin θ cos θ

¶

, Sθ =

µ
cos 2θ sin 2θ
sin 2θ ¡ cos 2θ

¶

.

Rθ represents rotation by θ anti-clockwise about the origin and Sθ represents re‡ection in the
line y = tan θ. Note, for any θ, that

detRθ = cos
2 θ + sin2 θ = 1, detSθ = ¡ cos2 2θ ¡ sin2 2θ = ¡1.

Example 7 Returning to the matrix from Example 2, we have

¯
¯
¯
¯
¯
¯

1 ¡3 2
0 7 1

¡5 1 3

¯
¯
¯
¯
¯
¯
= 1£ 7£ 3| {z }

21

+ (¡3)£ 1£ (¡5)
| {z }

15

+ 2£ 0£ 1| {z }
0

¡1£ 1£ 1| {z }
1

¡ (¡3)£ 0£ 3
| {z }

0

¡ 2£ 7£ (¡5)
| {z }

¡70

= 105.
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Remark 8 In the 2£ 2 and 3£ 3 cases, but only in these cases, there is a simple way to
remember the determinant formula. The 2£ 2 formula is the product of entries on the left-to-
right diagonal minus the product of those on the right-to-left diagonals. If, in the 3 £ 3 case,
we allow diagonals to ‘wrap around’ the vertical sides of the matrix – for example as below

0

@
&

&
&

1

A,

0

@
.

.
.

1

A,

– then from this point of view a 3£3 matrix has three left-to-right diagonals and three right-to-
left. A 3£3 determinant then equals the sum of the products of entries on the three left-to-right
diagonals minus the products from the three right-to-left diagonals. This method of calculation
does not apply to n £ n determinants when n > 4.

De…nition 9 Let A be an n £ n matrix. Given 1 6 I, J 6 n the (I, J)th cofactor of A,
denoted CIJ(A) or just CIJ , is de…ned as CIJ = (¡1)

I+J detAIJ and so the determinant detA
can be rewritten as

detA = a11C11 + a21C21 + ¢ ¢ ¢+ an1Cn1.

Proposition 10 Let A be a triangular matrix. Then detA equals the product of the diagonal
entries of A. In particular it follows that det In = 1 for any n.

Proof. This is left to Sheet 1, S3.

Remark 11 (Summary of Determinant’s Properties) As commented earlier, there are
di¤erent ways to introduce determinants, each with their own particular advantages and disad-
vantages.

² With De…nition 3, the determinant of an n £ n matrix is at least unambiguously and
relatively straightforwardly given. There are other (arguably more natural) de…nitions
which require some initial work to show that they’re well-de…ned. For example, we shall
see that det has the following algebraic properties

(i) det is linear in the rows (or columns) of a matrix (see Theorem 13(A)).

(ii) if a matrix has two equal rows then its determinant is zero (see Theorem 13(B)).

(iii) det In = 1.

In fact, these three algebraic properties uniquely characterize a function det which assigns
a number to each n £ n matrix (Proposition 26). As a consequence of this uniqueness it
also follows that

(¤) detAT = detA for any square matrix A (see Corollary 20).

The problem with the above approach is that the existence and uniqueness of such a func-
tion are still moot.
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² Using De…nition 3 we avoid these issues, but unfortunately we currently have no real
sense of what the determinant might convey about a matrix. The determinant of a 2£ 2
matrix is uniquely characterized by the two following geometric properties. Given a 2£ 2
matrix A, with associated map LA, it is then the case that

(a) for any region S of the xy-plane, we have

area of LA(S) = jdetAj £ (area of S). (1.2)

(b) The sense of any angle under LA is reversed when detA < 0 but remains the same
when detA > 0.

We can demonstrate (a) and (b) by noting that the Jacobian of

LA

µ
x
y

¶

=

µ
a b
c d

¶µ
x
y

¶

=

µ
ax+ by
cx+ dy

¶

equals
∂(f1, f2)

∂ (x, y)
=

¯
¯
¯
¯
a b
c d

¯
¯
¯
¯ .

These two properties best show the signi…cance of determinants. Thinking along these
lines, the following properties should seem natural enough:

(α) detAB = detA detB (Corollary 19).

(β) a square matrix is singular if and only it has zero determinant (Corollary 18).

However, whilst these geometric properties might better motivate the importance of de-
terminants, they would be less useful in calculating determinants. Their meaning would
also be less clear if we were working in more than three dimensions (at least until we had
de…ned volume and sense/orientation in higher dimensions) or if we were dealing with
matrices with complex numbers as entries.

² The current de…nition appears to lend some importance to the …rst column; De…nition
3 is sometimes referred to as expansion along the …rst column. From Sheet 1, P1 one
might (rightly) surmise that determinants can be calculated by expanding along any row
or column (Theorem 28).

² Finally, calculation is di¢cult and ine¢cient using De…nition 3. (For example, the for-
mula for an n£ n determinant involves the sum of n! separate products (Propositions 26
and 27(b)). We shall, in due course, see that a much better way to calculate determinants
is via EROs. This method works well with speci…c examples but less well in general as too
many special cases arise; if we chose to de…ne determinants this way, even determining
the general formulae for 2£2 and 3£3 determinants would become something of a chore.

In the following we rigorously develop the theory of determinants. These proofs are often
technical and not particularly illuminating and only a selection of the proofs will be covered
in lectures. I’d suggest the signi…cant properties of determinants are (i), (ii), (iii), (¤), (a),
(b), (α), (β) above and these should be committed to memory. The next signi…cant result
(or method) appears in Remark 21 where we begin the discussion of calculating determinants
e¢ciently.
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Notation 12 (a) We shall write (r1/ ¢ ¢ ¢ /rn) for the n £ n matrix with rows r1, ¢ ¢ ¢ , rn 2 Rn.
(b) We shall write (v1j ¢ ¢ ¢ jvn) for the n £ n matrix with columns v1, ¢ ¢ ¢ ,vn 2 Rn

col.
(c) We shall write e1, . . . , en for the standard basis of Rn.

Theorem 13 The map det de…ned in De…nition 3 has the following properties.

(A) det is linear in each row. That is, detC = λdetA+ µdetB where

A = (r1/ ¢ ¢ ¢ /ri¡1/ri/ri+1/ ¢ ¢ ¢ /rn),

B = (r1/ ¢ ¢ ¢ /ri¡1/v/ri+1/ ¢ ¢ ¢ /rn),

C = (r1/ . . . /ri¡1/λri + µv/ri+1/ . . . /rn).

(B) If A = (r1/ ¢ ¢ ¢ /rn) with ri = rj for some i 6= j, then detA = 0.
(B’) If the matrix B is produced by swapping two di¤erent rows of A then detB = ¡detA.

Before proceeding to the main proof we will …rst prove the following.

Lemma 14 Together, properties (A) and (B) are equivalent to properties (A) and (B’).

Proof. Suppose that det has properties (A), (B). Let A = (r1/ ¢ ¢ ¢ /rn) and B be produced by
swapping rows i and j where i < j. Then

0 = det(r1/ ¢ ¢ ¢ /ri + rj/ ¢ ¢ ¢ /ri + rj/ ¢ ¢ ¢ /rn) [by (B)]

= det(r1/ ¢ ¢ ¢ /ri/ ¢ ¢ ¢ /ri + rj/ ¢ ¢ ¢ /rn) + det(r1/ ¢ ¢ ¢ /rj/ ¢ ¢ ¢ /ri + rj/ ¢ ¢ ¢ /rn) [by (A)]

= fdet(r1/ ¢ ¢ ¢ /ri/ ¢ ¢ ¢ /ri/ ¢ ¢ ¢ /rn) + det(r1/ ¢ ¢ ¢ /ri/ ¢ ¢ ¢ /rj/ ¢ ¢ ¢ /rn)g

+ fdet(r1/ ¢ ¢ ¢ /rj/ ¢ ¢ ¢ /ri/ ¢ ¢ ¢ /rn) + det(r1/ ¢ ¢ ¢ /rj/ ¢ ¢ ¢ /rj/ ¢ ¢ ¢ /rn)g [by (A)]

= f0 + detAg+ fdetB + 0g [by (B)]

= detA+ detB

and so property (B’) follows.
Conversely, if det has properties (A), (B’) and ri = rj for i 6= j then

det(r1/ ¢ ¢ ¢ /ri/ ¢ ¢ ¢ /rj/ ¢ ¢ ¢ /rn) = det(r1/ ¢ ¢ ¢ /rj/ ¢ ¢ ¢ /ri/ ¢ ¢ ¢ /rn),

as the two matrices are equal, but by property (B’)

det(r1/ ¢ ¢ ¢ /ri/ ¢ ¢ ¢ /rj/ ¢ ¢ ¢ /rn) = ¡det(r1/ ¢ ¢ ¢ /rj/ ¢ ¢ ¢ /ri/ ¢ ¢ ¢ /rn),

so that both determinants are in fact zero.

We continue now with the proof of Theorem 13.

Proof. (A) If n = 1 then (A) equates to the identity (λa11 + µv1) = λ(a11) + µ(v1). As
an inductive hypothesis, suppose that (A) is true for (n ¡ 1) £ (n ¡ 1) matrices. We are
looking to show that the n £ n determinant function is linear in the ith row. Note, for j 6= i,
that Cj1(C) = λCj1(A) + µCj1(B) by our inductive hypothesis as these cofactors relate to
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(n ¡ 1) £ (n ¡ 1) determinants. Also Ci1(C) = Ci1(A) = Ci1(B) as Ci1 is independent of the
ith row. Hence

detC = a11C11(C) + ¢ ¢ ¢+ (λai1 + µv1)Ci1(C) + ¢ ¢ ¢+ an1Cn1(C)

= a11(λC11(A) + µC11(B)) + ¢ ¢ ¢+ λai1Ci1(A) + µv1Ci1(B) + ¢ ¢ ¢+ an1(λCn1(A) + µCn1(B))

= λfa11C11(A) + ¢ ¢ ¢+ an1Cn1(A)g+ µfa11C11(B) + ¢ ¢ ¢+ v1Ci1(B) + ¢ ¢ ¢+ an1Cn1(B)g

= λ detA+ µ detB.

We have therefore proved (A) for all square matrices. In what follows, note that if (B) is
true of certain matrices then so is (B’) as we have shown that (A) and (B) are equivalent to
(A) and (B’).

(B) For a 2£ 2 matrix, if r1 = r2 then

detA =

µ
a11 a12
a11 a12

¶

= a11a12 ¡ a12a11 = 0.

So (B) (and hence (B’)) hold for 2£ 2 matrices. Assume now that (B) (or equivalently (B’)) is
true for (n ¡ 1)£ (n ¡ 1) matrices. Let A = (r1/ ¢ ¢ ¢ /rn) with ri = rj where i < j. Then

detA = a11C11(A) + ¢ ¢ ¢+ an1Cn1(A) = ai1Ci1(A) + aj1Cj1(A)

by the inductive hypothesis as Ak1 has two equal rows when k 6= i, j. Note that as ri = rj, with
one copy of each being removed from Ai1 and Aj1, then the rows of Ai1 are the same as the
rows of Aj1 but come in a di¤erent order. The rows of Ai1 and Aji can be reordered to be the
same as follows: what remains of rj in Ai1 can be moved up to the position of ri’s remainder in
Aj1 by swapping it j ¡ i ¡ 1 times, each time with the next row above. (Note that we cannot
simply swap the rows ri and rj in A to show detA = 0 as this would be assuming (B’) for n£n
matrices which is equivalent to what we’re trying to prove.) By our inductive hypothesis

detA = ai1Ci1(A) + aj1Cj1(A)

= (¡1)1+iai1 detAi1 + (¡1)
1+jaj1 detAj1 [by de…nition of cofactors]

= (¡1)1+iai1(¡1)
j¡i¡1 detAj1 + (¡1)

1+jaj1 detAj1 [by j ¡ i ¡ 1 uses of (B’)]

= (¡1)j(ai1 ¡ aj1) detAj1 = 0 [as ai1 = aj1 because ri = rj].

Hence (B) is true for n £ n determinants and the result follows by induction.

Corollary 15 Let A be an n£ n matrix and λ a real number.
(a) If the matrix B is formed by multiplying a row of A by λ then detB = λ detA.
(b) det(λA) = λn detA.
(c) If any row of A is zero then detA = 0.

Proof. (a) This follows from the fact that det is linear in its rows, and then if (a) is applied
consecutively to each of the n rows part (b) follows. Finally if ri = 0 for some i, then ri = 0ri
and so (c) follows from part (a).
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Notation 16 We will denote the three EROs as:
(a) Mi(λ) denotes multiplication of the ith row by λ 6= 0.
(b) Sij denotes swapping the ith and jth rows.
(c) Aij(λ) denotes adding λ £ (row i) to row j.

Lemma 17 (a) The determinants of the elementary matrices are

detMi(λ) = λ; detSij = ¡1; detAij(λ) = 1.

In particular, elementary matrices have non-zero determinants.
(b) If E,A are n£ n matrices and E is elementary then detEA = detE detA.
(c) If E is an elementary matrix then detET = detE.

Proof. We shall prove (a) and (b) together. If E = Mi(λ) and then detEA = λ detA
by Corollary 15(a). If we choose A = In then we …nd detMi(λ) = λ and so we also have
detEA = detE detA when E =Mi(λ).

If E = Sij then by Theorem 13(B’) detEA = ¡detA. If we take A = In then we see
detSij = ¡1 and then we also have detEA = detE detA when E = Sij.

If E = Aij(λ) and A = (r1/ ¢ ¢ ¢ /rn) then

det(EA) = det(r1/ ¢ ¢ ¢ /ri + λrj/ ¢ ¢ ¢ /rj/ ¢ ¢ ¢ /rn)

= det(r1/ ¢ ¢ ¢ /ri/ ¢ ¢ ¢ /rj/ ¢ ¢ ¢ /rn) + λdet(r1/ ¢ ¢ ¢ /rj/ ¢ ¢ ¢ /rj/ ¢ ¢ ¢ /rn)

= detA+ 0

= detA.

The second equality follows from Theorem 13 (A), and the third from Theorem 13 (B). If we
take A = In then detAij(λ) = 1 and so detEA = detE detA also follows when E = Aij(λ).

(c) Note that Mi(λ) and Sij are symmetric and so there is nothing to prove in these cases.
Finally

det(Aij(λ)
T ) = detAji(λ) = 1 = detAij(λ).

Corollary 18 (Criterion for Invertibility) A square matrix A is invertible if and only if
detA 6= 0, in which case det(A¡1) = (detA)¡1.

