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Chapter 1: Why study mathematical biology?

The field of mathematical biology involves using mathematics to understand real-world biological

systems. The key goal is to further our understanding of the mechanisms underlying biological

processes by building and analysing models that capture the main features of the system being

studied. Models can be tested and refined based on real-world observations or experimental

data, and can be used to make predictions.

Sub-topics of mathematical biology are wide ranging, and include population dynamics, infec-

tious disease modelling, modelling cancer tumour dynamics and treatment, population genetics,

bio-fluid dynamics and many other things. Mathematical biology was at the centre of the news

during the COVID-19 pandemic, when infectious disease models were used to guide public health

measures in countries around the world.

While mathematics and biology have been linked for centuries (e.g., Fibonacci’s mathematical

description of the hypothetical growth of rabbit populations in the 13th century), the field of

modern mathematical biology is relatively new (compared to other branches of applied mathe-

matics). For example, the first infectious disease models of the type commonly used today were

developed early in the 20th century. The UK, and Oxford in particular, has been at the forefront

of the development of the subject in the last few decades, with the Centre for Mathematical

Biology (now the Wolfson Centre for Mathematical Biology) established in the Mathematical

Institute in Oxford in the 1980s.

The goal of this course is to provide an introduction to some of the methods used by mathematical

biologists. Specifically, we will consider population dynamics models (including single species

models and models of interacting populations), infectious disease models, models of chemical

reactions in the body and models of neuron signalling. Through this course, you will learn some

of the wide range of mathematical techniques used to study these systems.

If you enjoy this lecture course, a natural extension in Part B is the Further Mathematical

Biology course (B5.5). Additional opportunities exist for you to use mathematics to understand

biological systems, including dissertations (e.g., a Part B Structured Project or Part C Disser-

tation on a Mathematical Topic) and other lecture courses (e.g., Part B Stochastic Modelling of

Biological Processes or Part C Mathematical Physiology). I hope that this introductory course

inspires you to want to learn more mathematical biology going forwards!
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Chapter 2: Discrete-time models for a single species

In this chapter, we will introduce models describing the population dynamics of a single species.

We will focus here on discrete-time models, in which the number of individuals in timestep t+1,
Nt+1, depends on the number of individuals in timestep t, Nt, according to

Nt+1 = f(Nt). (2.1)

Usually, f(Nt) is of the form f(Nt) = Ntg(Nt), since we expect the population size to remain

at zero if Nt = 0.

While the use of discrete time is a modelling simplification (time is clearly a continuous quan-

tity!), it can be convenient in scenarios in which model simulations are compared with data that

are collected at discrete time intervals. For example, the size of a population might be measured

each week, and a discrete-time model may be used to represent these measurements.

We will consider techniques for analysing these models, specifically: i) finding steady states and

assessing their linear stability; ii) bifurcation diagrams; iii) cobwebbing.

2.1 Examples

Some common examples of discrete-time single species population growth models are given

below. The model to use, and the values of its parameters (e.g., the value of r in the exponential

model) can be chosen so that the model output is as similar as possible to available real-world

data describing the population size in each timestep (e.g., each day or each week).

- Exponential model (or Malthusian model)

If, in a single timestep, the average number of births by each existing individual is b, and the

probability that each individual dies is d, then an appropriate model might be Nt+1 = (1+b−d)Nt.

Under this model, the number of individuals in timestep t+1 depends linearly on the number of

individuals in timestep t. This motivates the discrete-time exponential growth model, modelled

by the so-called Malthusian equation,

Nt+1 = rNt, (2.2)

in which r > 0. The parameter r is the exponential growth rate, or the per capita growth rate

(“per capita” means that, in a single timestep, the change in the population size is relative to

the current population size).

This model can be solved exactly to give

Nt = rtN0 →
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞ if r > 1,
N0 if r = 1,
0 if r < 1,

as t→∞ . (2.3)

3
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- Logistic model

If r > 1, an unrealistic feature of the exponential model is that the population size will grow

indefinitely. In reality, populations often exhibit a “carrying capacity” - a population size at

which the population will no longer grow. This can be due, for example, to the food supply not

being sufficient to enable larger population sizes.

A simple model that includes a carrying capacity is the logistic model, given by

Nt+1 = Nt + rNt (1 −
Nt

K
) , (2.4)

in which r > 0 and K > 0.

Under this model, if Nt < K then the population size will increase in the next timestep, and if

Nt > K the population size will decrease in the next timestep. If Nt = K, then the population

size remains constant (a steady state; see later in this chapter).

- Ricker model

An unrealistic feature of the discrete-time logistic model is that, if Nt is large, then Nt+1 will

be negative; clearly, real-world population sizes cannot be negative. An alternative model that

also includes a carrying capacity, but does not exhibit this unrealistic behaviour, is the Ricker

model, given by

Nt+1 = Nt exp [r (1 −
Nt

K
)] , (2.5)

in which again r > 0 and K > 0.

As with the logistic model, if Nt <K then the population size will increase in the next timestep,

and if Nt >K the population size will decrease in the next timestep. We will return to this model

later in this chapter. The Ricker model was originally formulated to study fish populations, and

has been used in the context of managing fisheries (i.e., understanding how fish populations

respond to different fishing levels).

In non-dimensionalised form (letting Nt =Kut), the Ricker model is given by

ut+1 = ut exp [r (1 − ut)] . (2.6)

- Hassell model

Another discrete-time model that can be used to model the temporal evolution of the population

size of a single species is the Hassell model, given by

Nt+1 =
rNt

(1 + aNt)b
, (2.7)

in which r > 0, a > 0 and b > 0. At small population sizes, this model is (approximately) the

exponential model. As the population size increases, the per capita growth rate decreases. As

with all of the models described here, the parameters (here r, a and b) can be chosen so that

the model output matches real-world data as closely as possible.

2.2 Steady states and linear stability

Definition. A steady state of the discrete-time single species population model Nt+1 = f(Nt)
is a value, N∗, satisfying

N∗ = f(N∗). (2.8)
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Given a steady state N∗, we can investigate its stability by considering an (initially) small

perturbation around it, setting

Nt = N∗ + nt. (2.9)

Then, noting that Nt+1 = N∗ + nt+1 and that Nt+1 = f(Nt) = f(N∗ + nt), gives

N∗ + nt+1 = f(N∗ + nt). (2.10)

The right-hand-side can be expressed as a Taylor series about N∗, leading to

N∗ + nt+1 = f(N∗) + ntf
′(N∗) + O(n2

t ). (2.11)

Since N∗ = f(N∗), we have

nt+1 ≈ f ′(N∗)nt, (2.12)

where f ′(N∗) is a constant, and thus

nt ≈ [f ′(N∗)]
t
n0. (2.13)

This means that N∗ is linearly stable if ∣f ′(N∗)∣ < 1 (as the perturbation will then tend to zero

as t→∞) and linearly unstable if ∣f ′(N∗)∣ > 1.

2.3 Bifurcation diagrams

Definition. A bifurcation point is a point in parameter space at which the number of steady

states changes or the stability of the steady states changes (or both of these things).

A bifurcation diagram is a plot of the values of the steady states (i.e., all N∗ satisfying N∗ =
f(N∗)) as a function of a model parameter value. By convention, stable steady states are plotted

using a solid line, and unstable steady states are plotted using a dashed line.

While this may at first seem complicated, we consider an example below to illustrate how steady

states can be found and classified, how bifurcation points can be identified and how bifurcation

diagrams can be plotted.

2.3.1 Example. Steady states and bifurcation diagrams

As an example, we consider analysing the model

Nt+1 = rNt (1 −Nt) . (2.14)

First, we find the steady states, which satisfy N∗ = f(N∗), where f(N∗) = rN∗ (1 −N∗). Hence,
the steady states are N∗ = 0 and N∗ = r−1

r .

To classify these steady states, we calculate

f ′(N∗) = r − 2rN∗. (2.15)

For 0 < r < 1, we have:

• N∗ = 0 is a stable steady state, since ∣f ′(0)∣ = ∣r∣ < 1;

• N∗ = r−1
r is an unstable steady state, since ∣f ′( r−1r )∣ = ∣2 − r∣ > 1. It is also unrealistic

(it arises at a negative population size), and thus irrelevant for the purpose of modelling

real-world populations.



Mathematical modelling in biology 6

Figure 2.1: Bifurcation diagram for the model given in equation (2.14).

For 1 < r < 3, we have:

• N∗ = 0 is an unstable steady state, since ∣f ′(0)∣ = ∣r∣ > 1;

• N∗ = r−1
r is a stable steady state, since ∣f ′( r−1r )∣ = ∣2 − r∣ < 1.

For r > 3, we have:

• N∗ = 0 is an unstable steady state, since ∣f ′(0)∣ = ∣r∣ > 1;

• N∗ = r−1
r is an unstable steady state, since ∣f ′( r−1r )∣ = ∣2 − r∣ > 1.

The corresponding bifurcation diagram is shown in Figure 2.1. This figure is plotted only for

positive values of N∗, since negative values correspond to negative population sizes (which are

unrealistic). As noted above, stable steady states are indicated by solid lines and unstable steady

states by dashed lines. At the values r = 1 and r = 3, there are changes in the stability properties

of the steady states, and so r = 1 and r = 3 are bifurcation points.

2.4 Cobwebbing

So far, we have seen how the steady states of a discrete-time single species population model

can be found and analysed. In addition, we may wish to analyse the temporal evolution of the

system.
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To do this, we can construct a cobweb map using a technique that is known informally as

cobwebbing.

To generate a cobweb map, we first plot Nt+1 as a function of Nt (i.e., Nt+1 = f(Nt)). We also

plot the line Nt+1 = Nt. We then perform the following steps:

• Step 1. Start on the “x-axis” at the initial value N0.