Proof. If A is invertible then it row-reduces to the identity; that is, there are elementary
matrices E1, . . . , Ek such that Ek ¢ ¢ ¢E1A = I. Hence, by repeated use of Lemma 17(b),

1 = det I = detEk £ ¢ ¢ ¢ £ detE1 £ detA.

In particular detA 6= 0. Further as Ek ¢ ¢ ¢E1 = A¡1 then det(A¡1) = (detA)¡1. If, however, A
is singular then A reduces to a matrix R with at least one zero row so that detR = 0. So as
before

detEk £ ¢ ¢ ¢ £ detE1 £ detA = detR = 0

for some elementary matrices Ei. As detEi 6= 0 for each i, it follows that detA = 0.
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Corollary 19 (Product Rule for Determinants) Let A,B be n £ n matrices. Then

detAB = detA detB.

Proof. If A and B are invertible then they can be written as products of elementary matrices;
say A = E1 . . . Ek and B = F1 . . . Fl. Then

detAB = detE1 £ ¢ ¢ ¢ £ detEk £ detF1 £ ¢ ¢ ¢ £ detFl = detA detB

by Lemma 17(b). Otherwise one (or both) of A or B is singular. Then AB is singular and so
detAB = 0. But, also detA £ detB = 0 as one or both of A,B is singular.

Corollary 20 (Transpose Rule for Determinants) Let A be a square matrix. Then

detAT = detA.

Proof. A is invertible if and only if AT is invertible. If A is invertible then A = E1 . . . Ek for
some elementary matrices Ei. Now AT = ET

k ¢ ¢ ¢ET
1 by the product rule for transposes and so,

by Lemma 17(c) and the product rule above,

detAT = detET
k £ ¢ ¢ ¢ £ detET

1 = detEk £ ¢ ¢ ¢ £ detE1 = detA.

If A is singular then so is AT and so detA = 0 = detAT .

Remark 21 Currently we are still lumbered with a very ine¢cient way of evaluating determi-
nants in De…nition 3. That de…nition is practicable up to 3 £ 3 matrices but rapidly becomes
laborious after that. A much more e¢cient way to calculate determinants is using EROs and
ECOs, and we have been in a position to do this since showing detEA = detE £ detA for
elementary E. An ECO involves postmultiplication by an elementary matrix but the product
rule shows they will have the same e¤ects on the determinant. Spelling this out:

² Adding a multiple of a row (resp. column) to another row (resp. column) has no e¤ect
on a determinant.

² Multiplying a row or column of the determinant by a scalar λ multiplies the determinant
by λ.

² Swapping two rows or two columns of a determinant multiplies the determinant by ¡1.

The following examples will hopefully make clear how to e¢ciently calculate determinants using
EROs and ECOs.

Example 22 Use EROs and ECOs to calculate the following 4£ 4 determinants.
¯
¯
¯
¯
¯
¯
¯
¯

1 2 0 3
4 ¡3 1 0
0 2 5 ¡1
2 3 1 2

¯
¯
¯
¯
¯
¯
¯
¯

,

¯
¯
¯
¯
¯
¯
¯
¯

2 2 1 ¡3
0 6 ¡2 1
3 2 1 1
4 2 ¡1 2

¯
¯
¯
¯
¯
¯
¯
¯

.
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Solution.
¯
¯
¯
¯
¯
¯
¯
¯

1 2 0 3
4 ¡3 1 0
0 2 5 ¡1
2 3 1 2

¯
¯
¯
¯
¯
¯
¯
¯

=

¯
¯
¯
¯
¯
¯
¯
¯

1 2 0 3
0 ¡11 1 ¡12
0 2 5 ¡1
0 ¡1 1 ¡4

¯
¯
¯
¯
¯
¯
¯
¯

=

¯
¯
¯
¯
¯
¯

¡11 1 ¡12
2 5 ¡1

¡1 1 ¡4

¯
¯
¯
¯
¯
¯

=

¯
¯
¯
¯
¯
¯

0 ¡10 32
0 7 ¡9

¡1 1 ¡4

¯
¯
¯
¯
¯
¯
= ¡1£

¯
¯
¯
¯

¡10 32
7 ¡9

¯
¯
¯
¯ = 134,

where, in order, we (i) add appropriate multiples of the row 1 to lower rows to clear the rest of
column 1, (ii) expand along column 1, (iii) add appropriate multiples of row 3 to rows 1 and 2
to clear the rest of column 1, (iv) expand along column 1 and (v) employ the 2£2 determinant
formula.

¯
¯
¯
¯
¯
¯
¯
¯

2 2 1 ¡3
0 6 ¡2 1
3 2 1 1
4 2 ¡1 2

¯
¯
¯
¯
¯
¯
¯
¯

=

¯
¯
¯
¯
¯
¯
¯
¯

2 2 1 ¡3
0 6 ¡2 1
0 ¡1 ¡1

2
11
2

0 ¡2 ¡3 8

¯
¯
¯
¯
¯
¯
¯
¯

= 2

¯
¯
¯
¯
¯
¯

6 ¡2 1
¡1 ¡1

2
11
2

¡2 ¡3 8

¯
¯
¯
¯
¯
¯

= 2

¯
¯
¯
¯
¯
¯

0 ¡5 34
¡1 ¡1

2
11
2

0 ¡2 ¡3

¯
¯
¯
¯
¯
¯
= 2

¯
¯
¯
¯

¡5 34
¡2 ¡3

¯
¯
¯
¯ = 166,

where, in order, we (i) add appropriate multiples of row 1 to lower rows to clear the rest of
column 1, (ii) expand along column 1, (iii) add appropriate multiples of row 2 to rows 1 and 3
to clear the rest of column 1, (iv) expand along column 1 and (v) employ the 2£2 determinant
formula.

Alternatively, for this second determinant, it may have made more sense to column-reduce as
the third column has a helpful leading 1 and we could have instead calculated the determinant
as follows.

¯
¯
¯
¯
¯
¯
¯
¯

2 2 1 ¡3
0 6 ¡2 1
3 2 1 1
4 2 ¡1 2

¯
¯
¯
¯
¯
¯
¯
¯

=

¯
¯
¯
¯
¯
¯
¯
¯

0 0 1 0
4 10 ¡2 ¡5
1 0 1 4
6 4 ¡1 ¡1

¯
¯
¯
¯
¯
¯
¯
¯

=

¯
¯
¯
¯
¯
¯

4 10 ¡5
1 0 4
6 4 ¡1

¯
¯
¯
¯
¯
¯

=

¯
¯
¯
¯
¯
¯

0 10 ¡21
1 0 4
0 4 ¡25

¯
¯
¯
¯
¯
¯
= ¡

¯
¯
¯
¯
10 ¡21
4 ¡25

¯
¯
¯
¯ = 166.

where, in order, we (i) add appropriate multiples of column 3 to other columns to clear the rest
of row 1, (ii) expand along row 1 (iii) add appropriate multiples of row 2 to rows 1 and 3 to
clear the rest of column 1, (iv) expand along column 1 and (v) employ the 2£ 2 determinant
formula.

² We will demonstrate in Theorem 28 the as-yet-unproven equivalence of expanding along
any row or column.
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Example 23 Let a, x be real numbers. Determine the following 3£ 3 and n£n determinants.

(a)

¯
¯
¯
¯
¯
¯

x a a
x x a
x x x

¯
¯
¯
¯
¯
¯
, (b)

¯
¯
¯
¯
¯
¯
¯
¯
¯

x 1 ¢ ¢ ¢ 1
1 x ¢ ¢ ¢ 1
...

...
. . .

...
1 1 ¢ ¢ ¢ x

¯
¯
¯
¯
¯
¯
¯
¯
¯

.

Solution. (a) Subtracting row 3 from the other rows, and expanding along column 1, we obtain
¯
¯
¯
¯
¯
¯

x a a
x x a
x x x

¯
¯
¯
¯
¯
¯
=

¯
¯
¯
¯
¯
¯

0 a¡ x a¡ x
0 0 a¡ x
x x x

¯
¯
¯
¯
¯
¯
= x

¯
¯
¯
¯
a¡ x a¡ x
0 a¡ x

¯
¯
¯
¯ = x(a ¡ x)2.

Similarly for (b) if we note that the sum of each column is the same and then add the bottom
n ¡ 1 rows to the …rst row (which won’t a¤ect the determinant), we see it equals

¯
¯
¯
¯
¯
¯
¯
¯
¯

x+ n ¡ 1 x+ n ¡ 1 ¢ ¢ ¢ x+ n¡ 1
1 x ¢ ¢ ¢ 1
...

...
. . .

...
1 1 ¢ ¢ ¢ x

¯
¯
¯
¯
¯
¯
¯
¯
¯

= (x+ n ¡ 1)

¯
¯
¯
¯
¯
¯
¯
¯
¯

1 1 ¢ ¢ ¢ 1
1 x ¢ ¢ ¢ 1
...

...
. . .

...
1 1 ¢ ¢ ¢ x

¯
¯
¯
¯
¯
¯
¯
¯
¯

= (x+ n ¡ 1)

¯
¯
¯
¯
¯
¯
¯
¯
¯

1 1 ¢ ¢ ¢ 1
0 x ¡ 1 ¢ ¢ ¢ 0
...

...
. . .

...
0 0 ¢ ¢ ¢ x ¡ 1

¯
¯
¯
¯
¯
¯
¯
¯
¯

where, in order, we (i) take the common factor of x+n¡1 out of the …rst row, (ii) subtract the
…rst row from each of the other rows, (iii) note the determinant is upper triangular to …nally
obtain a result of (x+ n ¡ 1)(x¡ 1)n¡1.

We conclude this section by de…ning the Vandermonde 1 determinant useful in interpolation.

Example 24 (Vandermonde Matrix) For n > 2 and real numbers x1, . . . , xn we de…ne

Vn =

0

B
B
B
B
B
@

1 x1 x21 ¢ ¢ ¢ xn¡11

1 x2 x22 ¢ ¢ ¢ xn¡12

1 x3 x23 ¢ ¢ ¢ xn¡13
...

...
...

. . .
...

1 xn x2n ¢ ¢ ¢ xn¡1n

1

C
C
C
C
C
A

and then detVn =
Y

i>j

(xi ¡ xj).

In particular, Vn is invertible if and only if the xi are distinct.

Solution. This is left to Sheet 1, Exercise 5.

1After the French mathematician Alexandre-Théophile Vandermonde (1735-1796).
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1.2 Permutation Matrices

It was claimed in Remark 11 that the determinant function for n £ n matrices is entirely
determined by certain algebraic properties. In light of Lemma 14, these properties are equivalent
to

(i) det is linear in the rows of a matrix.

(ii) if a matrix has two equal rows then its determinant is zero.

(ii)’ if the matrix B is produced by swapping two of the rows of A then detB = ¡detA.

(iii) det In = 1.

To see why these properties determine det, we …rst consider the n = 2 case. Given a 2£ 2
matrix A = (aij), we can calculate its determinant as follows. As det is linear in row 1 then

¯
¯
¯
¯
a11 a12
a21 a22

¯
¯
¯
¯ =

¯
¯
¯
¯
a11 0
a21 a22

¯
¯
¯
¯+

¯
¯
¯
¯
0 a12
a21 a22

¯
¯
¯
¯

which, as det is linear in row 2, equals

½¯
¯
¯
¯
a11 0
0 a22

¯
¯
¯
¯+

¯
¯
¯
¯
a11 0
a21 0

¯
¯
¯
¯

¾

+

½¯
¯
¯
¯
0 a12
a21 0

¯
¯
¯
¯+

¯
¯
¯
¯
0 a12
0 a22

¯
¯
¯
¯

¾

.

Again as det is linear in rows the above equals

a11a22

¯
¯
¯
¯
1 0
0 1

¯
¯
¯
¯+ a11a21

¯
¯
¯
¯
1 0
1 0

¯
¯
¯
¯+ a12a21

¯
¯
¯
¯
0 1
1 0

¯
¯
¯
¯+ a12a22

¯
¯
¯
¯
0 1
0 1

¯
¯
¯
¯ .

Then, using (ii), this equals

a11a22

¯
¯
¯
¯
1 0
0 1

¯
¯
¯
¯+ a12a21

¯
¯
¯
¯
0 1
1 0

¯
¯
¯
¯

which, using (ii)’, equals

a11a22

¯
¯
¯
¯
1 0
0 1

¯
¯
¯
¯ ¡ a12a21

¯
¯
¯
¯
1 0
0 1

¯
¯
¯
¯ .

Finally, using (iii), we’ve shown

¯
¯
¯
¯
a11 a12
a21 a22

¯
¯
¯
¯ = a11a22 ¡ a12a21

If we were to argue similarly for a 3£ 3 matrix A = (aij), we could …rst use linearity to expand
the determinant into a linear combination of 33 = 27 determinants, with entries 1 and 0, each
multiplied by a monomial a1ia2ja3k. But we can ignore those cases where i, j, k involves some
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repetition as the corresponding determinant is zero. There would, in fact, be only 3! = 6
non-zero contributions giving us the formula

a11a22a23

¯
¯
¯
¯
¯
¯

1 0 0
0 1 0
0 0 1

¯
¯
¯
¯
¯
¯
+ a12a23a31

¯
¯
¯
¯
¯
¯

0 1 0
0 0 1
1 0 0

¯
¯
¯
¯
¯
¯

¯
¯
¯
¯
¯
¯

0 1 0
0 0 1
1 0 0

¯
¯
¯
¯
¯
¯
+ a13a21a32

¯
¯
¯
¯
¯
¯

0 0 1
1 0 0
0 1 0

¯
¯
¯
¯
¯
¯

+a12a21a33

¯
¯
¯
¯
¯
¯

0 1 0
1 0 0
0 0 1

¯
¯
¯
¯
¯
¯
+ a13a22a31

¯
¯
¯
¯
¯
¯

0 0 1
0 1 0
1 0 0

¯
¯
¯
¯
¯
¯
+ a11a23a32

¯
¯
¯
¯
¯
¯

1 0 0
0 0 1
0 1 0

¯
¯
¯
¯
¯
¯
.

The …rst determinant here is det I3 which we know to be 1. The other determinants all have
the same rows (1, 0, 0), (0, 1, 0), (0, 0, 1) as I3 but appearing in some other order. In each case,
it is possible (if necessary) to swap (1, 0, 0) – which appears as some row of the determinant –
with the …rst row, so that it is now in the correct place. Likewise the second row can be moved
(if necessary) so it is in the right place. By a process of elimination the third row is now in the
right place and we have transformed the determinant into det I3. We know what the e¤ect of
each such swap is, namely multiplying by ¡1, and so the six determinants above have values 1
or ¡1. For example,

¯
¯
¯
¯
¯
¯

0 1 0
0 0 1
1 0 0

¯
¯
¯
¯
¯
¯
= ¡

¯
¯
¯
¯
¯
¯

1 0 0
0 0 1
0 1 0

¯
¯
¯
¯
¯
¯
=

¯
¯
¯
¯
¯
¯

1 0 0
0 1 0
0 0 1

¯
¯
¯
¯
¯
¯
= 1,

¯
¯
¯
¯
¯
¯

0 0 1
0 1 0
1 0 0

¯
¯
¯
¯
¯
¯
= ¡

¯
¯
¯
¯
¯
¯

1 0 0
0 1 0
0 0 1

¯
¯
¯
¯
¯
¯
= ¡1.

So …nally we have, as we found in Proposition 5(b), that

¯
¯
¯
¯
¯
¯

a11 a12 a13
a21 a22 a23
a31 a23 a33

¯
¯
¯
¯
¯
¯
= a11a22a23 + a12a23a31 + a13a21a32 ¡ a12a21a33 ¡ a13a22a31 ¡ a11a23a32.

The general situation is hopefully now clear for an n £ n matrix A = (aij). Using linearity
to expand along each row in turn, detA can be written as the sum of nn terms

X
detPi1¢¢¢ina1i1 ¢ ¢ ¢ anin

where Pi1¢¢¢in is the matrix whose rows are ei1, . . . , ein – that is the entries of Pi1¢¢¢in are all
zero except entries (1, i1), . . . , (n, in) which are all 1. At the moment each of i1, . . . , in can
independently take a value between 1 and n, but most such choices lead to the determinant
detPi1¢¢¢in being zero as some of the rows ei1 , . . . , ein are repeated. In fact, detPi1¢¢¢in can only
be non-zero when

fi1, . . . , ing = f1, . . . , ng.

That is i1, . . . , in are 1, . . . n in some order or equivalently the rows of Pi1¢¢¢in are e1, . . . , en in
some order.

De…nition 25 An n£n matrix P is said to be a permutation matrix if its rows are e1, . . . , en
in some order. This is equivalent to saying that each row and column contains a single entry 1
with all other entries being zero.
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Thus we have shown:

Proposition 26 The function det is entirely determined by the three algebraic properties (i),
(ii) and (iii). Further, the determinant detA of an n £ n matrix A = (aij) equals

detA =
X

detPi1¢¢¢in a1i1 ¢ ¢ ¢ anin (1.3)

where the sum is taken over all permutation matrices Pi1¢¢¢in = (ei1/ ¢ ¢ ¢ /ein).

We further note:

Proposition 27 (a) The columns of a permutation matrix are eT1 , . . . , e
T
n in some order.

(b) The number of n £ n permutation matrices is n!.
(c) A permutation matrix has determinant 1 or ¡1.
(d) When n > 2, half the permutation matrices have determinant 1 and half have determi-

nant ¡1.

Proof. (a) The entries in the …rst column of a permutation matrix P are the …rst entries of
e1, e2, . . . , en in some order and so are 1, 0, . . . , 0 in some order – that is the …rst column is eTi
for some i. Likewise each column of P is eTi for some i. If any of the columns of P were the
same then this would mean that a row of P had two non-zero entries which cannot occur. So
the columns are all distinct. As there are n columns then each of eT1 , . . . , e

T
n appears exactly

once.
(b) This is equal to the number of bijections from the set f1, 2, . . . , ng to itself.
(c) The rows of a permutation matrix P are e1, . . . , en in some order. We know that

swapping two rows of a matrix has the e¤ect of multiplying the determinant by ¡1. We can
create a (possibly new) matrix P1 by swapping the …rst row of P with the row e1 (which
appears somewhere); of course no swap may be needed. The matrix P1 has e1 as its …rst row
and detP1 = § detP depending on whether a swap was necessary or not. We can continue in
this fashion producing matrices P1, . . . , Pn such that the …rst k rows of Pk are e1, . . . , ek in that
order and detPk = §detPk¡1 in each case, depending on whether or not we needed to make
any swap to get ek to the kth row. Eventually then Pn = In and detP = §detPn = 1 or ¡1
depending on whether an even or odd number of swaps had to be made to turn P into In.

(d) Let n > 2 and let S12 be the elementary n£n matrix associated with swapping the …rst
and second rows of a matrix. If P is a permutation matrix then S12P is also a permutation
matrix as its rows are still e1, . . . , en in some order; further

detS12P = detS12 £ detP = ¡detP.

For each permutation matrix P with detP = 1, we have S12P being a permutation matrix
with det(S12P ) = ¡1; conversely for every permutation matrix ~P with det ~P = ¡1 we have
S12 ~P being a permutation matrix with det(S12 ~P ) = 1 As these processes are inverses of one
another, because S12(S12P ) = P , there are equal numbers of determinant 1 and determinant
¡1 permutation matrices, each separately numbering 1

2
n!.

We now prove a result already mentioned in Remark 11. Our inductive de…nition of the
determinant began by expanding down the …rst column. In fact it is the case that we will arrive
at the same answer, the determinant, whichever column or row we expand along.
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Theorem 28 (Equality of determinant expansions 2) Let A = (aij) be an n £ n matrix
and let Cij denote the (i, j)th cofactor of A. Then the determinant detA may be calculated by
expanding along any column or row of A. So, for any 1 6 i 6 n, we have

detA = a1iC1i + a2iC2i + ¢ ¢ ¢+ aniCni [this is expansion along the ith column] (1.4)

= ai1Ci1 + ai2Ci2 + ¢ ¢ ¢+ ainCin [this is expansion along the ith row]. (1.5)

Proof. We showed in Theorem 13 and Proposition 10 that det has properties (i), (ii), (iii),
and have just shown in Proposition 26 that these properties uniquely determine the function
det. Making the obvious changes to Theorem 13 and Proposition 10 it can similarly be shown,
for any i, that the function which assigns

a1iC1i + a2iC2i + ¢ ¢ ¢+ aniCni (1.6)

to the matrix A = (aij) also has properties (i), (ii), (iii). By uniqueness it follows that (1.6)
also equals detA. That is, expanding down any column also leads to the same answer of detA.
Then

detA = detAT = [AT ]1iC1i(A
T ) + [AT ]2iC2i(A

T ) + ¢ ¢ ¢+ [AT ]niCni(A
T )

= ai1Ci1 + ai2Ci2 + ¢ ¢ ¢+ ainCin

by expanding down the ith column of AT , but this is the same sum found when expanding
along the ith row of A.

In practical terms, however, Laplace’s result isn’t that helpful. We have already discounted
repeated expansion along rows and columns of hard-to-calculate cofactors as a hugely ine¢cient
means to …nd determinants (see Remarks 11 and 21). However, it does lead us to the following
theorem of interest.

Theorem 29 (Existence of the Adjugate) Let A be an n £ n matrix. Let Cij denote the
(i, j)th cofactor of A and let C = (Cij) be the matrix of cofactors. Then

CTA = ACT = detA£ In.

In particular, if A is invertible, then

A¡1 =
CT

detA
(1.7)

Proof. Note

[CTA]ij =
nX

k=1

[CT ]ik[A]kj =
nX

k=1

Ckiakj.

When i = j then

[CTA]ii =
nX

k=1

akiCki = detA

2This was proved by Pierre-Simon Laplace (1749-1827) in 1772, though Leibniz had been aware of this result
a century earlier.
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by Theorem 28 as this is the determinant calculated by expanding along the ith column. On
the other hand, if i 6= j, then consider the matrix B which has the same columns as A except
for the ith column of B which is a copy of A’s jth column. As the ith and jth columns of B
are equal then detB is zero. Note that the (k, i)th cofactor of B equals Cki as A and B agree
except in the ith column; so if expanding detB along its ith column we see

0 = detB =
nX

k=1

bkiCki =
nX

k=1

akjCki = [C
TA]ij.

So CTA = detA£ In. That ACT = detA£ In similarly follows. Finally if A is invertible, then
detA 6= 0, and (1.7) follows.

De…nition 30 With notation as in Theorem 29 the matrix CT is called the adjugate of A (or
sometimes the adjoint of A) and is written adjA.

Corollary 31 (Cramer’s Rule 3) Let A be an n£n matrix, b in Rn
col and consider the linear

system (Ajb). The system has a unique solution if and only if detA 6= 0, which is given by

x =
CTb

detA
.

Proof. There is a solution if and only if LA is onto which is then unique if and only if the
kernel is trivial. That is A is invertible and the result follows from the previous theorem and
Corollary 18.

Remark 32 Writing A = (aij) and b = (b1, . . . , bn)
T then Cramer’s Rule with n = 2 expressly

reads as

x1 =
b1a22 ¡ b2a12

detA
, x2 =

b2a11 ¡ b1a21
detA

,

where detA = a11a22 ¡ a12a21. When n = 3 Cramer’s rule reads as

x1 =

b1

¯
¯
¯
¯
a22 a23
a32 a33

¯
¯
¯
¯ ¡ b2

¯
¯
¯
¯
a12 a13
a32 a33

¯
¯
¯
¯+ b3

¯
¯
¯
¯
a12 a13
a22 a23

¯
¯
¯
¯

detA
,

x2 =

¡b1

¯
¯
¯
¯
a21 a23
a31 a33

¯
¯
¯
¯+ b2

¯
¯
¯
¯
a11 a13
a31 a33

¯
¯
¯
¯ ¡ b3

¯
¯
¯
¯
a11 a13
a21 a23

¯
¯
¯
¯

detA
,

x3 =

b1

¯
¯
¯
¯
a21 a22
a31 a32

¯
¯
¯
¯ ¡ b2

¯
¯
¯
¯
a11 a12
a31 a32

¯
¯
¯
¯+ b3

¯
¯
¯
¯
a11 a12
a21 a22

¯
¯
¯
¯

detA
,

where detA = a11a22a33 + a12a23a31 + a13a21a32 ¡ a12a21a33 ¡ a13a22a31 ¡ a11a23a32.

Cramer’s rule though is a seriously limited and impractical means of solving linear systems.
The rule only applies when the matrix A is square and invertible, and the computational power
required to calculate so many cofactors and detA make it substantially more onerous than
row-reduction.

3Named after the Swiss mathematician, Gabriel Cramer (1704-1752), who discovered this result in 1750.
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1.3 Determinants of Linear Maps

De…nition 33 Let T : V ! V be a linear map of a …nite dimensional vector space V. Then
the determinant of T is de…ned by

detT = detA

where A is a matrix representing T with respect to some basis for V.

Proposition 34 (a) The determinant of a linear map is well-de…ned.
(b) If S : V ! V is a second linear map then

det(ST ) = detS £ detT.

(c) T : V ! V is invertible if and only if detT 6= 0. If T is invertible then

det
¡
T¡1

¢
=

1

detT
.

Proof. (a) As T may have many di¤erent matrix representatives, it is possible that di¤erent
representatives might have di¤erent determinants. However any two representatives, A and B,
of T are similar matrices so that A = P¡1BP for some invertible matrix P. Speci…cally if

A = ETE and B = FTF

then A = P¡1BP where P = FIE . By the product rule for determinants we have

detA = det
¡
P¡1BP

¢
=

1

detP
£ detB £ detP = detB,

and hence each matrix representative of T has the same determinant.
(b) Say that S and T are represented by A and B wrt the same basis for V. Then ST is

represented by AB wrt the same basis. So, by the product rule,

det (ST ) = det (AB) = detA £ detB = detS £ detT.

(c) Say that T is invertible. Then there is a linear map S : V ! V such that ST = I = TS.
So

1 = det I = detS £ detT,

showing detT 6= 0. Conversely say that detT 6= 0. Let A be a matrix representing T wrt some
basis. So detA 6= 0 and A is an invertible matrix. Let S : V ! V be the linear map represented
by A¡1 wrt the same basis. Then ST is represented by A¡1A = I wrt this basis, and TS is
represented by AA¡1 = I wrt this basis. But the identity matrix represents the identity map
wrt all bases and so

ST = I = TS.

Thus S = T¡1 and T is invertible. Finally, when T is invertible, we have
¡
detT¡1

¢
(detT ) = det

¡
T¡1T

¢
= det I = 1,

and the result follows.
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Example 35 Let V = h1, x, x2i be the space of real polynomials in x of degree at most 2. De…ne
D, T : V ! V by

(Df) (x) = f 0(x), (Tf) (x) = f(x+ 1).

Evaluate detD and detT.

Solution. As D(1) = 0 then D is not invertible and so detD = 0. Alternatively the matrix
for D wrt f1, x, x2g is

D =

0

@
0 1 0
0 0 2
0 0 0

1

A ,

and detD = 03 = 0 as this is an upper triangular matrix.
Now the matrix for T wrt the same basis is

T =

0

@
1 1 1
0 1 2
0 0 1

1

A

and so detT = 13 = 1.
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2. EIGENVALUES, EIGENVECTORS AND DI-
AGONALIZABILITY

De…nition 36 An n£n matrix A is said to be diagonalizable if there is an invertible matrix
P such that P¡1AP is diagonal.

Two questions immediately spring to mind: why might this be a useful de…nition, and how
might we decide whether such a matrix P exists? In an attempt to partially answer the …rst
question, we note

(P¡1AP )k = (P¡1AP )(P¡1AP )£ ¢ ¢ ¢ £ (P¡1AP ) = P¡1AkP,

as all the internal products PP¡1 cancel. Thus if P¡1AP = D is diagonal then

Ak = PDkP¡1 for a natural number k

and so we are in a position to easily calculate the powers of A. So ease of calculation is clearly
one advantage of a matrix being diagonalizable.

For now we will consider this reason enough to seek to answer the second question: how do we
determine whether such a P exists? Suppose such a P exists and has columns v1,v2, . . . ,vn. As
P is invertible then the vi are independent. Further as AP = PD where D = diag(λ1, . . . , λn)
then we have that

ith column of AP = Avi and ith column of PD = P (λie
T
i ) = λivi.

So the columns of P are n independent vectors, each of which A maps to a scalar multiple of
itself. Thus we make the following de…nitions.

De…nition 37 Let A be an n£n matrix. We say that a vector v 6= 0 in Rn
col is an eigenvector1

of A if Av = λv for some scalar λ. The scalar λ is called the eigenvalue of v and we will
also refer to v as a λ-eigenvector.

De…nition 38 n linearly independent eigenvectors of an n£ n matrix A are called an eigen-
basis.