• Step 2. Plot vertically to the line Nt+1 = f(Nt).

• Step 3. Plot horizontally across to the line Nt+1 = Nt.

• Repeat steps 2-3 indefinitely!

Through this process, the temporal evolution of Nt can be visualised. Specifically, the “y”

co-ordinate following step 2 in each iteration is N1, N2, N3 and so on.

2.4.1 Example. Ricker model

In the left panel of Figure 2.2, we illustrate the construction of a cobweb map for the Ricker

model (equation (2.5)), with N0 = 5, r = 1.5 and K = 100. Successive values of Nt are plotted in

the right panel.

2.4.2 Consistency with linear stability analysis

For the Ricker model with the parameters specified above, it can be seen from the cobweb map

that the system proceeds to the steady state N∗ = K. This is consistent with the results of a

linear stability analysis performed using the method described in section 2.2; in particular, for

this model, ∣f ′(K)∣ = ∣1 − r∣, which is less than one when r = 1.5 (so the steady state is linearly

stable).

More generally, the construction of cobweb maps also supports the idea that the stability of a

steady state, N∗, depends on the value of f ′(N∗). For example:

• −1 < f ′(N∗) < 0

• f ′(N∗) = −1
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• f ′(N∗) < −1

2.4.3 Warning!

It should be noted that cobwebbing does not always provide a straightforward depiction of a

system’s behaviour, even for simple models.

Consider, for example, the model

Nt+1 = rNt (1 −
Nt

K
) , r > 0, K > 0. (2.16)

This model is sometimes referred to as the logistic model in the mathematical biology literature.

However, we note that it is not the same as our formulation of the logistic model in equation

(2.4) (for example, in our formulation, the carrying capacity N∗ =K is a steady state).

In the left panel of Figure 2.3, for r = 1.5, cobwebbing indicates that the model given by equation

(2.16) progresses straightforwardly to the steady state. However, in the right panel of Figure 2.3,

the equivalent cobwebbing diagram is shown for r = 4; the dynamics are not so straightforward!

2.5 Summary

Now that we have reached the end of this chapter, given a discrete-time single species population

model, you should be able to:

• Find the steady states.

• Undertake a linear stability analysis to classify their stability.

• Plot bifurcation diagrams and identify bifurcation points.

• Construct cobweb maps.
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Figure 2.2: Dynamics of the Ricker model. The left panel shows a plot of Nt+1 =
Nt exp [r (1 −Nt/K)] alongside Nt+1 = Nt with the cobwebbing technique shown (starting at

the beginning of the red line on the “x” axis). The right panel shows Nt at successive timesteps,

t = 1,2, . . . ,10, as determined in the left panel. Parameter values are N0 = 5, r = 1.5 and K = 100.
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Figure 2.3: Dynamics of the model given by equation (2.16). The left panel shows results for

r = 1.5 and the right panel shows results for r = 4. Other parameter values are N0 = 5 and

K = 100.



Chapter 3: Continuous-time models for a single species

In this chapter, we turn our attention from discrete-time models to continuous-time models

describing the population dynamics of a single species. Such models are of the form

dN

dt
= f(N), (3.1)

in which N(t) describes the number of individuals in the population at time t.

We will consider techniques that can be helpful for analysing these models, specifically: i) non-

dimensionalisation; ii) finding steady states and assessing their linear stability; iii) bifurcation

diagrams. In the context of bifurcation diagrams, we will introduce the concept of hysteresis.

Finally, as a case study, we will consider models that can be used to inform an ecologically

acceptable strategy for harvesting a natural population (e.g., plants or animals). In that context,

we will show how a model can be used to maximise the harvest yield and introduce the concept

of the recovery time of the population.

3.1 Examples

Some examples of continuous-time single species population growth models are given below. As

with discrete time models, the values of the parameters can be chosen so that the model output

is similar to observed real-world data.

- Exponential model (or Malthusian model)

If, on average, each individual in the population generates new individuals at (birth) rate b, and

each individual dies at rate d, then
dN

dt
= (b − d)N. (3.2)

This motivates the exponential model, in which the population grows (or declines) at an overall

rate that is proportional to the current population size.

dN

dt
= rN. (3.3)

This model can be solved via separation of variables to give

N(t) = N0e
rt, (3.4)

where N0 is the initial population size (at t = 0).

- Logistic model (or Verhulst model)

As with the discrete-time exponential model, an unrealistic feature of the continuous-time ex-

ponential model is that population sizes can grow indefinitely (in the continuous-time case, this

occurs whenever r > 0).

10
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An alternative model is the logistic model, given by

dN

dt
= rN (1 − N

K
) , (3.5)

in which r > 0 and K > 0. The term on the right-hand-side is sometimes included in more

complex models (see the spruce budworm model below); this term is referred to as “logistic

growth”.

The parameter K is the carrying capacity. When the population size N is less than K, then the

population will grow. If instead N is greater than K, the population will decline. If N =K, the

population size remains constant (a steady state; see later in this chapter).

Like the exponential model, the logistic model can be solved analytically. To do this, we separate

variables to obtain

∫
1

rN (1 − N
K
)
dN = ∫ dt. (3.6)

Applying the method of partial fractions on the left-hand side gives

1

r
∫

1

N
+ 1

K −N dN = ∫ dt, (3.7)

which can be integrated to give

1

r
(ln(N) − ln(K −N)) = t +C, (3.8)

in which C is a constant of integration. Applying the initial conditionN(0) = N0 and rearranging

then gives the solution

N = N0

N0

K + (1 −
N0

K
) e−rt

. (3.9)

As t→∞, solutions of the logistic model tend monotonically to K; this can be seen in the plots

in Figure 3.1.

- Spruce budworm predation model

The spruce budworm is a pest that feeds on balsam fir trees, eventually killing the trees. In

1978, Ludwig et al. introduced an equation for modelling the population dynamics of the spruce

budworm, given by
dN

dt
= rBN (1 −

N

KB
) − BN2

A2 +N2
, (3.10)

in which A and B are positive constants. The first term on the right-hand side assumes logistic

growth of the population, with carrying capacity KB and growth rate rB. The second term

represents the effect of predation by birds upon the budworm population.

3.2 Non-dimensionalisation

Before analysing a model, a useful technique is non-dimensionalisation. The purpose of non-

dimensionalisation is to reduce the number of model parameters by identifying dimensionless

groupings that determine the dynamics.

For the purpose of this course, there are two scenarios in which you will be expected to be able

to non-dimensionalise a model: i) when you are given the non-dimensional scalings; ii) when you

are given the non-dimensional equation(s). We illustrate each of these scenarios in the context

of the spruce budworm predation model.
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Figure 3.1: Logistic growth for N0 < K (blue, red and green) and N0 > K (purple). In this

figure, K = 200 (as marked by the black dashed line), r = 0.1, and N0 takes the values 5 (blue),

20 (red), 50 (green) or 300 (purple).

3.2.1 Non-dimensionalisation given scalings

Example. Non-dimensionalise the spruce budworm predation model by introducing the non-

dimensional variables: u = N
A , r = rBA

B , q = KB

A , τ = Bt
A .

To do this, we first note that d
dt =

dτ
dt

d
dτ =

B
A

d
dτ .

Then, substituting the non-dimensional variables into the spruce budworm predation model

gives (please check this!):
du

dτ
= ru(1 − u

q
) − u2

1 + u2 . (3.11)

In this example, we have reduced the number of parameters in the model from four to two,

thereby simplifying the model.

3.2.2 Non-dimensionalisation given the final model

Example. Non-dimensionalise the spruce budworm predation model to obtain

du

dτ
= ru(1 − u

q
) − u2

1 + u2 . (3.12)

To do this, we need to find the scalings that transform the original model into the non-

dimensional model that has been provided. We therefore introduce general scalings for the

dependent and independent variables, N = N∗u and t = t∗τ , where N∗ and t∗ are constants that

we must find. We must also find expressions for the parameters r and q of the non-dimensional

model (in terms of the parameters of the original model).

Substituting these variables into the spruce budworm predation model, noting that d
dt =

dτ
dt

d
dτ =
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1
t∗

d
dτ , gives

N∗

t∗
du

dτ
= rBN

∗u(1 − N∗u

KB
) − B(N∗)2u2

A2 + (N∗)2u2 , (3.13)

Ô⇒ du

dτ
= rBt

∗u(1 − N∗u

KB
) − Bt∗N∗u2

A2 + (N∗)2u2 . (3.14)

Ô⇒ du

dτ
= rBt

∗u(1 − u

KB/N∗
) − u2

(A2/(Bt∗N∗)) + ((N∗)2/(Bt∗N∗))u2 . (3.15)

We then compare equation (3.15) with the non-dimensional model that we are aiming for. This

indicates that we would like

rBt
∗ = r, KB

N∗
= q, A2

Bt∗N∗
= 1, (N∗)2

Bt∗N∗
= 1. (3.16)

These equations can then be solved to find

N∗ = A, t∗ = A

B
, r = rBA

B
, q = KB

A
. (3.17)

Hence, we have found scalings (N = Au and t = A
B τ) and parameter choices (r = rBA

B and q = KB

A )

that transform the spruce budworm predation model to

du

dτ
= ru(1 − u

q
) − u2

1 + u2 , (3.18)

as required.

As an aside, we note that if a model contains functions such as logarithms, trigonometric func-

tions or exponentials, then the arguments of those functions must be non-dimensional. This is

because these functions are defined to take purely numerical values. While this does not apply

to the spruce budworm predation model, you might find this useful in the context of question 4

of problem sheet 1. ,

We note that, while here we have considered a single species population model, the same ap-

proaches for non-dimensionalisation can be used in the context of other models, including models

of interacting species (as studied in the next chapter).