Remark 39 Let T : V ! V be a linear map of a …nite-dimensional vector space. The terms
eigenvalue, eigenvector and eigenbasis are well-de…ned for T . If v is a λ-eigenvector of a matrix
A, then P¡1v is a λ-eigenvector of B = P¡1AP . So if A and B are matrix representatives of
T, then the eigenvalues of A and B are the same; the eigenvectors of A and B will be di¤erent
co-ordinate vectors, but represent the same vectors in V.

1The German adjective eigen means ‘own’ or ‘particular’. David Hilbert was the …rst to use the term in the
early 20th century. The term proper or characteristic is sometimes also used, especially in older texts.
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And we have partly demonstrated the following.

Theorem 40 An n £ n matrix A is diagonalizable if and only if A has an eigenbasis.

Proof. We showed above that if such a P exists then its columns form an eigenbasis. Conversely
if v1, . . . ,vn form an eigenbasis, with respective eigenvalues λ1, . . . , λn, we de…ne

P = (v1j ¢ ¢ ¢ j vn)

to be the n£n matrix with columns v1, . . . ,vn. Again P is invertible as its columns are linearly
independent. Then

PeTi = vi and APeTi = Avi = λivi = λiPe
T
i = P (λie

T
i ),

so that P¡1APeTi = λie
T
i for each i or equivalently

P¡1AP = diag(λ1, λ2, . . . , λn).

Note that λ is an eigenvalue of A if and only if the equation Av = λv has a non-zero solution
or equivalently if (λIn ¡ A)v = 0 has a non-zero solution. This is equivalent to λIn ¡A being
singular, which in turn is equivalent to det(λIn ¡ A) = 0. Thus we have shown (a) below.

Proposition 41 Let A be an n £ n matrix and λ 2 R.
(a) λ is an eigenvalue of A if and only if x = λ is a root of det(xIn ¡ A) = 0.
(b) det(xIn ¡A) is a polynomial in x of degree n which is monic (i.e. leading coe¢cient is 1).
(c) If det(xIn ¡ A) = xn + cn¡1x

n¡1 + ¢ ¢ ¢+ c0 then

c0 = (¡1)
n detA and cn¡1 = ¡trace(A).

Proof. (b) Note

det(xIn ¡ A) =

¯
¯
¯
¯
¯
¯
¯
¯
¯

x¡ a11 ¡a12 ¢ ¢ ¢ ¡a1n
¡a21 x¡ a22 ¢ ¢ ¢ ¡a2n

...
...

. . .
...

¡an1 ¡an2 ¢ ¢ ¢ x¡ ann

¯
¯
¯
¯
¯
¯
¯
¯
¯

.

This determinant is the sum of n! products that take one entry from each row and each column.
The largest power of x is produced from the product of the diagonal entries

(x ¡ a11) (x ¡ a22) ¢ ¢ ¢ (x ¡ ann) . (2.1)

The greatest power of x here is xn and the coe¢cient of xn is 1. All other products give
polynomials in x of degree strictly less than n.

(c) By setting x = 0 we see that

c0 = det (¡A) = (¡1)n detA.

Contributions to the xn¡1 term only come from the product of the diagonal entries (2.1). If
one diagonal entry is omitted from a product then necessarily a second diagonal entry is also
omitted and thus the greatest power of x from such a product can be xn¡2. The coe¢cient of
xn¡1 from (2.1) is

¡a11 ¡ a22 ¡ ¢ ¢ ¢ ¡ ann = ¡trace(A).
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De…nition 42 Let A be a real n£ n matrix. Then the characteristic polynomial of A is

χA(x) = det(xIn ¡ A).

Example 43 Find the eigenvalues of the following matrices.

A =

µ
1 1
1 1

¶

; B =

µ
1 ¡1
1 1

¶

; C =

0

@
3 2 ¡4
0 1 4
0 0 3

1

A; D =

0

@
5 ¡3 ¡5
2 9 4

¡1 0 7

1

A.

Solution. By Proposition 41(a) this is equivalent to …nding the real roots of the matrices’
characteristic polynomials.

(a) The eigenvalues of A are 0 and 2 as

χA(x) =

¯
¯
¯
¯
x¡ 1 ¡1
¡1 x¡ 1

¯
¯
¯
¯ = (x¡ 1)2 ¡ 1 = x(x ¡ 2).

(b) Similarly note

χB(x) =

¯
¯
¯
¯
x ¡ 1 1
¡1 x ¡ 1

¯
¯
¯
¯ = (x ¡ 1)2 + 1 = x2 ¡ 2x+ 2.

Now χB(x) has no real roots (the roots are 1§ i) and so B has no eigenvalues.
(c) As C is triangular then we can immediately see that χC(x) = (x¡ 3)(x¡ 1)(x¡ 3). So

C has eigenvalues 1, 3, 3, the eigenvalue of 3 being a repeated root of χC(x).
(d) Finally D has eigenvalues 6, 6, 9, the eigenvalue of 6 being repeated as χD(x) equals

¯
¯
¯
¯
¯
¯

x ¡ 5 3 5
¡2 x ¡ 9 ¡4
1 0 x ¡ 7

¯
¯
¯
¯
¯
¯
=

¯
¯
¯
¯
¯
¯

x¡ 6 x¡ 6 x¡ 6
¡2 x¡ 9 ¡4
1 0 x¡ 7

¯
¯
¯
¯
¯
¯
= (x ¡ 6)

¯
¯
¯
¯
¯
¯

1 1 1
¡2 x ¡ 9 ¡4
1 0 x ¡ 7

¯
¯
¯
¯
¯
¯

= (x ¡ 6)

¯
¯
¯
¯
¯
¯

1 0 0
¡2 x¡ 7 ¡2
1 ¡1 x¡ 8

¯
¯
¯
¯
¯
¯
= (x¡ 6)

¯
¯
¯
¯
x¡ 7 ¡2
¡1 x¡ 8

¯
¯
¯
¯ = (x¡ 6)2(x ¡ 9).

Here follow some basic facts about eigenvalues, eigenvectors and diagonalizability.

Proposition 44 Let A be an n £ n matrix and λ 2 R.
(a) The λ-eigenvectors of A, together with 0, form a subspace of Rn

col. This is called the λ-
eigenspace, usually denoted Eλ.
(b) For 1 6 i 6 k, let vi be a λi-eigenvector of A. If λ1, . . . , λk are distinct then v1, . . . ,vk are
independent.
(c) The distinct eigenspaces of A form a direct sum in Rn

col. This direct sum equals Rn
col if and

only if A is diagonalizable.
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Proof. (a) This is ker (A ¡ λIn) and kernels are subspaces.
(b) may be proven by induction as follows. Note that v1 6= 0 (as it is an eigenvector) and so

v1 makes an independent set. Suppose, as our inductive hypothesis, that v1, . . . ,vi are linearly
independent vectors and that

α1v1 + ¢ ¢ ¢+ αivi + αi+1vi+1 = 0 (2.2)

for some reals α1, . . . , αi+1. If we apply A to both sides of (2.2), we …nd

α1λ1v1 + ¢ ¢ ¢+ αiλivi + αi+1λi+1vi+1 = 0. (2.3)

Now subtracting λi+1 times (2.2) from (2.3) we arrive at

α1(λ1 ¡ λi+1)v1 + ¢ ¢ ¢+ αi(λi ¡ λi+1)vi = 0.

By hypothesis v1, . . . ,vi are linearly independent vectors and hence αj(λj ¡ λi+1) = 0 for
1 6 j 6 i. As λ1, . . . , λi are distinct then αj = 0 for 1 6 j 6 i and then by (2.2) αi+1 = 0. We
have shown that v1, . . . ,vi+1 are linearly independent vectors and so (b) follows by induction.

(c) The …rst part is a consequence of the argument in (b). A is diagonalizable if and only
if this direct sum contains an eigenbasis.

Corollary 45 If an n£ n matrix has n distinct eigenvalues then it is diagonalizable.

Proof. Let λ1, . . . , λn denote the distinct eigenvalues. For each i there is a λi-eigenvector vi
and by Proposition 44(b) v1, . . . ,vn are independent. There being n of them they form an
eigenbasis.

² It is important to note this is a su¢cient, but not a necessary condition for diagonaliz-
ability. For example, In is diagonal (and so diagonalizable) but has eigenvalue 1 repeated
n times.

Example 46 Determine the eigenvectors and diagonalizability of the matrices A,B,C,D from
Example 43. Comment on the direct sum of the eigenspaces.

Solution. (a) We determined that A has eigenvalues λ = 0 and 2. Note that

λ = 0 : ker

µ
1 1
1 1

¶

=

¿µ
1

¡1

¶À

;

λ = 2 : ker

µ
¡1 1
1 ¡1

¶

=

¿µ
1
1

¶À

.

(1,¡1)T and (1, 1)T form an eigenbasis and if we set

P =

µ
1 1

¡1 1

¶

then P¡1AP =

µ
0 0
0 2

¶

.

Note that we could have created an invertible matrix P by swapping its columns and we would
have found P¡1AP = diag(2, 0). The eigenvalues appear in the diagonal of P¡1AP in the order
the corresponding eigenvectors appear in the columns of P.
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Note that E0 ©E2 = R2
col.

(b) B has no real eigenvalues and so no eigenvectors. Consequently B is not diagonalizable.
(At least not using a real matrix P ; however see Example 47.) The direct sum of the eigenspaces
is f0g .

(c) C has eigenvalues 1, 3, 3. Note

λ = 3 : ker

0

@
0 2 ¡4
0 ¡2 4
0 0 0

1

A =

*0

@
1
0
0

1

A ,

0

@
0
2
1

1

A

+

.

λ = 1 : ker

0

@
2 2 ¡4
0 0 4
0 0 2

1

A =

*0

@
1

¡1
0

1

A

+

.

An eigenbasis is (1, 0, 0)T , (0, 2, 1)T and (1,¡1, 0)T . Setting

P =

0

@
1 0 1
0 2 ¡1
0 1 0

1

A then P¡1CP = diag(3, 3, 1).

Note that E3 © E1 = R3
col.

(d) D has eigenvalues 6, 6, 9. Note that

λ = 6 : ker

0

@
¡1 ¡3 ¡5
2 3 4

¡1 0 1

1

A =

*0

@
1

¡2
1

1

A

+

.

λ = 9 : ker

0

@
¡4 ¡3 ¡5
2 0 4

¡1 0 ¡2

1

A =

*0

@
¡2
1
1

1

A

+

The 6-eigenvectors are non-zero multiples of (1,¡2, 1)T and the 9-eigenvectors are non-zero
multiples of (¡2, 1, 1)T . As we can …nd no more than two independent eigenvectors, then there
is no eigenbasis and D is not diagonalizable. In fact, we will shortly see that as soon as we
noted the multiplicity two eigenvalue 6 yielded only one independent eigenvector then we could
have known D is not diagonalizable.

Example 47 Find a complex matrix P such that P¡1BP is diagonal, where B is as given in
Example 43.

Remark 48 When we de…ned ‘diagonalizability’ in De…nition 36 we were, strictly speaking,
de…ning ‘diagonalizability over R’. We would say that B is not diagonalizable over R as no
such matrix P with real entries exists, but B is diagonalizable over C as such a complex matrix
P does exist.

Solution. The roots of χB(x) = (x ¡ 1)2 + 1 are 1 § i. When the …eld of scalars is C, then
these are distinct complex eigenvalues and we know that B is diagonalizable over C. Note that

λ = 1 + i : ker

µ
¡i ¡1
1 ¡i

¶

=

¿µ
i
1

¶À

;

λ = 1¡ i : ker

µ
i ¡1
1 i

¶

=

¿µ
1
i

¶À

.
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So we may take

P =

µ
i 1
1 i

¶

and …nd P¡1BP =

µ
1 + i 0
0 1¡ i

¶

.

Note that E1+i © E1¡i = C2
col.

Examples 43 and 46 cover the various eventualities that may arise when investigating the
diagonalizability of matrices. In summary, the checklist when testing a matrix for diagonaliz-
ability is as follows.

Algorithm 49 (Determining Diagonalizability over R and C)
(a) Let A be an n£ n matrix. Determine its characteristic polynomial χA.
(b) If any of the roots of χA are not real, then A is not diagonalizable over R.
(c) If all the roots of χA are real and distinct then A is diagonalizable over R.
(d) If all the roots of χA are real, and for each root λ there are as many independent λ-
eigenvectors as repeated factors of x¡ λ in χA(x), then A is diagonalizable over R.
(c)’ If the roots of χA are distinct complex numbers then A is diagonalizable over C.
(d)’ If for each root λ of χA and there are as many independent λ-eigenvectors in Cn

col as
repeated factors of x¡ λ in χA(x), then A is diagonalizable over C.

(c), and the same result (c’) for complex matrices, were proven in Corollary 45.
(d), and it complex version (d’), will be proven in Corollary 52.

So a square matrix can fail to be diagonalizable using a real invertible matrix P when

² not all the roots of χA(x) are real – counting multiplicities and including complex roots,
χA(x) has n roots. However we will see (Proposition 51) that there are at most as many
independent λ-eigenvectors as repetitions of λ as a root. So if some roots are not real
we cannot hope to …nd n independent real eigenvectors. This particular problem can be
circumvented by seeking an invertible complex matrix P instead.

² some (real or complex) root λ of χA(x) has fewer independent λ-eigenvectors (in Rn
col or

Cn
col) than there are factors of x ¡ λ in χA(x).

The latter problem cannot be circumvented, however this latter possibility is reassuringly un-
likely. If a matrix’s entries contain experimental data or randomly selected entries – rather
than being a contrived exercise – then χA(x) will almost certainly have distinct complex roots
and so A will be diagonalizable using a complex invertible matrix P .

De…nition 50 Let A be an n £ n matrix with eigenvalue λ.
(a) The algebraic multiplicity of λ is the number of factors of x¡λ in the characteristic

polynomial χA(x).
(b) The geometric multiplicity of λ is the maximum number of linearly independent λ-

eigenvectors. This equals the dimension of the λ-eigenspace.

Proposition 51 The geometric multiplicity of an eigenvalue is less than or equal to its alge-
braic multiplicity.
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Proof. Let g and a respectively denote the geometric and algebraic multiplicities of an eigen-
value λ of an n£n matrix A. There are then g independent λ-eigenvectors v1,v2, . . . ,vg which
we can extend these vectors to n independent vectors v1, . . . ,vn. If we put v1, . . . ,vn as the
columns of a matrix P then, arguing as in Theorem 40, we have

P¡1AP =

µ
λIg B
0 C

¶

,

where B is a g£ (n¡g) matrix and C is (n¡g)£ (n¡g). By the product rule for determinants
we have

χA(x) = det(xIn ¡ A)

= det(P (xIn ¡ P¡1AP )P¡1)

= det(xIn ¡ P¡1AP )

= det

µ
(x ¡ λ)Ig ¡B

0 xIn¡g ¡ C

¶

= (x ¡ λ)gχC(x).

So there are at least g factors of x ¡ λ in χA(x) and hence a > g.

Corollary 52 Let A be a square matrix with all the roots of χA being real. Then A is di-
agonalizable if and only if, for each eigenvalue, its geometric multiplicity equals its algebraic
multiplicity.

Proof. Let the distinct eigenvalues of A be λ1, . . . , λk with geometric multiplicities g1, . . . , gk
and algebraic multiplicities a1, . . . , ak. By the previous proposition

g1 + ¢ ¢ ¢+ gk 6 a1 + ¢ ¢ ¢+ ak = degχA = n, (2.4)

the equalities following as all the roots of χA are real. We can …nd gi linearly independent

λi-eigenvectors v
(i)
1 , . . . ,v

(i)
gi for each i. If gi = ai for each i then we have n eigenvectors in

all, but if gi < ai for any i then g1 + ¢ ¢ ¢ + gk < n by (2.4), so we will not be able to …nd n
independent eigenvectors and no eigenbasis exists. It remains to show that if gi = ai for each i
then these n eigenvectors are indeed independent. Say that

kX

i=1

giX

j=1

α(i)j v
(i)
j = 0,

for some scalars α(i)j . We can rewrite this as

kX

i=1

wi = 0, where wi =

giX

j=1

α
(i)
j v

(i)
j .

As the distinct eigenspaces form a direct sum it follows that wi = 0 for each i; then, as the
vectors v

(i)
1 , . . . ,v

(i)
gi are independent, each α

(i)
j = 0 for each i and j. Hence these n vectors are

indeed independent and so form an eigenbasis.
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If we recall the matrices A,B,C,D from Example 43, we can now see that A meets criterion
(c) and so is diagonalizable; B meets criterion (b) and so is not diagonalizable over R but
does meet criterion (c)’ and is diagonalizable over C; matrix C meets criterion (d) and so is
diagonalizable over R; matrix D fails criteria (c) and (d) and so is not diagonalizable over
R, speci…cally because the eigenvalue λ = 6 has a greater algebraic multiplicity of 2 than its
geometric multiplicity of 1. This problem remains true when using complex numbers and so D
is also not diagonalizable over C as D fails (c’) and (d’).

Remark 53 (Diagonalizability over a general …eld) We can decide on the diagonalizabil-
ity of a matrix over a general …eld by following the same procedures as above. Firstly all the
roots of the characteristic polynomial need to be in the …eld, and then for each eigenvalue the
algebraic multiplicity needs to equal the geometric multiplicity. For example the matrix

B =

µ
1 ¡1
1 1

¶

has characteristic polynomial (x ¡ 1)2 + 1 = x2 ¡ 2x+ 2.

² Over C this is diagonalizable as B has distinct roots 1§ i.

² The same would be true over the …eld Q [i] = fq1 + q2i j q1, q2 2 Qg .

² Over R and Q the characteristic polynomial has no roots and so B is not diagonalizable.

² Over Z2 the characteristic polynomial equals x2 but the 0-eigenspace,
D
(1, 1)T

E
, is 1-

dimensional. As g0 = 1 < 2 = a0 then B is not diagonalizable.

² Over Z3 the characteristic polynomials has no roots as ¡1 = 2 has no square root and so
B is not diagonalizable.

² Over Z5 we note ¡1 = 4 = 22 and so x2 ¡ 2x + 2 = (x+ 1) (x ¡ 3). As B has distinct
eigenvalues it is diagonalizable.

Example 54 Show that the matrix A below is diagonalizable and …nd An where n is a positive
integer.

A =

0

@
2 2 ¡2
1 3 ¡1

¡1 1 1

1

A.

Solution. Adding column 2 of xI ¡A to column 1, we can see that χA(x) equals
¯
¯
¯
¯
¯
¯

x ¡ 2 ¡2 2
¡1 x ¡ 3 1
1 ¡1 x ¡ 1

¯
¯
¯
¯
¯
¯
=

¯
¯
¯
¯
¯
¯

x ¡ 4 ¡2 2
x ¡ 4 x ¡ 3 1
0 ¡1 x ¡ 1

¯
¯
¯
¯
¯
¯

=

¯
¯
¯
¯
¯
¯

x ¡ 4 ¡2 2
0 x ¡ 1 ¡1
0 ¡1 x ¡ 1

¯
¯
¯
¯
¯
¯
= (x ¡ 4)(x ¡ 2)x.
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Hence the eigenvalues are λ = 0, 2, 4. That they are distinct implies immediately that A is
diagonalizable. Note

λ = 0: ker

0

@
¡2 ¡2 2
¡1 ¡3 1
1 ¡1 ¡1

1

A =

*0

@
1
0
1

1

A

+

;

λ = 2: ker

0

@
0 ¡2 2

¡1 ¡1 1
1 ¡1 1

1

A =

*0

@
0
1
1

1

A

+

;

λ = 4: ker

0

@
2 ¡2 2

¡1 1 1
1 ¡1 3

1

A =

*0

@
1
1
0

1

A

+

.

So three independent eigenvectors are (1, 0, 1)T , (0, 1, 1)T , (1, 1, 0)T . If we set

P =

0

@
1 0 1
0 1 1
1 1 0

1

A so that P¡1 =
1

2

0

@
1 ¡1 1

¡1 1 1
1 1 ¡1

1

A,

then P¡1AP = diag(0, 2, 4) and P¡1AnP = (P¡1AP )n = diag(0, 2n, 4n). Finally An equals

0

@
1 0 1
0 1 1
1 1 0

1

A

0

@
0 0 0
0 2n 0
0 0 4n

1

A 1

2

0

@
1 ¡1 1

¡1 1 1
1 1 ¡1

1

A

=

0

@
22n¡1 22n¡1 ¡22n¡1

22n¡1 ¡ 2n¡1 2n¡1 + 22n¡1 2n¡1 ¡ 22n¡1

¡2n¡1 2n¡1 2n¡1

1

A.

Example 55 Let

A =

0

@
6 1 2
0 7 2
0 ¡2 2

1

A.

(a) Show that A has two eigenvalues λ1 and λ2. Is A diagonalizable?
(b) Show further that A2 = (λ1 + λ2)A ¡ λ1λ2I. Are there scalars a0, a1, . . . , an, for some n,
such that

anA
n + an¡1A

n¡1 + ¢ ¢ ¢+ a0I = diag(1, 2, 3) ?

Solution. (a) We have

χA(x) =

¯
¯
¯
¯
¯
¯

x ¡ 6 ¡1 ¡2
0 x ¡ 7 ¡2
0 2 x ¡ 2

¯
¯
¯
¯
¯
¯
= (x¡ 6) f(x ¡ 7)(x ¡ 2) + 4g = (x¡ 6)2(x ¡ 3).
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As one of the eigenvalues is repeated then we cannot immediately decide onA’s diagonalizability.
Investigating the repeated eigenvalue we see

λ1 = 6: ker

0

@
0 ¡1 ¡2
0 ¡1 ¡2
0 2 4

1

A =

*0

@
1
0
0

1

A ,

0

@
0
2

¡1

1

A

+

,

and this is su¢cient to con…rm that A is diagonalizable. Further

A2 ¡ (λ1 + λ2)A+ λ1λ2I

= A2 ¡ 9A+ 18I

=

0

@
36 9 18
0 45 18
0 ¡18 0

1

A ¡ 9

0

@
6 1 2
0 7 2
0 ¡2 2

1

A+

0

@
18 0 0
0 18 0
0 0 18

1

A = 0.

So A2 = 9A ¡ 18I can be written as a linear combination of A and I, and likewise

A3 = 9A2 ¡ 18A = 81A ¡ 180I

can also be written as such a linear combination. More generally (say using a proof by induction)
we …nd that any polynomial in A can be written as a linear combination of A and I. However
if diag(1, 2, 3) = αA+ βI for some α, β then, just looking at the diagonal entries, we’d have

6α+ β = 1, 7α+ β = 2, 2α+ β = 3,

and, with a quick check, we see this system is inconsistent. Hence diag(1, 2, 3) cannot be
expressed as a polynomial in A and no such scalars a0, a1, . . . , an exist.

Example 56 Determine xn and yn where x0 = 1, y0 = 0 and

xn+1 = xn ¡ yn and yn+1 = xn + yn for n > 0.

Solution. We can rewrite the two recurrence relations as a single recurrence relation involving
a vector, namely

µ
xn
yn

¶

=

µ
1 ¡1
1 1

¶µ
xn¡1
yn¡1

¶

=

µ
1 ¡1
1 1

¶n µ
x0
y0

¶

.

From Example 47 we have

P¡1

µ
1 ¡1
1 1

¶

P =

µ
1 + i 0
0 1¡ i

¶

where P =

µ
i 1
1 i

¶

.

So µ
1 ¡1
1 1

¶n

= P

µ
1 + i 0
0 1¡ i

¶n

P¡1

=

µ
i 1
1 i

¶µ
(1 + i)n 0
0 (1¡ i)n

¶
¡
¡1
2

¢
µ

i ¡1
¡1 i

¶

= 1
2

µ
(1 + i)n + (1¡ i)n i(1¡ i)n ¡ i(1 + i)n

i(1¡ i)n ¡ i(1 + i)n (1 + i)n + (1¡ i)n

¶

= 1
2

µ
2Re(1 + i)n 2 Im (1 + i)n

2 Im (1 + i)n 2Re(1 + i)n

¶

.
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By De Moivre’s theorem, and noting 1 + i =
p
2cis (π/4), we have

µ
xn
yn

¶

=

µ
Re(1 + i)n Im (1 + i)n

Im (1 + i)n Re(1 + i)n

¶µ
1
0

¶

=

µ
Re(1 + i)n

Im (1 + i)n

¶

= 2n/2
µ
cos (nπ/4)
sin (nπ/4)

¶

.

We brie‡y return to our …rst question from the start of the section: why might diago-
nalizability be a useful de…nition? We have seen that it can be computationally helpful, but
representing a linear map by a diagonal matrix also helps us appreciate the e¤ect of the linear
map.

For each choice of basis of a …nite dimensional vector space, a linear map is represented
by a certain matrix. So a sensible question is: is there a preferential basis to best describe
the linear map? Certainly if we can produce a diagonal matrix representative this is optimal.
But we recall that some matrices are not diagonalizable; this, in turn, invites the more re…ned
question: into what preferred forms might we be able to change those matrices with a sensible
choice of co-ordinates?

Every square complex matrix is similar to a triangular matrix. In fact, we can do much
better that this with the Jordan normal form being a very descriptive canonical form for
complex matrices. Working over other …elds the best we can do is the Frobenius normal form
or the rational canonical form. These are results covered in the second year.
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3. THE SPECTRAL THEOREM

In the previous two chapters we have solely been interested in making an invertible change of
variable. That is, the change of basis matrix P need only be invertible. When we make an
invertible change of variable, algebraic properties such as

² determinant, trace, eigenvalues, dimension, rank, invertibility

are all preserved. However geometric properties are not typically preserved such as:

² length, angle, area and volume, scalar product, normal forms of curves and surfaces.

For example the curve with equation

x2 + y2 = 1,

under the invertible change of variable

X = 2x, Y = 3y,

takes on the equation
X2

4
+

Y 2

9
= 1.

What was a circle with area π has become an ellipse with area 6π.
Should we wish to make changes of variable which preserve geometric properties then we

need to make an orthogonal change of variable.

De…nition 57 An n£ n matrix P is orthogonal if P¡1 = P T .
This is equivalent to the columns (or rows) of P being unit length and mutually perpen-

dicular. That is to say, the columns (or rows) of P form an orthonormal basis of Rn
col (or

Rn).

Proposition 58 The orthogonal matrices are precisely the matrices which preserve the scalar
product. That is

Px ¢ Py = x ¢ y for all x,y 2 Rn
col () P is orthogonal.

Proof. Let P be an orthogonal matrix. Then

Px ¢ Py = (Px)T Py = xTP TPy = xTy = x ¢ y.

Conversely assume Px ¢ Py = x ¢ y for all x,y 2 Rn
col. If we set x = eTi and y = eTj then

£
P TP

¤
ij
= eiP

TPeTj = PeTi ¢ PeTj = e
T
i ¢ eTj = eie

T
j = δij = [I]ij .
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As this is true for each i, j then P TP = I and so P is orthogonal.

A …rst question then is: what matrices can be diagonalized by an orthogonal change of
variables? Say that

P¡1AP = D

where D is diagonal and P is orthogonal. Then A = PDP¡1 = PDP T , so

AT =
¡
PDP T

¢T
= P TTDTP T = PDP T = A.

Thus if a matrix A is orthogonally diagonalizable it is necessarily symmetric. The converse
happens to be true and is known as the spectral theorem:

² Spectral Theorem: Let A be an n £ n symmetric matrix. Then the roots of χA are
real and A has an eigenbasis consisting of mutually perpendicular unit vectors. That is,
A has an orthonormal eigenbasis.

We prove a …rst result towards the proof. Recall that eigenvectors associated with distinct
eigenvalues are independent – the corresponding result for symmetric matrices shows that
they’re perpendicular.

Proposition 59 Let A be a real n £ n symmetric matrix. If v and w are eigenvectors of A
with associated eigenvalues λ and µ, where λ 6= µ, then v ¢w = 0.

Proof. We have that Av = λv and Aw = µw where λ 6= µ. Then, as A is symmetric, we have

λv ¢w = λvTw = (λv)Tw = (Av)Tw = vTATw = vTAw = vTµw = µv ¢w.

As λ 6= µ then v ¢w = 0.

Example 60 Let

A =

µ
1 1

2
1
2
1

¶

.

(a) Find an orthogonal matrix P such that P TAP is diagonal.
(b) Show that the curve x2 + xy + y2 = 1 is an ellipse, and …nd its area. Sketch the curve.

Solution. (a) Note

χA(x) = (1¡ x)2 ¡
1

4
=

µ

x¡
1

2

¶µ

x¡
3

2

¶

.

When

λ =
1

2
: ker

µ
1
2

1
2

1
2

1
2

¶

=

¿
1

¡1

À

;

λ =
3

2
: ker

µ
¡1
2

1
2

1
2

¡1
2

¶

=

¿
1
1

À

.