3.3 Steady states and linear stability

Definition. A steady state for the continuous-time single species population model dN/dt =
f(N) is a value, Ns, satisfying

f(Ns) = 0. (3.19)

Given a steady state Ns, we can investigate its stability by considering an (initially) small

perturbation around it. We consider two approaches for assessing the stability of a steady state:

i) graphical method; ii) linear stability analysis.

Graphical method

The graphical method involves plotting f(N) (i.e. dN/dt) as a function of N . Steady states

then correspond to points where the graph crosses the N axis.
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Steady state 
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Figure 3.2: Assessing the stability of the steady states of the model dN/dt = sin(N) using the

graphical method. As an example, for the steady state Ns = π, a small positive perturbation

away from the steady state leads to values of N at which dN/dt is negative, so that N decreases

back to the steady state. Similarly, a small negative perturbation away from the steady state

Ns = π leads to values of N at which dN/dt is positive, so that N increases back to the steady

state. Thus, the steady state Ns = π is stable, as indicated by the red arrows. By similar

considerations, the steady state Ns = 2π is unstable.

To assess their stability, we simply consider small perturbations around the steady state; if a

small positive perturbation leads to a positive value of f(N), and a small negative perturbation

leads to a negative value of f(N), then the steady state is unstable. If instead a small positive

perturbation leads to a negative value of f(N), and a small negative perturbation leads to a

positive value of f(N), then the steady state is stable.

We illustrate this procedure in Figure 3.2 for the model dN/dt = sin(N).

Linear stability analysis

We can assess the stability of a steady state, Ns, of the model dN/dt = f(N) more formally by

undertaking a linear stability analysis. To do this, we make a small perturbation, n(t), about
Ns, setting

N(t) = Ns + n(t). (3.20)

Then

f (N(t)) = f (Ns + n(t)) = f(Ns) + n(t)f ′(Ns) +
1

2
n(t)2f ′′(Ns) + . . . , (3.21)

where we denote ′ = d/dN . The second equality above results from a Taylor expansion. Hence

dn

dt
= dN

dt
= f (N(t)) = f(Ns) + n(t)f ′(Ns) +

1

2
n(t)2f ′′(Ns) + . . . . (3.22)

We note that f(Ns) = 0 since Ns is a steady state, and then linearise by neglecting O(n2) terms

(since these terms are small), giving

dn

dt
≈ f ′(Ns)n(t) Ô⇒ n(t) ≈ n(0) exp [ df

dN
(Ns)t] . (3.23)

The steady state Ns is linearly stable if n(t) → 0 as t→∞. In other words, Ns is linearly stable

if
df

dN
(Ns) < 0. (3.24)
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0 1 2
-1

0

1

Figure 3.3: The function f(N) = (1 −N)3.

Warning!

Note that we can find functions f(N) such that dN/dt = f(N) has a steady state which is stable

and not linearly stable. For example, the equation

dN

dt
= (1 −N)3, (3.25)

has a steady state at Ns = 1 that is stable (see Figure 3.3, and consider applying the graphical

method). However, if f(N) = (1−N)3, then f ′(1) = 0, so the steady state is not linearly stable.

Example. Steady states of the non-dimensional spruce budworm predation model

Here, we find and classify the steady states of the non-dimensional spruce budworm predation

model. We recall that, following non-dimensionalisation, the model is given by

du

dτ
= ru(1 − u

q
) − u2

1 + u2 ∶= f(u). (3.26)

The steady states are then given by the solutions of

ru(1 − u

q
) − u2

1 + u2 = 0. (3.27)

Clearly us = 0 is a steady state. We proceed graphically to consider the other steady states

which are given by the intersection of the graphs

f1(u) = r (1 −
u

q
) and f2(u) =

u

1 + u2 . (3.28)

The left panel of Figure 3.4 shows plots of f1(u) and f2(u) for different values of q. We see that,

depending on the value of q, we have either one or three non-zero steady states.

Noting that
df

du
∣
u=0
= r > 0, (3.29)

typical plots of du/dτ as a function of u are shown in the right panel of Figure 3.4 for a range

of values of q. These plots can be used to classify the steady states using the graphical method.

For example, when r = 0.6 and q = 9 (corresponding to the green line in the right panel of

Figure 3.4), the steady state at u = 0 is unstable and the steady state that arises at a positive

value of u is stable.
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Figure 3.4: Characterising the dynamics of the non-dimensional spruce budworm predation

model. Left: plots of the functions f1(u) (coloured lines; for q = 3 (blue), q = 6 (purple) and

q = 9 (green)) and f2(u) (black line). Right: plot of f(u) for q = 3 (blue), q = 6 (purple) and

q = 9 (green). In both panels, r = 0.6.

Bifurcation diagrams and hysteresis

As we saw when considering discrete-time single population models, a bifurcation point is a point

in parameter space at which the number of steady states changes or the stability of the steady

states changes (or both of these things).

A bifurcation diagram is a plot of the values of the steady states (in the context of models of the

form dN
dt = f(N), this is all Ns satisfying f(Ns) = 0) as a function of a model parameter value.

Again, by convention, stable steady states are plotted using a solid line, and unstable steady

states are plotted using a dashed line.

Bifurcation diagrams are useful to identify systems that exhibit hysteresis.

Definition. A system displaying hysteresis exhibits a response to the increase (or decrease)

of a parameter that is not precisely reversed as the parameter is decreased (increased) to its

original value.

A useful analogy to consider is walking off the edge of a cliff. If you walk forwards, you will fall

off the cliff. If you then walk backwards, you will not return to the top of the cliff!

Example. Hysteresis in the non-dimensional spruce budworm predation model

We now demonstrate the occurrence of hysteresis in the non-dimensional spruce budworm pre-

dation model.

Suppose that we fix r = 0.6 in the model, and consider the bifurcation diagram as the parameter

q varies. The top left panel of Figure 3.5 depicts du
dτ as a function of u, for a range of values of

q. When q is small, there is only one non-zero steady state (S1, say) which is stable. As q is

increased past a critical value, q = q1 say, then three non-zero steady states exist, (S1, S2 and

S3). As q is increased further, past a new critical value, q = q2 say, the upper steady state S3 is

the only non-zero steady state that remains. In the top left panel of Figure 3.5, the red line is

a plot for q = q1 and the blue line is a plot for q = q2. The corresponding bifurcation diagram is



Mathematical modelling in biology 17

shown in the top right panel of Figure 3.5.

We now consider what happens to the system under the assumptions that: i) if the system is

near a stable steady state, then it remains there; ii) if the system is near an unstable steady

state, then it transitions away to near a stable steady state.

Suppose that q is small, and we are near the stable steady state S1 (red dot in the bottom left

panel of Figure 3.5). Then, as q increases past q1, the new steady states (S2 and S3) appear

but we remain near S1 (following the red horizontal arrows in the bottom left panel of Figure

3.5). When q is eventually increased further past q2, the steady state S1 no longer exists and

the system progresses to near the steady state S3 (red vertical arrows in the bottom left panel

of Figure 3.5). However, if q is then decreased back below q2, since the stable steady state S3

remains then the system would stay near S3 rather than returning to near S1 (blue horizontal

arrows in the bottom left panel of Figure 3.5). Consequently, the change that arose as q is

increased past q2 (i.e. the system progressing from S1 to S3) is not reversed when q is than

reduced below q2 again (in fact, this change is only reversed later when q is lowered below q1;

see the blue vertical arrows in the bottom left panel of Figure 3.5).

We could ask “what is the biological interpretation of the presence of hysteresis in this model?”

The answer is that, if the carrying capacity, q, is accidentally manipulated such that the spruce

budworm population increases suddenly (S1 → S3), then reversing this change in q is not suffi-

cient to reduce the population substantially again.
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𝑞! 𝑞"

𝑆!

𝑆"

𝑆#

large 𝑞

small 𝑞
𝑞 = 𝑞!

𝑞 = 𝑞"

1. This jump 
up when 𝑞 is 
increased…

2. … is not immediately 
reversed when 𝑞 is 

decreased again

Start here

𝑞! 𝑞"

Figure 3.5: Top left: du/dτ for the non-dimensional spruce budworm predation model as a

function of u, plotted for different values of the parameter q. For small q, there is one, small,

positive steady state. For q ∈ (q1, q2), there are three positive steady states. For large q, there is

one, large, positive steady state. Top right: The corresponding bifurcation diagram (the steady

states plotted as a function of the parameter q). Bottom left: Arrows superimposed on the

bifurcation diagram indicating the presence of hysteresis. Starting near the stable steady state

at a low value of q (red dot), the system remains near the stable steady state as q is increased

until q exceeds q2. If q is then decreased below q2 again, the system does not immediately revert

to near the original stable steady state. The trajectory mapped out by the red and blue arrows

is known as a “hysteresis loop”.
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3.4 Models of harvesting

To end this chapter, we consider two simple models of harvesting a population.

In the absence of harvesting, we assume that the population grows logistically, and then consider

two models: the constant yield model and the constant effort model.

3.4.1 Constant yield

Under the constant yield model, the population size N is governed by

dN

dt
= rN (1 − N

K
) − Y0. (3.30)

Under this model, a constant harvest, Y0, is collected from the population each unit of time.

As in the graphical method for finding and analysing steady states, we can plot dN
dt as a function

of N - see the left panel of Figure 3.6.

We consider starting from a large initial population size (i.e., N(0) is assumed to be large).

If small yields are collected (i.e. Y0 is small), the population size will approach a positive stable

steady state.

If, however, larger yields are collected (i.e. Y0 is larger) then dN
dt is negative for all values of N

and so the population size will decrease indefinitely. We note that, in this second scenario, N(t)
will exhibit unrealistic behaviour - the population size will become negative.

The threshold value of Y0 above which N(t) exhibits unrealistic behaviour starting from a large

initial value of N(0) can be found. Specifically, this occurs when the number of steady states

changes from two to zero.