Note that the 1
2
-eigenvectors and 3

2
-eigenvectors are perpendicular to one another – this was

bound to be the case by the previous proposition. The eigenvectors (1,¡1)T and (1, 1)T cannot
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be the columns of an orthogonal matrix, but if we normalize them to unit vectors then they
form the columns of an orthogonal matrix. Thus we set

P =
1

p
2

µ
1 1

¡1 1

¶

,

noting this matrix rotates the plane by π/4 clockwise about the origin. We then have

P TAP =
1

p
2

µ
1 ¡1
1 1

¶µ
1 1

2
1
2
1

¶
1

p
2

µ
1 1

¡1 1

¶

=
1

2

µ
1
2

¡1
2

3
2

3
2

¶µ
1 1

¡1 1

¶

=
1

2

µ
1 0
0 3

¶

=

µ
1
2
0

0 3
2

¶

.

(b) The equation x2 + xy + y2 = 1 can be rewritten as

(x y)

µ
1 1

2
1
2
1

¶µ
x
y

¶

= 1.

Making the change of variable µ
x
y

¶

= P

µ
X
Y

¶

,

the equation 1 = (x y)A (x y)T becomes

1 = (X Y )P TAP (X Y )T =
1

2
X2 +

3

2
Y 2.

This is the equation of an ellipse with semi-axes of length a =
p
2 and b =

p
2/3 and with area

πab =
2π
p
3
.

We can say the curve is an ellipse, and calculate its area, as the change of variable is orthogonal.
The XY -axes are given by

X-axis or Y = 0 is in the direction of P (1, 0)T , so is the line y = x;

Y -axis or X = 0 is in the direction of P (0, 1)T , so is the line x+ y = 0.

A sketch of the ellipse, with the XY -axes labelled, is given in Figure 1 below.

Figure 1: x2 + xy + y2 = 1
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When an n £ n matrix has distinct eigenvalues then we can …nd n eigenvectors which are
independent and so form an eigenbasis; we can create an invertible matrix P with those eigen-
vectors as the columns of P. Similarly when a symmetric n£ n matrix has distinct eigenvalues
then we can …nd n eigenvectors which are orthogonal (and thus independent) and so form an
eigenbasis; the matrix P with those eigenvectors as its columns will not in general be orthogo-
nal, but if we normalize the eigenvectors – scale them to unit length – then the matrix P will be
orthogonal as its columns will be mutually perpendicular and unit length (i.e. orthonormal).

When an n £ n matrix has repeated eigenvalues then there may not be any eigenbasis.
This cannot happen when a symmetric square matrix has repeated eigenvalues, but this result
is reasonably sophisticated. In particular, we will need to prove the following for symmetric
matrices:

² The roots of the characteristic polynomial are real.

² The direct sum of the eigenspaces is the entire space.

² Each eigenspace has an orthonormal basis.

We begin by demonstrating the …rst result

Proposition 61 Let A be a real n£ n symmetric matrix. The roots of χA(x) are real.

Proof. Let λ be a (potentially complex) root of χA. Then by (an appropriate complex version
of) Proposition 41(a), there is a non-zero complex vector v in Cn

col such that Av = λv. As the
entries of A are real, when we conjugate this equation we obtain A¹v = ¹λ¹v. As A = AT , and
by the product rule for transposes, we see

¹λ¹vTv = (¹λ¹v)Tv = (A¹v)Tv = ¹vTATv = ¹vTAv = ¹vTλv = λ¹vTv.

Now for any non-zero complex vector v = (v1, v2, . . . , vn)
T we have

¹vTv = ¹v ¢ v = v1v1 + ¢ ¢ ¢+ vnvn = jv1j
2 + ¢ ¢ ¢+ jvnj

2 > 0.

As (¹λ ¡ λ)¹vTv = 0 then λ = ¹λ and so λ is real.

We now move on to the third bullet point: we will demonstrate that any subspace of Rn

has an orthonormal basis. This result then applies to eigenspaces as they are subspaces. Our
…rst result is to show how an orthonormal set can be constructed from a linearly independent
one.

Say that v1,v2, . . . ,vk is an independent set in Rn; we shall construct an orthonormal basis
w1,w2, . . . ,wk such that

hv1,v2, . . . ,vii = hw1,w2, . . . ,wii for 1 6 i 6 k.

There are, in fact, only limited ways of doing this. As hw1i = hv1i then w1 is a scalar multiple
of v1. But as w1 is a unit vector then w1 = §v1/ jv1j. So there are only two choices for w1
and it seems most natural to take w1 = v1/ jv1j (rather than needlessly introducing a negative
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sign). With this choice of w1 we then need to …nd a unit vector w2 perpendicular to w1 and
such that hw1,w2i = hv1,v2i . In particular, we have

v2 = αw1 + βw2 for some scalars α, β.

We require w2 to be perpendicular to w1 and so α = v2 ¢w1 as w1 ¢w1 = 1. Note that

y2 = βw2 = v2 ¡ (v2 ¢w1)w1

is the component of v2 perpendicular to v1, and y2 6= 0 as w1 is independent of v2. We then
have w2 = §y2/ jy2j. Again we have two choices of w2 but again there is no particular reason
to choose the negative option.

w2

v2

v3

y2
v1

w1

y3
w3

Figure 2: GSOP example

The diagram above hopefully captures the geometric nature of this process. v1 spans a line and
so there are only two unit vectors parallel to it with w1 = v1/ jv1j being a more natural choice
than its negative. hv1,v2i is a plane divided into two half-planes by the line hv1i and there
are two choices of unit vector in this plane which are perpendicular to the line. We choose w2
to be that unit vector pointing into the same half-plane as v2 does. Continuing, hv1,v2,v3i is
a three-dimensional space divided it into two half-spaces by the plane hv1,v2i. There are two
choices of unit vector in this space which are perpendicular to the plane. We choose w3 to be
that unit vector pointing into the same half-space as v3 does. This process is known as the
Gram-Schmidt orthogonalization process (GSOP),1 with the rigorous details appearing below.

1Named after the Danish mathematician Jorgen Pedersen Gram (1850-1916) and the German mathematician
Erhard Schmidt (1876-1959). The orthogonalization process was employed by Gram in a paper of 1883 and
by Schmidt, with acknowledgements to Gram, in a 1907 paper, but in fact the process had also been used by
Laplace as early as 1812.
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Theorem 62 (Gram-Schmidt Orthogonalization Process (GSOP)) Let v1, . . . ,vk be
independent vectors in Rn

col (or Rn). Then there are orthonormal vectors w1, . . . ,wk such that,
for each 1 6 i 6 k, we have

hw1, . . . ,wii = hv1, . . . ,vii. (3.1)

Proof. We will prove this by induction on i. The result is seen to be true for i = 1 by taking
w1 = v1/jv1j. Suppose now that 1 6 I < k and that we have so far produced orthonormal
vectors w1, . . . ,wI such that (3.1) is true for 1 6 i 6 I. We then set

yI+1 = vI+1 ¡
IX

j=1

(vI+1 ¢wj)wj.

Note that, for 1 6 i 6 I,

yI+1 ¢wi = vI+1 ¢wi ¡
IX

j=1

(vI+1 ¢wj)δij = vI+1 ¢wi ¡ vI+1 ¢wi = 0. (3.2)

So yI+1 is perpendicular to each of w1, . . . ,wI . Further yI+1 is non-zero, for if yI+1 = 0 then

vI+1 =
IX

j=1

(vI+1 ¢wj)wj is in hw1, . . . ,wIi = hv1, . . . ,vIi

which contradicts the linear independence of v1, . . . ,vI ,vI+1. If we set wI+1 = yI+1/ jyI+1j , it
follows from (3.2) that w1, . . . ,wI+1 form an orthonormal set. Further

hw1, . . . ,wI+1i = hw1, . . . ,wI ,yI+1i = hw1, . . . ,wI ,vI+1i = hv1, . . . ,vI ,vI+1i

and the proof follows by induction.

Corollary 63 Every subspace of Rn (or Rn
col) has an orthonormal basis.

Proof. If U is a subspace of Rn then it has a basis v1, . . . ,vk. By applying the GSOP process,
an orthonormal set w1, . . . ,wk can be constructed from them which is a basis for U as

hw1, . . . ,wki = hv1, . . . ,vki = U.

Corollary 64 An orthonormal set can be extended to an orthonormal basis.

Proof. Let w1, . . . ,wk be an orthonormal set in Rn. In particular it is linearly independent
and so may be extended to a basis w1, . . . ,wk,vk+1, . . . ,vn for Rn. The GSOP can then be
applied to construct an orthonormal basis x1, . . . ,xn from this basis. The nature of the GSOP
means that xi = wi for 1 6 i 6 k and so our orthonormal basis is an extension of the original
orthonormal set.
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We now prove the earlier second bullet point, that the eigenspaces of a symmetric matrix
A form a direct sum for the entire space. Eigenvectors from di¤erent eigenspaces are auto-
matically orthogonal to one another (Proposition 59) and via GSOP we now know there exists
an orthonormal basis for each eigenspace. We will show the union of the orthonormal bases
for the eigenspaces then makes an orthonormal eigenbasis. All this is equivalent to showing
that there is an orthogonal matrix P such that P TAP is diagonal – we create P by having the
orthonormal eigenbasis as its columns.

Theorem 65 (Spectral Theorem2) Let A be a real symmetric n£n matrix. Then there exists
an orthogonal n £ n matrix P such that P TAP is diagonal.

Proof. We shall prove the result by strong induction on n. When n = 1 there is nothing to
prove as all 1£ 1 matrices are diagonal and so we can simply take P = I1.

Suppose now that the result holds for r £ r real symmetric matrices where 1 6 r < n. By
the fundamental theorem of algebra, the characteristic polynomial χA has a root λ in C, which
by Proposition 61 we in fact know to be real. Let X denote the λ-eigenspace, that is

X = fv 2 Rn
col j Av = λvg.

So X = ker(A¡λI) is a non-zero subspace, as λ is an eigenvalue, and has an orthonormal basis
v1, . . . ,vm. Extend this to an orthonormal basis v1, . . . ,vn for Rn

col and set P = (v1 j . . . jvn),
which is orthogonal.

Now P TAP is the matrix of LA with respect to the basis v1, . . . ,vn. For 1 6 i 6 m we
have Avi = λvi and therefore the ith column of P TAP is λeTi . Further P TAP is symmetric as

¡
P TAP

¢T
= P TATP TT = P TAP,

by the product rule for transposes and as A is symmetric. Hence

P TAP = diag (λIm,M) ,

where M is a symmetric (n ¡ m) £ (n ¡ m) matrix. By our inductive hypothesis there is an
orthogonal (n¡m)£(n¡m) matrix Q such that QTMQ is diagonal. If we set R = diag (Im, Q)
then R is orthogonal, PR is orthogonal and

(PR)TA(PR) = RTP TAPR

= diag
¡
Im, Q

T
¢
diag (λIm,M) diag (Im, Q)

= diag
¡
λIm, Q

TMQ
¢

is diagonal. This concludes the proof by induction.

2Appreciation of this result, at least in two variables, dates back to Descartes and Fermat. But the equivalent
general result was …rst proven by Cauchy in 1829, though independently of the language of matrices, which were
yet to be invented. Rather Cauchy’s result was in terms of quadratic forms – a quadratic form in two variables
is an expression of the form ax2 + bxy + cy2.
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Corollary 66 Let A be a symmetric n£ n real matrix. Then there exists an invertible matrix
S such that

STAS = diag (Ik,¡Il, 0m) ,

where k + l +m = n. Then k + l is the rank of A and k ¡ l is called the signature of A.

Proof. By the spectral theorem there is an orthogonal matrix P such that

P TAP = diag (Dk,¡Dl, 0m) ,

where Dk and Dl are diagonal matrices with positive entries. (The columns of P can be
rearranged in the order of positive-eigenvalue eigenvectors, then negative, then zero.) There
are natural, invertible square roots

p
Dk and

p
Dl for these two matrices and then set

Q = diag

µ³p
Dk

´¡1
,
³p

Dl

´¡1
, Im

¶

.

Setting S = QP yields the required result.

Remark 67 (O¤ syllabus) Sylvester’s law of inertia, proved in 1852, shows that the rank
and signature of A are independent of the choice of S.

Corollary 68 A real symmetric matrix A is said to be:

² positive de…nite if xTAx > 0 for all x 6= 0;

² positive semi-de…nite if xTAx > 0 for all x;

² negative de…nite if xTAx < 0 for all x 6= 0;

² negative semi-de…nite if xTAx 6 0 for all x;

² inde…nite otherwise.

From the spectral theorem we see that these correspond respectively to the eigenvalues of A
being (i) all positive, (ii) all non-negative, (iii) all negative, (iv) all non-positive, (v) positive,
negative and possibly zero.

Remark 69 (Hermitian matrices) There is a version of the spectral theorem over the com-
plex numbers. The standard inner product on Cn is given by

hz,wi = z ¢w = z1w1 + ¢ ¢ ¢+ znwn.

So the equivalent of the orthogonal matrices are the unitary matrices which satisfy U¡1 = U
T
.

These are precisely the matrices that preserve the complex inner product. And the equivalent of

symmetric matrices are the hermitian matrices3 which satisfy M =M
T
. The complex version

of the spectral theorem then states that, for any hermitian matrix M there exists a unitary matrix

U such that U
T
MU is diagonal with real entries. Hermitian matrices are particularly important

in quantum theory as they represent observables such as position and momentum. Heisenberg’s
uncertainty principle is a consequence of two hermitian matrices not commuting.

3After the French mathematician, Charles Hermite (1822-1901).

THE SPECTRAL THEOREM 39



Remark 70 We saw earlier that the theory of diagonalization applies equally well over any
…eld, mainly because it is part of theory of vector spaces and linear maps. By contrast the
spectral theorem is best set in the context of inner product spaces and so there is a spectral
theorem only for symmetric matrices over R and for Hermitian matrices over C, these being
the linear maps which respect the inner product. There is a more detailed comment on this
matter at the end of the chapter.

Example 71 For the matrix A below, …nd orthogonal P such that P TAP is diagonal.

A =

0

B
B
@

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

1

C
C
A.

Solution. The characteristic polynomial of A is χA(x) = (x + 1)3(x ¡ 3). A unit length 3-
eigenvector is v1 = (1, 1, 1, 1)

T /2 and the ¡1-eigenspace is x1 + x2 + x3 + x4 = 0. So a basis
for the ¡1-eigenspace is

(1,¡1, 0, 0)T , (0, 1,¡1, 0)T , (0, 0, 1,¡1)T .

However to …nd the last three columns of P , we need an orthonormal basis for the ¡1-
eigenspace. Applying the GSOP to the above three vectors, we arrive at

v2 = (1,¡1, 0, 0)
T /

p
2, v3 = (1, 1,¡2, 0)

T /
p
6, v4 = (1, 1, 1,¡3)

T /
p
12.