The steady states are given by the solutions, Ns, of

−rNs
2

K
+ rNs − Y0 = 0 ⇒ Ns =

r ±
√
r2 − 4rY0/K
2r/K . (3.31)

Therefore unrealistic behaviour will occur whenever

Y0 >
rK

4
. (3.32)

Due to the potential for this model to generate impossible behaviour (negative population sizes!),

we focus instead on an alternative model: the constant effort model.

3.4.2 Constant effort

Under the constant effort model, the population size N is governed by

dN

dt
= rN (1 − N

K
) −EN. (3.33)

Under this model, the population is harvested at a rate that is proportional to the current size

of the population, Y = EN .

If the value of E is too large, then too much of the population is harvested and thus little harvest

is available in the long-term. On the other hand, if the value of E is too small, then we do not

collect much harvest.
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Figure 3.6: dN/dt as a function of N for the constant yield harvesting model (left) and constant

effort harvesting model (right). For the constant yield model, results are shown for Y0 = 0 (blue),

Y0 = 0.15 (red) and Y0 = 0.3 (green); as Y0 is increased beyond a critical value, the steady states

disappear and N decreases indefinitely. For the constant effort model, results are shown for

E = 0 (blue), E = 0.001 (red) and E = 0.002 (green); unless the system starts from N = 0, it

evolves in the long-term to the positive steady state (which can be seen from this figure to be

stable). For both models, values of K = 100 and r = 0.01 are used.

This leads us to consider: how much effort should we put into harvesting if we want to maximise

the long-term yield?

Again, we can plot dN
dt as a function of N - see the right panel of Figure 3.6. We assume that

E < r, otherwise the population will fade out and no harvest will be obtained in the long-term.

Thus, the system approaches the positive (stable) steady state, which is given by

Ns = (r −E)
K

r
. (3.34)

The long-term yield per unit time is then

Y = ENs = (r −E)
EK

r
. (3.35)

This is a quadratic equation with roots E = 0 and E = r. The effort that maximises this yield is

therefore E = r
2 , which obtains long-term yield Y = rK

4 .

3.4.3 Recovery times

Finally, we present an approach for analysing whether or not a harvesting strategy is robust to

perturbations (caused, for example, by differences between years or different weather events).

To do this, we consider the recovery time of the population.

Definition. The recovery time of the population (in a harvesting model, or in a continuous

time model of a single species) is defined to be the time for a small perturbation from a stable

steady state to decrease by a factor of e.

We illustrate the notion of the recovery time by considering the logistic model and the constant

effort harvesting model.
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Recovery time in the logistic model

In the logistic model,
dN

dt
= rN (1 − N

K
) , (3.36)

and there is a positive stable steady state Ns =K.

We consider a small perturbation, n(t), and set N = K + n. Substituting this into the logistic

model and linearising (neglecting the quadratic term in n) gives

dn

dt
= −rn, (3.37)

so that

n(t) = n(0)e−rt. (3.38)

Hence, the recovery time for the logistic model is 1
r .

Recovery time in the constant effort model

In the constant effort model,
dN

dt
= rN (1 − N

K
) −EN. (3.39)

The positive stable steady state is Ns = (r −E) Kr .

We consider a small perturbation, n(t), and set N = Ns + n. Substituting this into the logistic

model and linearising (neglecting the quadratic term in n) gives

dn

dt
= [rNs (1 −

Ns

K
) −ENs] + (r −E)n − 2rNs

n

K
. (3.40)

Noting that the terms in square brackets sum to zero (since, from the model, they are equal to
dN
dt
∣
N=Ns

, which must be zero), and then substituting in Ns = (r −E) Kr , gives

dn

dt
= n(E − r), (3.41)

so that

n(t) = n(0)e(E−r)t. (3.42)

Hence, the time for the perturbation to decrease by factor e (for example, from n(0) to n(0)1e )
is 1

r−E .

3.5 Summary

Now that we have reached the end of this chapter, given a continuous-time single species popu-

lation model, you should be able to:

• Demonstrate how the model can be non-dimensionalised (either given scalings or given the

non-dimensionalised model).

• Find the steady states.

• Classify their stability both graphically and via a linear stability analysis.

• Plot bifurcation diagrams, and identify bifurcation points and the presence of hysteresis.
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• Obtain real-world conclusions (e.g., calculate the harvesting effort required to maximise

the long-term yield in the constant effort harvesting model).

• Calculate the recovery time.



Chapter 4: Continuous-time models for interacting species

4.1 Background

In this chapter, we consider models of two species, with population sizes u and v, the dynamics

of which can be described using the system of coupled ordinary differential equations

du

dt
= f(u, v), (4.1)

dv

dt
= g(u, v), (4.2)

where f and g are prescribed functions that model the interactions between the species.

To analyse these models, we find and classify their steady states, and sketch the phase plane (via

plotting the nullclines and considering the directions of trajectories in each region of the plane).

After describing how these steps can be undertaken, we will consider three types of interaction

between two species (predator-prey, competition and mutualism) and analyse models of these

interactions.

4.1.1 Finding and classifying steady states

The steady states, (us, vs), satisfy f(us, vs) = 0 and g(us, vs) = 0.

To classify the steady states, we recall the approach presented in the Differential Equations I

course (A1). In particular, we consider the Jacobian

J =
⎛
⎝

∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

⎞
⎠
. (4.3)

We calculate the eigenvalues of this matrix at the steady state (us, vs); the eigenvaluesh deter-

mine the type of steady state. Denoting the eigenvalues by λ1 and λ2, then the possibilities

are:

• λ1 < 0, λ2 < 0 (both real): Stable node.

• λ1 > 0, λ2 > 0 (both real): Unstable node.

• λ2 < 0 < λ1 (both real): Saddle point.

• λ1 = µ + νi, λ2 = µ − νi, µ < 0: Stable spiral.

• λ1 = µ + νi, λ2 = µ − νi, µ > 0: Unstable spiral.

• λ1 = νi, λ2 = −νi, µ > 0: Centre.

23
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Note. As an aside, in situations where we want to demonstrate that a steady state is stable,

rather than to determine its precise type, a useful trick can sometimes be applied. Specifically,

when calculating the eigenvalues of the Jacobian matrix, if the characteristic equation is of the

form

λ2 + bλ + c = 0, (4.4)

with b > 0 and c > 0, then the steady state must be stable. This is because the eigenvalues are

then of the form

λ1,2 =
−b ±

√
b2 − 4c
2

, (4.5)

where either b2 − 4c < 0 (in which case the steady state is a stable spiral) or b2 − 4c > 0 (in which

case the steady state is a stable node). This trick can sometimes be useful when demonstrating

the stability of a steady state in a scenario in which finding precise expressions for the eigenvalues

requires a large amount of calculation.

4.1.2 Sketching the phase plane

To sketch the phase plane, we undertake following steps.

• Sketch the nullclines; these are the lines on which either du/dt = 0 (a “u nullcline”) or

dv/dt = 0 (a “v nullcline”). Note that, when plotting the phase plane (in (u, v) space),
trajectories must cross each u nullcline exactly vertically and each v nullcline exactly

horizontally.

• Identify the steady states. These are the points at which a u nullcline intersects with a v

nullcline.

• The nullclines divide the phase diagram into different regions. Consider the direction of

trajectories in each region of the plane (by considering du/dt and dv/dt in each region).

• Draw trajectories on the phase plane, indicating their directions.

We note that this procedure should confirm the locations and types of steady states found using

the approach described in section 4.1.1.

We illustrate how steady states can be found and classified, and phase planes sketched, for

common ecological examples that we present in the following subsections.

4.2 Predator-prey models

4.2.1 Lotka-Volterra model

A widely used predator-prey model is the Lotka-Volterra model, which was devised early in

the 20th century. Denoting the number of prey by N and the number of predators by P , the

Lotka-Volterra model is given by

dN

dt
= aN − bNP, (4.6)

dP

dt
= cNP − dP, (4.7)

in which a, b, c and d are positive parameters and c < b.
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Non-dimensionalisation

To reduce the number of model parameters, we first non-dimensionalise the model by setting

u = (c/d)N , v = (b/a)P , τ = at and α = d/a. This leads to the non-dimensional system

du

dτ
= u(1 − v) ∶= f(u, v), (4.8)

dv

dτ
= αv(u − 1) ∶= g(u, v). (4.9)

Steady states

Working with the non-dimensional model, we find and classify the steady states and sketch the

phase plane. We also use the phase plane to sketch u(t) and v(t).

Steady states arise when both du
dτ = 0 and dv

dτ = 0. Thus, the steady states are (us, vs) = (0,0)
and (us, vs) = (1,1).

The Jacobian matrix is

J =
⎛
⎝

∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

⎞
⎠
=
⎛
⎝

1 − v −u
αv α(u − 1)

⎞
⎠
. (4.10)

Evaluating the steady state (us, vs) = (0,0), we find that the Jacobian is

J =
⎛
⎝

1 0

0 −α
⎞
⎠
, (4.11)

with eigenvalues 1, −α. Therefore the steady state (0,0) is a saddle point.

Instead evaluating the steady state (us, vs) = (1,1), the Jacobian is

J =
⎛
⎝

0 −1
α 0

⎞
⎠
, (4.12)

with eigenvalues ±i√α. Therefore the steady state (1,1) is a centre.

Phase plane

We demonstrate how we can use our “recipe” to plot the phase plane in Figure 4.1 (step 1: plot

nullclines; step 2: identify steady states; step 3: plot directions of trajectories; step 4: draw

trajectories).

Analytic solution

It turns out that, for the Lotka-Volterra model, it is possible to find equations for the trajectories

analytically. To do this, we divide equation (4.8) by equation (4.9), giving

du

dv
= u(1 − v)
α(u − 1)v . (4.13)

This equation can be solved via separation of variables, leading to

∫
u − 1
u

du = ∫
1 − v
αv

dv, (4.14)
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Figure 4.1: Schematic demonstrating how to sketch phase planes (here, for the non-dimensional

Lotka-Volterra predator-prey model given by equations (4.8) and (4.9)). Step 1: Draw the

nullclines (here, u nullclines are coloured blue and v nullclines are coloured red; the small black

lines indicate the necessary direction - either horizontal or vertical - if trajectories cross the

nullclines). Step 2: Identify the steady states (points where the u nullclines cross v nullclines).

Step 3: Consider the directions of the trajectories in each region of the plane (by considering du
dτ

and dv
dτ in each region); Step 4: Draw on trajectories, based on the directions identified in step

3.

and so

αu + v − α lnu − ln v = C1, (4.15)

where C2 is the constant of integration.

This can be rewritten as

(e
v

v
)(e

u

u
)
α

= C2, (4.16)

where C2 is a constant (in fact, C2 = eC1 .

This enables us to plot the phase plane more accurately, by plotting (u, v) according to this

equation for different values of C2 (see left panel of Figure 4.2). This qualitatively agrees with

the phase plane that we sketched in Figure 4.1.

It is also possible to sketch u(τ) and v(τ), as shown in the right panel of Figure 4.2. From

this figure, we predict that u and v exhibit temporal oscillations, though not in phase. Hence

we have a prediction; predators and prey populations oscillate out of phase. This makes sense
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Figure 4.2: Dynamics of the non-dimensional Lotka-Volterra system for α = 1.095 and C2 =
8.17,11.02,20.1 and 54.6. The left-hand plot shows the dynamics in the (u, v) phase plane

whilst the right-hand plot shows the temporal evolution of u and v.

ecologically, and indeed there are many examples of this in nature (e.g., a commonly studied

example, due to the availability of a classic dataset from the 19th and 20th century, is oscillations

in populations of lynx and hares).

4.2.2 Finite predation

The Lotka-Volterra model assumes that, as N →∞, the rate of predation per predator becomes

unbounded, as does the rate of increase of the size of the predator population. However, with

an abundance of food, these quantities will saturate rather than become unbounded. Thus, a

more realistic incorporation of an abundance of prey requires the Lotka-Volterra model to be

refined.

One possibility is to instead use a model that we refer to here as the finite predation model,

which (after non-dimensionalisation) is given by

du

dτ
= u(1 − u) − auv

d + u, (4.17)

dv

dτ
= bv (1 − v

u
) , (4.18)

in which a, b, d are positive constants. In these equations, the effect of predation per predator

saturates at high levels of u.

Steady states

There is one steady state at which both the predators and prey can survive together, (us, vs),
satisfying

vs = us where (1 − us) =
aus
d + us

, (4.19)

and hence

us =
1

2
[−(a + d − 1) +

√
(a + d − 1)2 + 4d] . (4.20)



Mathematical modelling in biology 28

The Jacobian at (us, vs) is

J =
⎛
⎝

∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

⎞
⎠
(us,vs)

(4.21)

where
∂f

∂u
(us, vs) = 1 − 2us −

aus
d + us

+ ausvs
(d + us)2

= −us +
a(us)2
(d + us)2

. (4.22)

∂f

∂v
(us, vs) = −

aus
d + us

, (4.23)

∂g

∂u
(us, vs) =

b(vs)2
(us)2

= b, (4.24)

∂g

∂v
(us, vs) = b(1 − 2

vs
us
) = −b. (4.25)

The eigenvalues satisfy

(λ − ∂f

∂u
)(λ − ∂g

∂v
) − ∂f

∂v

∂g

∂u
= 0 Ô⇒ λ2 − (∂f

∂u
+ ∂g

∂v
)λ + (∂f

∂u

∂g

∂v
− ∂f

∂v

∂g

∂u
) = 0. (4.26)

Hence

λ2 − αλ + β = 0 Ô⇒ λ = α ±
√
α2 − 4β
2

, (4.27)

where

α = −us +
au2s

(us + d)2
− b, β = b(us −

au2s
(us + d)2

− (us − 1)) . (4.28)

Note that

β = 1 − au2s
(us + d)2

= 1 − us(1 − us)
(us + d)

= (us + d) − us + u
2
s

us + d
= d + (us)2

d + us
> 0. (4.29)

Thus, if α < 0 we have either a stable node (α2 − 4β > 0) or stable spiral (α2 − 4β < 0) at the

steady state (us, vs). If α > 0, we have an unstable steady state at (us, vs), which is either an

unstable node (α2 − 4β > 0) or an unstable spiral (α2 − 4β < 0).

Phase plane

The u nullclines are given by

f(u, v) ≡ 0 Ô⇒ u ≡ 0 and v = 1

a
(1 − u)(u + d). (4.30)

The v nullclines are given by

g(u, v) ≡ 0 Ô⇒ v ≡ 0 and v = u. (4.31)

A sketch of the nullclines and the behaviour of the phase plane trajectories for the case where

the steady state is stable is shown in Figure 4.3.
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Figure 4.3: The (u, v) phase plane for the finite predation model when the steady state is stable.

The u nullclines are plotted in orange and the v nullclines in blue. Trajectories for a number of

different initial conditions are shown as dashed lines. Parameters are: a = 2, b = 0.1, d = 2.

4.3 Competition

We consider an ordinary differential equation model of two competitors. An example might be

populations of red squirrels and grey squirrels. Here, both populations compete for the same

resources and a typical model for their dynamics is

dN1

dt
= r1N1 (1 −

N1

K1
− b12

N2

K1
) , (4.32)

dN2

dt
= r2N2 (1 −

N2

K2
− b21

N1

K2
) , (4.33)

where K1, K2, r1, r2, b12, b21 are positive constants. Let us associate N1 with red squirrels and

N2 with grey squirrels in our example.

In particular, given a range of parameter values and some initial values for N1 and N2 at t = 0,
we would like to know if the final outcome (i.e., the long-term behaviour of the populations) is

one of the following possibilities:

• the reds become extinct, leaving the greys;

• the greys become extinct, leaving the reds;

• both reds and greys become extinct;

• the reds and greys co-exist.

This model can be non-dimensionalised to give

du1
dτ

= u1(1 − u1 − α12u2), (4.34)

du2
dτ

= ρu2(1 − u2 − α21u1), (4.35)
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where ρ = r2/r1.

4.3.1 Steady states

The steady states are

(u1,s, u2,s) = (0,0), (u1,s, u2,s) = (1,0), (u1,s, u2,s) = (0,1), (4.36)

and

(u1,s, u2,s) =
1

1 − α12α21
(1 − α12,1 − α21), (4.37)

if α12 < 1 and α21 < 1 or α12 > 1 and α21 > 1.

The Jacobian is

J =
⎛
⎝

1 − 2u1 − α12u2 −α12u1

−ρα21u2 ρ(1 − 2u2 − α21u1)
⎞
⎠
. (4.38)

Steady state (u1,s, u2,s) = (0,0).

J − λI =
⎛
⎝

1 − λ 0

0 ρ − λ
⎞
⎠
⇒ λ = 1, ρ. (4.39)

Therefore (0,0) is an unstable node.

Steady state (u1,s, u2,s) = (1,0).

J − λI =
⎛
⎝
−1 − λ −α12

0 ρ(1 − α21) − λ
⎞
⎠
⇒ λ = −1, ρ(1 − α21). (4.40)

Therefore (1,0) is a stable node if α21 > 1 and a saddle point if α21 < 1.

Steady state (u1,s, u2,s) = (0,1).

J − λI =
⎛
⎝

1 − α12 − λ 0

−ρα21 −ρ − λ
⎞
⎠
⇒ λ = −ρ, 1 − α12. (4.41)

Therefore (0,1) is a stable node if α12 > 1 and a saddle point if α12 < 1.

Steady state (u1,s, u2,s) = 1
1−α12α21

(1 − α12,1 − α21).

J − λI = 1

1 − α12α21

⎛
⎝

α21 − 1 − λ α12(α12 − 1)
ρα21(α21 − 1) ρ(α21 − 1) − λ

⎞
⎠
. (4.42)

Existence and stability depends on α12 and α21.

4.3.2 Phase plane

As suggested by the fact that the number and types of steady states differ depending on the

values of α12 and α21, the phase plane (and the long-term dynamics of the red and grey squir-

rel populations) varies for different values of α12 and α21 (i.e., different arrangements of the

nullclines).

Careful construction of the phase planes using the standard “recipe” is left as an exercise.

However, the qualitatively different cases are:
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Figure 4.4: Dynamics of the two-species competition model (equations (4.34) and (4.35)). Top

left: α12 = 0.8 < 1, α21 = 1.2 > 1 and the red squirrels (u1) outcompete the grey squirrels (u2).

Top right: α12 = 1.2 > 1, α21 = 0.8 < 1 and the grey squirrels (u2) outcompete the reds (u1).

Bottom left: α12 = 1.2 > 1, α21 = 1.2 > 1 and the species that survives is dependent on the

initial conditions. Bottom right: α12 = 0.8 < 1, α21 = 0.8 < 1 and both species coexist. The

stable steady states are marked with starts and ρ = 1.0 in all cases. The orange lines indicate

u1 nullclines while the blue lines indicate u2 nullclines.

• α12 < 1 < α21 (top left panel of Figure 4.4): the red squirrels outcompete the greys.

• α21 < 1 < α12 (top right panel of Figure 4.4): the grey squirrels outcompete the reds.

• α12 > 1 and α21 > 1 (bottom left panel of Figure 4.4). The species that “wins” depends on

the initial conditions.

• α12 < 1 and α21 < 1 (bottom right panel of Figure 4.4). Both the red squirrels and grey

squirrels co-exist.