Such a required matrix is then P = (v1 jv2 jv3 jv4).

Algorithm 72 (Orthogonal Diagonalization of a Symmetric Matrix) Let M be a sym-
metric matrix. The spectral theorem shows that M is diagonalizable and so has an eigenbasis.
Setting an eigenbasis as the columns of a matrix P will yield an invertible matrix P such that
P¡1MP is diagonal – in general though this P will not be orthogonal.

If v is an eigenvector of M whose eigenvalue is not repeated, then we replace it with v/ jvj .
This new eigenvector is of unit length and is necessarily orthogonal to other eigenvectors with
di¤erent eigenvalues (Proposition 59). If none of the eigenvalues is repeated, this is all we need
do to the eigenbasis to produce an orthonormal eigenbasis.

If λ is a repeated eigenvalue then we can …nd a basis for the λ-eigenspace. Applying the
GSOP to this basis produces an orthonormal basis for the λ-eigenspace. Again these eigenvectors
are orthogonal to all eigenvectors with di¤erent eigenvalues. We can see now that the previous
non-repeated case is simply a special case of the repeated case: the Gram-Schmidt process for a
single vector involving nothing other than normalizing it.

Once the given basis for each eigenspace has had the GSOP applied to it, the entire eigenbasis
has now been made orthonormal. We may put this orthonormal eigenbasis as the columns of a
matrix P which will be orthogonal and such that P¡1MP = P TMP is diagonal.

Example 73 Find a 2£ 2 real symmetric matrix M such that M2 = A where

A =

µ
3

p
3p

3 5

¶

.
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Solution. The characteristic polynomial of A is

det(xI ¡A) = (x¡ 3)(x ¡ 5)¡ (¡
p
3)2 = x2 ¡ 8x+ 12 = (x¡ 2) (x ¡ 6) .

Determining the eigenvectors we see

λ = 2: ker

µ
1

p
3p

3 3

¶

=

¿µ
¡

p
3

1

¶À

, so take v1 =
1

2

µ
¡

p
3

1

¶

.

λ = 6: ker

µ
¡3

p
3

¡
p
3 1

¶

=

¿µ
1p
3

¶À

, so take v2 =
1

2

µ
1p
3

¶

.

So, with P = (v1 jv2) , we have P TAP = diag(2, 6), which has a clear square root of diag(
p
2,

p
6). Thus

we might choose

M = Pdiag
³p
2,

p
6
´
P T =

1

4

µ
3
p
2 +

p
6 3

p
2¡

p
6

3
p
2¡

p
6

p
2 + 3

p
6

¶

.

Below are some important examples of symmetric matrices across mathematics and a de-
scription of their connection with quadratic forms.

Example 74 (Gram matrices) The Gram matrix M for an inner product h , i on a vector
space with basis fv1, . . . , vng has (i, j)th entry

[M ]ij = hvi, vji .

This is a symmetric, positive de…nite matrix – because of the properties of inner products – and
conversely any symmetric, positive de…nite matrix is the Gram matrix of an inner product.

Example 75 (Inertia matrix in dynamics) A rigid body, rotating about a …xed point O
with angular velocity ! has kinetic energy

T =
1

2
!T I0!,

where I0 is the inertia matrix

I0 =

0

@
A ¡D ¡E

¡D B ¡F
¡E ¡F C

1

A ,

where

A =

ZZZ

R

ρ
¡
y2 + z2

¢
dV, B =

ZZZ

R

ρ
¡
x2 + z2

¢
dV, C =

ZZZ

R

ρ
¡
x2 + y2

¢
dV,

D =

ZZZ

R

ρyz dV, E =

ZZZ

R

ρxz dV, F =

ZZZ

R

ρxy dV,

and where ρ denotes density and R is the region that the rigid body occupies. For a spinning
top, symmetrical about its axis with O on the axis, the eigenvectors of I0 are along the axis with
two eigenvectors orthogonal to that. Wrt this basis I0 = diag(A,A,C), but the spectral theorem
applies to any rigid body, however irregular the distribution of matter.
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Example 76 (Covariance and correlation matrices in probability and statistics) The
covariance matrix § is a symmetric, positive semi-de…nite matrix giving the covariance between
each pair of elements of a random vector. Given a random vector X = (X1, . . . , Xn)

T the
covariance matrix § is de…ned by

[§]i,j = cov [Xi, Xj] = E [(Xi ¡ E(Xi))(Yj ¡ E(Xj))]

or equally
§ = E[XXT ]¡ E(X)E(X)T .

It follows from the spectral theorem that every symmetric positive semi-de…nite matrix is a
covariance matrix. The matrix is important in the theory of principal component analysis
(PCA).

The correlation matrix C is similarly de…ned with

[C]ij =
cov [Xi,Xj ]

σ(Xi)σ(Xj)
.

C is a symmetric, positive semi-de…nite matrix with all its diagonal entries equalling 1.

One of the most important applications of the spectral theorem is the classi…cation of
quadratic forms.

De…nition 77 A quadratic form in n variables x1, x2, . . . , xn is a polynomial where each
term has degree two. That is, it can be written as a sum

X

i6j

aijxixj

where the aij are scalars. Thus a quadratic form in two variables x, y is ax2 + bxy + cy2 where
a, b, c are scalars.

The following is a co-ordinate-free way of de…ning quadratic forms. A quadratic form on a
vector space V equals

B(v, v)

where B : V £ V ! R is a bilinear map.

The connection with symmetric matrices is that we can write
X

i6j

aijxixj = x
TAx

where xT = (x1, x2, . . . , xn) and A is the symmetric matrix

[A]ij =

8
<

:

aii i = j
1
2
aij i < j
1
2
aji i > j

.

Thus, for example,

ax2 + bxy + cy2 = (x y)

µ
a b

2
b
2

c

¶µ
x
y

¶

.
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De…nition 78 When the spectral theorem is applied to quadratic forms it is often referred to
as the principal axis theorem.

There are many important examples of quadratic forms, some of which you may have met
already:

Example 79 (Conics) The general degree two equation in two variables has the form

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0

where A, . . . , F are real scalars and A,B,C are not all zero. This equation can be put into
normal forms as follows. Firstly we can rewrite the equation as

(x, y)M

µ
x
y

¶

+ (D,E)

µ
x
y

¶

+ F = 0, where M =

µ
A B/2
B/2 C

¶

. (3.3)

Note that M is symmetric. By the spectral theorem we know that there is a 2 £ 2 orthogonal
matrix P which will diagonalize M. If we set

µ
x
y

¶

= P

µ
X
Y

¶

,

then (3.3) becomes

(X, Y )P TMP

µ
X
Y

¶

+ (D,E)P

µ
X
Y

¶

+ F = 0,

As P is orthogonal then this change of variable will not change any geometric aspects: distances,
angles and areas remain unaltered. In these new variables X, Y, and with P TMP = diag( ~A, ~C)
and (D,E)P = ( ~D, ~E), our equation now reads as

~AX2 + ~CY 2 + ~DX + ~EY + F = 0.

We can now complete any squares to put this equation into normal form.

² Ellipses have normal form

x2

a2
+

y2

b2
= 1 (a > b > 0) .

² Hyperbolae have normal form

x2

a2
¡

y2

b2
= 1 (a, b > 0) .

² Parabolae have normal form
y2 = 4ax (a > 0) .
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Each ellipse, hyperbola, parabola can be uniquely put into one of the above forms by an
isometry of the plane. The general degree two equation also leads to some degenerate cases such
as parallel lines, intersecting lines, repeated lines, points and the empty set.

FF'

DD'

aa

b

b

x

y
y bx ay bx a

FF'

DD'

aa x

y

Figure 3a – ellipse Figure 3b – hyperbola

D

F
x

y

Figure 3c – parabola Figure 3d – degenerate case

Example 80 (Quadrics) The spectral theorem applies equally well to the general degree two
equation in three variables x, y, z. The normal forms for the non-degenerate cases are

² Ellipsoids have normal form

x2

a2
+

y2

b2
+

z2

c2
= 1 (a > b > c) .

² Hyperboloids of one sheet have normal form

x2

a2
+

y2

b2
¡

z2

c2
= 1 (a > b > 0, c > 0) .

² Hyperboloids of two sheets have normal form

x2

a2
+

y2

b2
¡

z2

c2
= ¡1 (a > b > 0, c > 0) .

THE SPECTRAL THEOREM 44



² Elliptic paraboloids have normal form

x2

a2
+

y2

b2
¡ z = 0 (a > b > 0) .

² Hyperbolic paraboloids have normal form

x2

a2
¡

y2

b2
¡ z = 0 (a, b > 0) .

Each of these non-degenerate cases be uniquely put into one of the above forms by an
isometry of the space. The general degree two equation in three variables also leads to
some degenerate cases such as parallel planes, intersecting planes, repeated planes, points,
cones, elliptic parabolic and hyperbolic cylinders and the empty set.

Fig. 4a: ellipsoid Fig. 4b: elliptic paraboloid Fig. 4c: hyperbolic paraboloid
x2

a2
+ y2

b2
+ z2

c2
= 1 z = a2x2 + b2y2 z = a2x2 ¡ b2y2

Fig. 4d: 2 sheets hyperboloid Figure 4e: 1 sheet hyperboloid Fig. 4f: double cone
x2

a2
¡ y2

b2
¡ z2

c2
= 1 x2

a2
+ y2

b2
¡ z2

c2
= 1 z2 = x2

a2
+ y2

b2
.

Example 81 Show that the equation 13x2 + 13y2 + 10z2 + 4yz + 4zx + 8xy = 1 de…nes an
ellipsoid and …nd its volume.
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Solution. Let

A =

0

@
13 4 2
4 13 2
2 2 10

1

A

so that
xTAx = 13x2 + 13y2 + 10z2 + 4yz + 4zx+ 8xy.

Note that χA(x) equals

¯
¯
¯
¯
¯
¯

x¡ 13 ¡4 ¡2
¡4 x ¡ 13 ¡2
¡2 ¡2 x ¡ 10

¯
¯
¯
¯
¯
¯
=

¯
¯
¯
¯
¯
¯

x¡ 9 9¡ x 0
¡4 x¡ 13 ¡2
¡2 ¡2 x ¡ 10

¯
¯
¯
¯
¯
¯
= (x ¡ 9)

¯
¯
¯
¯
¯
¯

1 ¡1 0
¡4 x ¡ 13 ¡2
¡2 ¡2 x ¡ 10

¯
¯
¯
¯
¯
¯

= (x ¡ 9)

¯
¯
¯
¯
¯
¯

1 0 0
¡4 x¡ 17 ¡2
¡2 ¡4 x¡ 10

¯
¯
¯
¯
¯
¯
= (x ¡ 9)(x2 ¡ 27x+ 162) = (x ¡ 9)(x ¡ 18)(x¡ 9).

This means that there is an orthogonal matrix P such that

P TAP = diag(9, 9, 18).

If we set x = PX then we see our quadric now has equation

9X2 + 9Y 2 + 18Z2 = XTP TAPX = 1,

which is an ellipsoid. Further we have

a =
1

3
, b =

1

3
, c =

1

3
p
2

and so, noting the orthogonal change of variable won’t change the ellipsoid’s volume, that
volume equals

4π

3
£
1

3
£
1

3
£

1

3
p
2
=
2
p
2π

81
.

Example 82 (a) Find an orthogonal matrix P such that P TAP is diagonal where

A =

0

@
1 ¡1 ¡1

¡1 1 ¡1
¡1 ¡1 1

1

A.

(b) Consider the real-valued functions f and g de…ned on R3 by

f(x) = x2 + y2 + z2 ¡ 2xy ¡ 2xz ¡ 2yz, g(x) = ¡y2 + 2z2 + 2
p
2xy,

where x = (x, y, z)T . Is there an invertible matrix Q such that f(Qx) = g(x)? Is there such an
orthogonal matrix Q?
(c) Sketch the surface f(x) = 1.
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Solution. (a) The characteristic polynomial χA(x) equals (x+ 1) (x ¡ 2)2 so that the eigen-
values are ¡1, 2, 2. The ¡1-eigenvectors are multiples of (1, 1, 1)T and the 2-eigenspace is the
plane x+ y + z = 0. So an orthonormal eigenbasis for A is

(1, 1, 1)T
p
3

,
(1,¡1, 0)T

p
2

,
(1, 1,¡2)T

p
6

,

from which we can form the required

P =
1

p
6

0

@

p
2

p
3 1p

2 ¡
p
3 1p

2 0 ¡2

1

A.

(b) We then have that

f(Px) = (Px)TA(Px) = xTP TAPx = ¡x2 + 2y2 + 2z2.

Now we similarly have

g(x) = (x, y, z)

0

@
0

p
2 0p

2 ¡1 0
0 0 2

1

A

0

@
x
y
z

1

A

and this matrix (call it B) has characteristic polynomial χB(x) = (x+ 2) (x ¡ 1) (x¡ 2) . This
means that there is an orthogonal matrix R such that

g(Rx) = ¡2x2 + y2 + 2z2.

We can then see that the (invertible but not orthogonal) map S which sends (x, y, z)T to
(x/

p
2,

p
2y, z)T satis…es

g(RSx) = ¡2(x/
p
2)2 = (

p
2y)2 + 2z2 = ¡x2 + 2y2 + 2z2.

That A and B have the same number of eigenvalues of each sign means that there is an
invertible change of variables connecting the functions f and g, but as A’s and B’s eigenvalues
are not identical there is no orthogonal change of variable connecting f and g.

(c) The quadric surface f(x) = 1 is a hyperboloid of one sheet, as in Figure 4e, with the
new x-axis being the axis of the hyperboloid.

Example 83 (Hessian matrix) Let f(x, y) be a function of two variables with partial deriv-
atives of all orders. Taylor’s theorem in two variables states

f(a+δ, b+ε) = f(a, b)+(fx(a, b)δ+fy(a, b)ε)+
1

2

¡
fxx(a, b)δ

2 + 2fxy (a, b) δε+ fyy(a, b)ε
2
¢
+R3

where R3 is a remainder term that is at least total order three in δ1 and δ2. A critical point
or stationary point (a, b) is one where

fx (a, b) = 0 = fy(a, b).

THE SPECTRAL THEOREM 47



In geometric terms this would mean that the tangent plane to the surface z = f (x, y) is hori-
zontal. At a critical point, we then have

f(a+ δ, b+ ε) = f(a, b) +
1

2

¡
fxx(a, b)δ

2 + 2fxy (a, b) δε+ fyy(a, b)ε
2
¢
+R3

and so the local behaviour of f near a critical point is determined by the quadratic form

fxxδ
2 + 2fxyδε+ fyyε

2 = (δ ε)

µ
fxx fxy
fxy fyy

¶µ
δ
ε

¶

.