Numerical plots of phase planes demonstrating examples of these different cases are shown in

Figure 4.4.

4.4 Mutualism

Mutualism, or symbiosis, involves two species gaining positively from their interaction. For

example, oxpecker birds feed on large mammals (e.g. rhinos or zebras) by eating the parasites
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Figure 4.5: Dynamics of the non-dimensional mutualism system (equations (4.45) and (4.46)).

The left-hand figure shows population explosion (α12 = 0.6 = α21) whilst the right-hand figure

shows population coexistence (α12 = 0.1 = α21). The stable steady states are marked with ∗’s
and ρ = 1.0 in all cases. The orange lines indicate u1 nullclines and the blue lines indicate u2

nullclines.

(e.g. ticks) on the mammals’ bodies. The birds benefit by having easy access to food, and the

mammals benefit as their parasite loads are controlled.

We consider a similar model to that of competition, but now with positive interactions,

dN1

dt
= r1N1 (1 −

N1

K1
+ b12

N2

K1
) , (4.43)

dN2

dt
= r2N2 (1 −

N2

K2
+ b21

N1

K2
) , (4.44)

where K1, K2, r1, r2, b12, b21 are positive constants. The model can be non-dimensionalised to

give

du1
dτ

= u1(1 − u1 + α12u2), (4.45)

du2
dτ

= ρu2(1 − u2 + α21u1). (4.46)

In this model of mutualism, the straight line nullclines have positive gradients. There are three

steady states that have either u1 or u2, or both, equal to zero. An additional steady state

with both u1 and u2 non-zero exists in some parameter regimes. The two possible behaviours

displayed by the model are shown in Figure 4.5. We see that, when a non-zero steady state

exists, it is stable, and the populations coexist. However, when this steady state does not exist,

the populations grow unboundedly.

4.5 Summary

Now that we have reached the end of this chapter, given an ODE model describing the population

dynamics of two interacting species, you should be able to:

• Find and classify the steady states.
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• Sketch the phase plane by plotting the nullclines and considering the trajectories in differ-

ent regions of the plane.

• Determine the type of interaction represented by a model (predator-prey, competition or

mutualism).



Chapter 5: Infectious disease modelling

Infectious disease modelling is an important sub-field of Mathematical Biology. Dynamic models

of the type used to understand infectious disease outbreaks today were first developed early in

the 21st century, but analyses of epidemiological data were undertaken long before that. For

example, in the 18th century, Daniel Bernoulli analysed smallpox mortality data and explained

how outbreaks could be controlled by variolation (i.e., inoculation of susceptible individuals with

a small amount of material taken from a recently infected individual). In the 19th century, John

Snow drew a map of the locations of cholera cases during the 1854 epidemic in London, finding

that they all arose near the water pump in Broad Street. By doing this, Snow realised that

cholera is transmitted through water.

In the present day, infectious disease modelling analyses are increasingly used to guide public

health measures during outbreaks. One of the first modern examples is the use of models to

support decision making during the 2001 foot and mouth disease outbreak (a disease of animals).

More recently, models were used during the 2014-16 Ebola epidemic in west Africa to generate

projections of case numbers and to test different control measures. During the COVID-19

pandemic, models were used for a wide range of purposes, including estimating the level of

transmission in different countries during different phases of the pandemic, testing possible

vaccination strategies (e.g. prioritising vaccinating the oldest and most vulnerable individuals

or younger individuals who tend to have more contacts with others) and planning the relaxation

of control measures.

In this chapter, we will provide a brief introduction to two types of infectious disease model:

compartmental models and renewal equation models. In the context of compartmental models,

we will consider the most well-studied model: the SIR model. We will explain how key epi-

demiological quantities can be calculated: specifically, the basic reproduction number (R0), the

maximum number of individuals infected simultaneously, the final size, and the herd immunity

threshold (the number of individuals who must be vaccinated for the disease to stop spreading).

We will describe how the SIR model can be extended to include additional real-world realism,

and investigate how a stochastic version of the SIR model can be used to calculate the prob-

ability that a disease will establish when it arrives in a new host population. In the context

of renewal equation models, we will introduce the time-varying reproduction number and the

end-of-outbreak probability, showing how these quantities can be estimated.

5.1 Compartmental models (the SIR model)

In a compartmental model, individuals are categorised at any time according to their infection

status. For example, in the Susceptible-Infectious-Removed (SIR) model, individuals are placed

into three compartments:

34
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Figure 5.1: Numerical solution of the SIR model. S(t), I(t) and R(t) are shown in blue, red

and green, respectively. Parameter values: β = 1/1500, µ = 1/3, S(0) = 999 and I(0) = 1.

• The susceptible compartment, S: individuals who can catch the disease;

• The infectious compartment, I: individuals who have caught the disease and can transmit

it;

• The removed compartment, R: individuals who have recovered and are immune to the

disease, or have died (in either case, they are no longer transmitting).

The SIR model is given by the following system of equations:

dS

dt
= −βSI, (5.1)

dI

dt
= βSI − µI, (5.2)

dR

dt
= µI. (5.3)

We assume that, at the beginning of the outbreak,

S(0) = S0, I(0) = I0, R(0) = 0. (5.4)

In the SIR model, the total infection rate is βSI. This expression is proportional to I since, if

there are more infectious individuals, then we would expect the total infection rate to be higher.

Similarly, it is also proportional to S, since if there are more individuals available for infection,

we would also expect the total infection rate to be higher. The total removal rate is µI. This

is because, if there are more infectious individuals, then we would expect the total removal rate

to be higher.

As example numerical solution of the SIR is shown in Figure 5.1. It can be seen that outbreaks

fade out before the entire population has been infected (i.e., S(∞) > 0).

We note that, in the SIR model as presented here,

d

dt
(S + I +R) = 0 Ô⇒ S + I +R = S0 + I0. (5.5)
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Figure 5.2: Data describing the number of infected individuals each day during the boys’ board-

ing school influenza outbreak in the 1970s (black), alongside I(t) obtained by solving the SIR

model numerically (red) for an appropriate choice of β and µ.

In other words, the total population size is assumed to be constant, and we refer to the total

population size (S0 + I0) as N .

We note that there are a number of assumptions associated with the SIR model; for example, it

is assumed that individuals mix homogeneously (each individual is equally likely to meet each

other individual in the population) and it is assumed that individuals become infectious as soon

as they are infected. Despite these assumptions, and despite the fact that the SIR model is

a very simple model (there are only two tuneable parameters, β and µ), the SIR model can

replicate real-world outbreak data closely. As an example, in Figure 5.2, we show data from an

outbreak of influenza in a boys’ boarding school in the north of England in the 1970s (black),

alongside I(t) obtained by solving the SIR model numerically (red) with β and µ chosen so that

the model output and the data align closely.

5.2 Key epidemiological quantities

We now introduce some key epidemiological quantities, and illustrate how they can be calculated

in the context of the SIR model.

5.2.1 Basic reproduction number (R0)

Definition. The basic reproduction number, or R0, is defined to be the expected number of

infections generated by a single infected individual, in the absence of public health measures

and if all of the other individuals in the population are susceptible.

To calculate R0 using the SIR model, we note that, if individuals recover at rate µ, then the

expected time for which a single infected individual is infectious is 1/µ. During that time, the

individual generates new infections at rate βS ≈ βN , since all individuals in the population are
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assumed to be susceptible. Hence, R0 is given by

R0 = infection rate × infectious period = βN

µ
. (5.6)

In the SIR model, we also note that, early in an outbreak when S ≈ N ,

dI

dt
= βNI − µI = (βN − µ) I, (5.7)

which is positive if and only if R0 = βN
µ > 1. Hence, an outbreak will occur if and only if R0 > 1.

It turns out that the threshold value of R0 = 1 is a key concept in infectious disease modelling.

If R0 > 1, then early in an outbreak (when most people are susceptible) each infected individual

is expected to infect more than one other person. As a result, an outbreak will occur (at least

in the ODE version of the SIR model presented here). Conversely, if R0 < 1, each infected

individual is expected to infect fewer than one other, so the outbreak will fade out.

5.2.2 Maximum number infected

The maximum number of individuals that are ever infected simultaneously (i.e. the height of

the peak in Fig 5.2) can be calculated for the SIR model (we denote the values of S and I at

the peak of the outbreak by Sp and Ip, respectively). To do this, we divide equation (5.2) by

equation (5.1) to obtain

dI

dS
= −1 + µ

βS
. (5.8)

Solving this equation and using the initial condition to find the constant of integration gives

I = −S + µ

β
ln(S) + S(0) + I(0) − µ

β
ln(S(0)). (5.9)

Noting that dI
dS = 0 at the peak out the outbreak (whenever R0 > 1), so that Sp = µ

β , leads to

Ip =
µ

β
(ln( µ

βS(0)) − 1) + S(0) + I(0). (5.10)

The value Ip increases as β increases. However, we note that public health measures may have

unintended consequences. For example, an intervention that reduces β (such as partial isolation

of infected individuals) would end up reducing Ip, as desired. However, this comes at the cost of

the duration of the outbreak increasing (see, for example, Figure 5.3, in which we have plotted

the temporal evolution of I(t) for two different values of β; it can be seen there that the smaller

value of β corresponds to a lower peak but a longer outbreak). During the COVID-19 pandemic,

this phenomenon was referred to (in the context of social distancing strategies) as “flattening

the curve”.

5.2.3 Final size

Definition. The final size, or R(∞), is defined to be the total number of individuals infected

over the duration of an outbreak.

If a public health policy maker is trying to choose between two different control strategies, one

possibility is to choose the strategy that reduces the final size the most.
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Figure 5.3: Temporal evolution of the number of infected individuals, I(t), in the SIR model,

for β = 1/1500 (blue) and β = 3/4 × 1/1500 (blue dashed). This illustrates how a public health

measure that reduces the value of β might reduce the peak of the outbreak, but at the cost of

the outbreak lasting longer. Other parameter values: µ = 1/3, S(0) = 999 and I(0) = 1.

An equation for the final size for the SIR model can be obtained from equation (5.9). In

particular, we note that I(t) → 0 as t→∞. Hence, taking t→∞ in equation (5.9) gives

−S(∞) + µ

β
ln(S(∞)) + S(0) + I(0) − µ

β
ln(S(0)) = 0. (5.11)

Noting that all individuals end either susceptible or removed, so that S(∞)+R(∞) = S(0)+R(0),
leads to the following implicit equation for R(∞):

R(∞) = µ

β
(ln(S(0)) − ln(S(0) + I(0) −R(∞))) . (5.12)

5.2.4 Herd immunity

Some public health measures aim to reduce transmission sufficiently that an outbreak cannot

occur. If a perfectly protective vaccine is deployed, so that vaccinated individuals are guaranteed

not to become infected, then in order to eradicate the disease it is not necessary to vaccinate

all individuals. There is a critical proportion of the population, determined by R0, that if

vaccinated, will guarantee that an outbreak does not occur. The phenomenon whereby a critical

threshold of the population is protected so that the entire population is guaranteed to avoid an

outbreak is referred to as herd immunity. The critical proportion of the population is called the

herd immunity threshold.

In the SIR model, the herd immunity threshold, denoted here by ν, can be calculated by con-

sidering a scenario in which S = (1 − ν)N at the beginning of the outbreak. At that time,

dI

dt
= β(1 − ν)NI − µI = (β(1 − ν)N − µ) I. (5.13)

An outbreak will occur if dI
dt > 0 at the beginning of the outbreak. This corresponds to ν < 1− 1

R0
.

Hence, the herd immunity threshold (i.e. the target fraction of the population to vaccinate) is

1 − 1
R0

.
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5.2.5 Extensions to the SIR model

One of the benefits of compartmental modelling is that it is extremely straightforward to in-

corporate additional realism by simply adding more compartments. For example, in reality,

individuals do not become infectious immediately: there is a latent period following infection

during which individuals are infected but not yet infectious. A latent period can be added to

the SIR model by adding an Exposed (E) compartment between the S and I compartments,

giving rise to the SEIR model:

dS

dt
= −βSI, (5.14)

dE

dt
= βSI − γE, (5.15)

dI

dt
= γE − µI, (5.16)

dR

dt
= µI. (5.17)

Alternatively, we may wish to model a disease for which individuals do not become immune fol-

lowing infection, but instead because susceptible again. Examples include sexually transmitted

infections such as gonorrhea or chlamydia. These diseases can be modelled using the SIS model:

dS

dt
= −βSI + µI, (5.18)

dI

dt
= βSI − µI. (5.19)

A range of other real-world features of outbreaks can be incorporated into compartmental models

simply by adding more compartments, including modelling diseases that are transmitted by

vectors (e.g. dengue or malaria, which are transmitted by mosquitoes), spatial structure (for

example, outbreaks across multiple cities; the SIR model can be employed within each city, with

coupling between cities), age-structure and asymptomatic transmission. All of these extensions

build on the basic SIR model that we have studied here.

5.2.6 Stochastic SIR model and the probability of a major outbreak

As we have seen, the classic SIR model is a system of ODEs. For a given set of parameter values,

each time the model is solved numerically, the same smooth curves for S(t), I(t) and R(t) are
obtained. In real-world outbreaks, contacts between individuals and disease transmission are

random processes. Linked to this, when a disease first arrives in a population, it is not guaranteed

that it will establish in the population, even if R0 is greater than one. For example, by chance,

the first infected individual may recover without infecting anyone else, so that an outbreak does

not occur.

An alternative model that accounts for randomness in transmission when simulating an outbreak

is the stochastic SIR model (the SIR model that we studied above, which is made up of a system

of ODEs, is sometimes called the deterministic SIR model). In the stochastic SIR model, if

there are currently S susceptible individuals, I infected individuals and R removed individuals,

then the next event is an infection event (S → S − 1 and I → I + 1) with probability βIS
βIS+µI and

the next event is a removal event (I → I − 1 and R → R + 1) with probability µI
βIS+µI . Three

simulations of the stochastic SIR model, each generated starting with 999 susceptible individuals
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Figure 5.4: Left: Three simulations of the stochastic SIR model generated starting from a single

infected individual. In the blue and red simulations, a major outbreak occurs, whereas the

green simulation fades out without causing a major outbreak. Right: Bar chart showing the

total number of infections, R(∞), in each of 10,000 simulations of the stochastic SIR model.

Outbreaks can be divided in an obvious fashion into minor and major outbreaks. In each

simulation in both panels: S(0) = 999, I(0) = 1;R(0) = 1, β = 0.0002, µ = 0.1. Note: the results

shown here do not depend on the individual values of β and µ, but instead on the ratio β/µ.

and 1 infected individual, and each with identical parameter values, are shown in the left panel

of Figure 5.4 (for each simulation, the line represents the value of I after each event). In the

simulations shown in blue and red, a large outbreak occurs (these outbreaks are not identical,

since the precise events that occur are not identical due to transmission being a random process

governed by probabilities). In contrast, in the green simulation, the outbreak fades out without

causing a large number of infections. In general, for R0 larger than but not close to one, an

outbreak will either fade out with few infections or a large number of infections will occur (see

the right panel of Figure 5.4).

This gives rise to a concept known as the probability of a major outbreak. Starting from a single

infected individual, the probability of a major outbreak is the probability that the disease does

not simply fade out with few cases. The probability of a major outbreak therefore corresponds

to the proportion of all simulations that belong to the cluster of large outbreaks in Figure 5.4.

The probability of a major outbreak can be estimated as follows. First, we denote by qi the

probability that a major outbreak does not occur, starting from i infected individuals (with

all other individuals in the population assumed to be susceptible). We then consider q1, and

condition on the outcome of the first event (either an infected event or a recovery event), so that

by the Law of Total Probability,

q1 =
β × 1 × (N − 1)

β × 1 × (N − 1) + µ × 1q2 +
µ × 1

β × 1 × (N − 1) + µ × 1q0. (5.20)

We note that q0 is the probability of no major outbreak starting from no infected individuals,

which is equal to one. We then make two approximations. First, we note that, in a sufficiently

large population, N − 1 ≈ N . Second, we note that the probability of no major outbreak arising

starting from two infected individuals is similar to each infected individual independently failing

to initiate a major outbreak, so that q2 ≈ q21. Substituting these approximations into the equation
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above, and dividing the numerator and denominator of each of the fractions in the equation above

by µ, gives

q1 =
R0

R0 + 1
q21 +

1

R0 + 1
, (5.21)

since R0 = βN
µ .

This quadratic equation has solutions q1 = 1/R0 and q1 = 1. Taking the smaller of these solutions,

and noting that the probability of a major outbreak is 1 − q1, gives

Probability of a major outbreak = 1 − 1

R0
, (5.22)

whenever R0 > 1 (and the probability of a major outbreak is zero whenever R0 ≤ 1).

Justification for taking the smaller solution for q1 is beyond the scope of this course. However,

it stems from the fact that q1 is the extinction probability of a branching process (and you saw

in Prelims Probability that the extinction probability is the smallest non-negative solution of

the relevant equation).

5.3 Renewal equation models

Compartmental models such as the SIR model are ubiquitous in the field of infectious disease

modelling. A challenge associated with using compartmental models, particularly those with

a large number of compartments, is that it can be difficult to validate model simulations with

real-world data. Doing so unambiguously would require modellers to be able to categorise all

individuals in the population into the compartments of the model.

To avoid this complexity, an alternative type of model that can be used to simulate an infectious

disease outbreak is a renewal equation. Renewal equation models simply track numbers of

infections, rather than numbers of individuals in different model compartments.

A simple discrete-time renewal equation model is specified by

E(It) = Rt

t−1
∑
s=1

It−sws, (5.23)

It ∼ Poi(E(It)). (5.24)

We will unpick the various parts of this equation, but, in short, to simulate the number of

infections on day t of the outbreak, you simply draw a number from a Poisson distribution with

the given mean.

In this equation, Rt represents the time-varying reproduction number. This quantity is the ex-

pected number of infections generated by a single infected individual, based on the transmission

conditions on day t (assuming that those conditions do not change going forwards). As such,

the time-varying reproduction number is a measure of instantaneous transmissibility. At the

beginning of an outbreak, when everyone in the population is susceptible (apart from the first

case), Rt is equal to the basic reproduction number, R0.

The values w1,w2,w3, . . . represent the probability that the difference between infection times

in infector-infectee transmission pairs is 1,2,3, . . . days, respectively. In other words, if person

A infects person B, then the probability that person B is infected the day after person A is w1,



Mathematical modelling in biology 42

the probability that person B is infected two days after person A is w2, and so on. The set of

values {ws}∞s=1 is called the serial interval distribution.

The form of the equation for E(It) can be explained as follows. To calculate the expected

number of infections on day t, we first consider infections on day t arising from individuals

infected on day t − 1, It−1. Each of the It−1 cases is expected to generate Rt infections each,

with a proportion w1 of those infections generated on day t. So, individuals infected on day t−1
are expected to generate RtIt−1w1 infections on day t in total. Similarly, each of the It−2 cases

arising on day t − 2 is expected to generate Rt infections each, with a proportion w2 of those

infections generated on day t. So, individuals infected on day t − 2 are expected to generate

RtIt−2w2 infections on day t in total. Continuing this argument and summing over all past days

gives the total number of infections that are to be expected on day t, namely Rt∑t−1
s=1 Isws.