The symmetric matrix

H =

µ
fxx fxy
fxy fyy

¶

is known as the Hessian4. As H is symmetric, we know that we can make an orthogonal
change of variables (δ, ε)! (¢, E) so that the above quadratic form becomes

λ¢2 + µE2

where λ, µ are the eigenvalues of H. We then see that:

² there is a (local) minimum at (a, b) if λ, µ > 0;

² there is a (local) maximum at (a, b) if λ, µ < 0;

² there is a saddle point at (a, b) if λ, µ have di¤erent signs.

When H is singular then the critical point is said to be degenerate, and its classi…cation depends
on the cubic terms (or higher) in Taylor’s theorem.

Example 84 (Norms) Given an inner product space V , then the norm squared jjvjj2 = hv, vi
is a positive de…nite quadratic form on V. For a smooth parameterized surface r (s, t) in R3 then
the tangent space Tp at a point p equals the span of rs and rt. The restriction of jjvjj2 to Tp is
the quadratic form

(α, β) 7! jjαrs + βrtjj
2 = Eα2 + 2Fαβ +Gβ2

where
E = rs ¢ rs, F = rs ¢ rt, G = rt ¢ rt,

and is known as the …rst fundamental form.

We conclude this chapter with some comments charting the direction of spectral theory into
the second year linear algebra and beyond into third year functional analysis. You should
consider all these remarks – and the subsequent epilogue – to be beyond the Prelims
syllabus but they may make interesting further reading to some.

4After the German mathematician Ludwig Hesse (1811–1874).
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Remark 85 (Adjoints) As commented earlier, the spectral theorem is most naturally stated in
the context of inner product spaces; a more sophisticated version of the theorem appears in the
second year A0 Linear Algebra course. The version we have met states that a real symmetric
matrix (or complex Hermitian matrix) is diagonalizable via an orthogonal change of variable.

If we seek to extend this theorem to linear maps on vector spaces, our …rst problem is that
there is no well-de…ned notion of the ‘transpose of a linear map’ and so no notion of a symmetric
linear map. The determinant of a linear map T is well-de…ned precisely because the determinant
is the same for any matrix A representing T wrt a …rst basis and B representing T wrt a second
basis. This is because A = P¡1BP, where P is the change of basis matrix, and so

detA = det
¡
P¡1BP

¢
=

1

detP
detB detP = detB.

However if we wished to de…ne the transpose T T of T as the linear map represented by AT wrt
the …rst basis and also the linear map represented by BT wrt the second basis, then in general
these are di¤erent linear maps because

AT 6= P¡1BTP.

This can be circumvented if we only consider orthogonal changes of variable P . In this case

A = P TBP =) AT = P TBTP.

So, should we only use orthonormal bases and orthogonal changes of variable, then we can
de…ne the ‘transpose’ of a linear map. But this discussion takes place more naturally in an
inner product space and that ‘transpose’ is instead referred to as the adjoint of T written T ¤.

Given a linear map T : V ! V of a …nite-dimensional inner product space V, its adjoint
T ¤ : V ! V is the unique linear map satisfying

hTv,wi = hv, T ¤wi for all v, w 2 V.

This compares with the algebraic identity

Mv ¢w = v ¢ MTw

for a square matrix M and co-ordinate vectors v,w.
If we choose an orthonormal basis v1, . . . , vn for V, and let A and B respectively be the

matrices for T and T ¤ wrt this basis, then

[A]ij = hTvj, vii = hvj, T
¤vii = [B]ji .

So the matrix for T ¤ is that of the transpose of the matrix for T. The ‘symmetric’ linear maps
are then those satisfying T = T ¤, the so-called self-adjoint linear maps which satisfy

hTv, wi = hv, Twi for all v, w 2 V.

The second year version of the spectral theorem states:
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² Spectral theorem for self-adjoint maps. Let T : V ! V be a self-adjoint linear map
on a …nite-dimensional inner product space. Then all the eigenvalues of T are real and
there is an orthonormal eigenbasis of V.

Example 86 (See Sheet 4, Exercise P3.) The nth Legendre polynomial Pn(x) satis…es Legen-
dre’s equation

¡
1¡ x2

¢ d2y

dx2
¡ 2x

dy

dx
+ n(n+ 1)y = 0

where n is a natural number. This can be rewritten as

Ly = ¡n(n+ 1)y where L =
d

dx

·
¡
1¡ x2

¢ d

dx

¸

.

So Pn(x) can be viewed as an ¡n(n + 1)-eigenvector of the di¤erential operator L. Further it
can be shown that

hPn(x), Pm(x)i = 0 when n 6= m,

where the inner product h , i is de…ned by

hf, gi =

Z 1

¡1

f(x)g(x) dx,

so that the Legendre polynomials are in fact orthogonal eigenvectors; further still it is true that

hLy1, y2i = hy1, Ly2i ,

showing L to be self-adjoint.

Remark 87 (Spectral Theory – in…nite-dimensional spaces) Whilst the space R[x] of
polynomials is in…nite dimensional, the above example is not at a great remove from orthogonally
diagonalizing a real symmetric matrix – after all any polynomial can be written as a …nite linear
combination of Legendre polynomials.

In contrast, Schrödinger’s equation in quantum theory has the form

¡
}2

2m

d2ψ

dx2
+ V (x)ψ = Eψ, ψ(0) = ψ(a) = 0.

This equation was formulated in 1925 by the Austrian physicist, Erwin Schrödinger (1887-1961).
The above is the time-independent equation of a particle in the interval 0 6 x 6 a. The wave
function ψ is a complex-valued function of x and jψ(x)j2 can be thought of as the probability
density function of the particle’s position. m is its mass, } is the (reduced) Planck constant,
V (x) denotes potential energy and E is the particle’s energy.

A signi…cant, confounding aspect of late nineteenth century experimental physics was the
emission spectra of atoms. (By the way, these two uses of the word ‘spectrum’ in mathematics
and physics appear to be coincidental.) As an example, experiments showed that only certain
discrete, quantized energies could be released by an excited atom of hydrogen. Classical physical
theories were unable to explain this phenomenon.
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Schrödinger’s equation can be rewritten as Hψ = Eψ with E being an eigenvalue of the
di¤erential operator H known as the Hamiltonian. One can again show that

hHψ1, ψ2i = hψ1, Hψ2i

where

hϕ, ψi =

Z a

0

ϕ(x)ψ(x) dx.

And, when V is constant, it’s straightforward to show that the only non-zero solutions of
Schrödinger’s equation above are

ψn(x) = An sin
³nπx

a

´
where E = En = V +

n2π2}2

2ma2
,

and n is a positive integer and An is a constant. If jψn(x)j
2 is to be a pdf then we need

An =
p
2/a, and again these ψn are orthonormal with respect to the above complex inner

product. Note also that the energy E can only take certain discrete values En.
In general, though, a wave function need not be one of these eigenstates ψn and may be a

…nite or indeed in…nite combination of them. For example, we might have

ψ(x) =

r
30

a5
x (a ¡ x)

for which jψ(x)j2 is a pdf. How might we write such ψ(x) as a combination of the ψn(x)? This
is an in…nite-dimensional version of the problem the spectral theorem solved – how in general
to write a vector as a linear combination of orthonormal eigenvectors – and, in the in…nite
dimensional case is the subject of Fourier analysis, named after the French mathematician
Joseph Fourier (1768-1830). In this case Fourier analysis shows that

ψ(x) =
1X

0

α2n+1ψ2n+1(x) where αn =
8
p
15

π3n3
.

If the particle’s energy is measured, it will equal one of the permitted energies En and the e¤ect
of measuring this energy is to ‘collapse’ the above wave function ψ to one of the eigenstates
ψ2n+1. It is the case that

1X

0

jα2n+1j
2 = 1

(this is Parseval’s Identity which is essentially an in…nite dimensional version of Pythagoras’
Theorem). The probability of the particle having energy E2n+1 is jα2n+1j

2. The role of mea-
surement in quantum theory is very di¤erent from that of classical mechanics; the very act of
measuring some observable characteristic of the particle actually a¤ects and changes the wave
function.

From the more general point of view, it is important that these wave functions lie not just
in an in…nite-dimensional complex inner product space, but that this space is a Hilbert space,
meaning it is complete – Cauchy sequences are convergent. There is a (somewhat technical)
version of the spectral theorem for Hilbert spaces which is the subject of the third year functional
analysis courses.
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3.1 Epilogue – Singular Value Decomposition (O¤-syllabus)

We conclude with an important related theorem, namely the singular value decomposition
theorem which applies not just to square matrices. The theorem is important in numerical
analysis, signal processing, pattern recognition and in particular is used in the Trinity term
Statistics and Data Analysis course when discussing principal component analysis.

Recall that, given an m£n matrix A of rank r then there exist an invertible m£m matrix
P and an invertible n £ n matrix Q such that

PAQ =

µ
Ir 0r,n¡r

0m¡r,r 0m¡r,n¡r

¶

.

The matrix P results from the elementary matrices used to put A into RRE form, and then
ECOs can be used to move the r leading 1s to the …rst r columns and clear out the rest of the
rows.

A natural alternative question is: what form can A be put into if P and Q are required to
be orthogonal instead?

Theorem 88 (Singular Value Decomposition (SVD)5) Let A be an m£n matrix of rank
r. Then there exist an orthogonal m£m matrix P and an orthogonal n£n matrix Q such that

PAQ =

µ
D 0
0 0

¶

, (3.4)

where D is an invertible diagonal r £ r matrix with positive entries listed in decreasing order.

Proof. Note that ATA is a symmetric n £ n matrix. So by the spectral theorem there is an
n £ n orthogonal matrix Q such that

QTATAQ =

µ
¢ 0r,n¡r

0n¡r,r 0n¡r,n¡r

¶

,

where ¢ is a diagonal r £ r matrix with its diagonal entries in decreasing order. Note that
ATA has the same rank r as A (Sheet 4, Exercise S3), and that the eigenvalues of ATA are
non-negative, the positive eigenvalues being the entries of ¢. If we write

Q =
¡
Q1 Q2

¢

where Q1 is n £ r and Q2 is n£ (n ¡ r), then

QT
1A

TAQ1 = ¢; QT
2A

TAQ2 = 0; QT
1Q1 = Ir; Q1Q

T
1 +Q2Q

T
2 = In,

the last two equations following from Q’s orthogonality. Now (AQ2)
T (AQ2) = 0 from the

second equation and hence AQ2 = 0m,n¡r by Sheet 4, Exercise S3 again.

5The SVD was independently proved by Beltrami in 1873 and Jordan in 1874.
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If ¢ = diag (λ1, . . . , λr) then we may set D = diag
¡p

λ1, . . . ,
p
λr

¢
, so that D2 = ¢. We

then de…ne P1 to be the m £ r matrix

P1 = AQ1D
¡1.

Note that
P1DQT

1 = AQ1Q
T
1 = A(In ¡ Q2Q

T
2 ) = A¡ (AQ2)Q

T
2 = A.

We are almost done now as, by the transpose product rule and because D is diagonal, we
have

P T
1 P1 =

¡
AQ1D

¡1
¢T ¡

AQ1D
¡1

¢
= D¡1QT

1A
TAQ1D

¡1 = D¡1¢D¡1 = Ir,

and also that
P T
1 AQ1 = P T

1 P1D = IrD = D.

That P T
1 P1 = Ir means the columns of P1 form an orthonormal set, which can be extended to

an orthonormal basis for Rm
col. We put these vectors as the columns of an orthogonal m £ m

matrix P T =
¡
P1 P2

¢
and note that

P T
2 AQ1 = P T

2 P1D = 0m¡r,rD = 0m¡r,r

as the columns of P are orthogonal. Finally we have that PAQ equals
µ

P T
1

P T
2

¶

A
¡
Q1 Q2

¢
=

µ
P T
1

P T
2

¶
¡
AQ1 0m.n¡r

¢

=

µ
P T
1 AQ1 0r.n¡r
0m¡r.r 0m¡r,n¡r

¶

=

µ
D 0r.n¡r

0m¡r.r 0m¡r,n¡r

¶

.

Example 89 Find the SVD of

A =

µ
1 0 2 1
0 2 1 ¡1

¶

.

Solution. Firstly

ATA =

0

B
B
@

1 0
0 2
2 1
1 ¡1

1

C
C
A

µ
1 0 2 1
0 2 1 ¡1

¶

=

0

B
B
@

1 0 2 1
0 4 2 ¡2
2 2 5 1
1 ¡2 1 2

1

C
C
A.

ATA has characteristic polynomial

x4 ¡ 12x3 + 35x2 = x2(x¡ 5)(x¡ 7).

We can then take

Q =

0

B
B
B
@

1p
14

1p
10

¡2
3

¡ 4p
21

2p
14

¡ 2p
10

1
3

¡ 1p
21

3p
14

1p
10

0 2p
21

0 2p
10

2
3

0

1

C
C
C
A
,
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so that QTATAQ = diag(7, 5, 0, 0). We then set P1 = AQ1D
¡1 to give

P1 =

µ
1 0 2 1
0 2 1 ¡1

¶

0

B
B
B
@

1p
14

1p
10

2p
14

¡ 2p
10

3p
14

1p
10

0 2p
10

1

C
C
C
A

Ã
1p
7

0

0 1p
5

!

=

Ã
1p
2

1p
2

1p
2

¡ 1p
2

!

and so

P = P T
1 =

Ã
1p
2

1p
2

1p
2

¡ 1p
2

!

.

Remark 90 With notation as in Theorem 88, the pseudoinverse (or Moore-Penrose inverse)
of A is

A+ = Q

µ
D¡1 0r,m¡r
0n¡r,r 0n¡r,m¡r

¶

P.

The following facts are then true of the pseudoinverse.
(a) If A is invertible then A¡1 = A+.

(b)
¡
AT

¢+
= (A+)T .

(c) (AB)+ 6= B+A+ in general.
(d) The pseudoinverse has the following properties.

(I) AA+A = A; (II) A+AA+ = A+; (III) AA+ and A+A are symmetric.

(e) A+ is the only matrix to have the properties I, II, III.
(f) AA+ is orthogonal projection onto the column space of A.
(g) If the columns of A are independent then A+ = (ATA)¡1AT .
(h) For b 2 Rm

col set x0 = A+b. Then

jAx¡ bj > jAx0 ¡ bj for all x in Rn
col.
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