Equations (5.23) and (5.24) can be used to simulate an outbreak. A common use of renewal equa-

tion models, that we do not explore further here, is estimating changes in Rt during outbreaks

based infection data (i.e., based on observations of It). These estimates were often reported in

the news as the latest estimates of “the R number” during the COVID-19 pandemic.

5.3.1 End of outbreak probability

A key challenge for public health officials towards the end of an infectious disease outbreak is

determining when the outbreak has finished. When a policy maker is confident that an outbreak

is over, public health measures can be removed, leading to both financial savings and permitting

people to resume everyday behaviour that may have been restricted while the outbreak was

ongoing.

Renewal equation models can be used to calculate the end of outbreak probability. This quantity

represents, based on the observed data Is
t−1
s=1, the probability that no more infections will occur

from day t (the current day) onwards. Recalling that the probability mass function of a Poisson

distributed random variable X with mean λ is given by P(X = k) = λke−λ

k! , the end of outbreak

probability is then

P(It = 0, It+1 = 0, . . .) =
∞
∏
k=t

e−Rk∑k−1
s=1 Ik−sws , (5.25)

where we set Is = 0 in this calculation whenever s ≥ t.

An outbreak dataset and corresponding end of outbreak probability is plotted in Figure 5.5

in a scenario in which Rt = 1.2 for all values of t. In principle, a policy-maker might choose

to declare the outbreak over when the end-of-outbreak probability exceeds a pre-determined

threshold. For example, for the scenario considered in Figure 5.5, if the policy-maker declared

the outbreak over when they are 95% sure that no more cases will arise (i.e., when the end of

outbreak probability exceeds 0.95), then they would declare the outbreak over when t = 16.

5.4 Summary

Now that we have reached the end of this chapter, in addition to the techniques learnt in previous

chapters you should be able to:

• Formulate simple compartmental epidemiological models, such as the SIR model.
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Figure 5.5: Calculation of the end-of-outbreak probability using a renewal equation model.

Blue bars represent the number of infections each day, and the red line represents the end-of-

outbreak probability estimate based on the infections arising prior to the current day. The end-

of-outbreak probability was calculated assuming that Rt = 1.2 for all values of t and {ws}11s=1 =
{0.05,0.1,0.2,0.2,0.15,0.1,0.1,0.05,0.02,0.02,0.01} with ws = 0 for s ≥ 11.

• For the SIR model, calculate epidemiological quantities such as R0, the maximum number

infected, the final size and the herd immunity threshold.

• Describe the stochastic SIR model and derive the probability of a major outbreak.

• Write down the basic renewal equation model and calculate the end of outbreak probability.



Chapter 6: Enzyme kinetics

In this chapter, we will consider developing and analysing models of biochemical reactions.

Biochemical reactions are involved, for example, in immune responses to infections, metabolism

and its control, and cell-signalling processes. Biochemical reactions are often controlled by

enzymes. Enzymes are proteins that speed up chemical reactions without being consumed in

the process.

As an example, red blood cells transport oxygen around the body. They contain a protein called

haemoglobin, which is an enzyme. When blood passes through the lungs, haemoglobin combines

with the oxygen, enabling the red blood cells to take up the oxygen. This process can also be

reversed, so that the oxygen can be released by the red blood cells when they have moved around

the body.

We will focus on a specific model, developed by Leonor Michaelis and Maud Menten early in the

20th century. In the model, a substrate combines with an enzyme to form a complex (and the

reaction can also be reversed). The complex then splits into a product and the enzyme. Hence,

overall, the substrate is transformed into a product (with the help of the enzyme). We will

construct model equations using the Law of Mass Action, and non-dimensionalise the model.

We will then undertake a phase plane analysis (as in Chapter 4). We will identify “fast” and

“slow” parts of the dynamics, and solve the non-dimensionalised model to obtain equations

governing the fast and slow dynamics. In the context of the slow dynamics, we will introduce

the quasi steady state approximation (QSSA), and solving the fast dynamics will require us to

perform a perturbation analysis. Finally, we will explain how the QSSA can be used to analyse

more complex chemical reaction networks.

6.1 Michaelis-Menten model

In the Michaelis-Menten model, a substrate is turned into a product with the help of an enzyme.

To do this, first the substrate and enzyme combine to form a complex (with rate constant k1,

say; see the Law of Mass Action below). This reaction is reversible, so the complex also splits

into the substrate and enzyme (with rate constant k−1). The complex also splits into the product

and the enzyme (with rate constant k2). Consequently, the system can be visualised as:

S +E
k1

GGGGGBFGGGGG

k−1
C and C

k2
GGGA P +E, (6.1)

where S is the substrate, E is the enzyme, C is the complex and P is the product. These

reactions are representative of a large number of different enzyme systems.

To write down a model, we use the Law of Mass Action.

44
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Definition. The Law of Mass Action A chemical reaction occurs at a rate that is propor-

tional to the product of the concentrations of the reactants.

We denote the concentrations of S, E, C and P by s, e, c and p, respectively. Based on the Law

of Mass Action, the rate that which the substrate and enzyme combine to form the complex is

then k1se. Considering all of the reactions in the Michaelis-Menten system, we obtain

ds

dt
= −k1se + k−1c; (6.2)

dc

dt
= k1se − k−1c − k2c; (6.3)

de

dt
= −k1se + k−1c + k2c; (6.4)

dp

dt
= k2c. (6.5)

We assume that initially we only have the substrate and enzyme present, and that there is

substantially more substrate than enzyme initially, so the initial conditions are s(0) = s0, e(0) =
e0 ≪ s0, c(0) = 0 and p(0) = 0.

We note that, by equation (6.5), the concetration of product depends only on the concentration

of complex. Consequently, if we knew c(t), then we would be able to find p(t) by solving equation

(6.5).

We also note that the concentration of enzyme is linked to the concentration of complex; adding

equations (6.3) and (6.4) gives

d

dt
(e + c) = 0 Ô⇒ e(t) + c(t) = e0. (6.6)

Hence, we can find e(t) using the formula

e(t) = e0 − c(t). (6.7)

We therefore focus on the amount of substrate and complex in this system (if we know s(t) and
c(t), we could then find p(t) and e(t) if needed). Substituting (6.7) into equations (6.2) and

(6.3) gives

ds

dt
= −k1(e0 − c)s + k−1c, (6.8)

dc

dt
= k1(e0 − c)s − (k−1 + k2)c. (6.9)

6.1.1 Non-dimensionalisation

Recall from Chapter 3.2 that, in this course, there are two possible scenarios in which you will

be expected to non-dimensionalise a model: either the non-dimensional scalings will be given

or the final non-dimensional equations will be given. We assume the former case here, and

non-dimensionalise this model using the scalings:

τ = k1e0t, u = s

s0
, v = c

e0
, λ = k2

k1s0
. (6.10)
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Substituting these variables into equations (6.8) and (6.9), and also into the initial conditions

s(0) = s0 and c(0) = 0, gives

du

dτ
= −u + (u + (k−1 + k2

k1s0
) − λ)v, (6.11)

e0
s0

dv

dτ
= u − (u + (k−1 + k2

k1s0
))v, (6.12)

where u(0) = 1, v(0) = 0. We therefore also define K = k−1+k2
k1s0

and ϵ = e0
s0
, noting that ϵ ≪ 1, to

give the non-dimensionalised system

du

dτ
= −u + (u +K − λ)v, (6.13)

ϵ
dv

dτ
= u − (u +K)v. (6.14)

6.1.2 Phase plane analysis

To visualise u(t) and v(t), we construct a phase plane.

The u-nullcline is given by

v = u

u +K − λ, (6.15)

and the v-nullcline is given by

v = u

u +K . (6.16)

We also consider the directions of trajectories in each region of the plane. We note that

dv

dτ
= 1

ϵ
(u − (u +K)v) , (6.17)

and ϵ is small. Hence, unless u − (u +K)v is small, which corresponds to being close to the

v-nullcline, then v changes in time very fast.

We can therefore consider the directions of trajectories in the phase plane, draw the trajectory

starting from the initial condition ((u(0), v(0)) = (1,0)), and identify fast and (relatively) slow

parts of the trajectory. The resulting phase plane is shown in the left panel of Figure 6.1.

From this phase plane, u and v can also be plotted as functions of t; this is shown in the right

panel of Figure 6.1.

6.1.3 Analytic solution

In Figure 6.1, it can be seen that there are two parts of the dynamics: initially, there is a fast

part of the dynamics, as u remains approximately constant and v changes quickly. Then, there

is a slow part of the dynamics, as both u and v decrease. We can consider these two parts

separately, and solve the non-dimensional Michaelis-Menten model (i.e. equations (6.13) and

(6.14)) in each part. When we consider the fast part, we will undertake a perturbation analysis

(we consider small times that are only a small perturbation away from t = 0).
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Figure 6.1: Left: Phase plane analysis for the non-dimensionalised Michaelis-Menten model.

The blue line is the u-nullcline and the red line is the v-nullcline. The thick arrows mark out the

trajectory starting from the initial condition (u(0), v(0)) = (1,0). Right: Temporal evolution of

u and v based on the phase plane in the left panel. Parameter values: K = 0.3, λ = 0.1, ϵ = 0.001.

Slow part

First, we focus on the dynamics arising for most of the trajectory (i.e. for all τ that are not

exceptionally small).

We wish find a solution to the system

du

dτ
= −u + (u +K − λ)v, (6.18)

ϵ
dv

dτ
= u − (u +K)v. (6.19)

To do this, we first apply the “Quasi steady state approximation” (QSSA).

Definition. Quasi steady state approximation. Consider an equation of the form ϵdvdτ =
g(u, v), where ϵ ≪ 1. Unless dv

dτ is large, then g(u, v) ≈ 0. N.b. This part of the dynamics is

relatively slow (compared to the fast part of the dynamics where dv
dτ is large), hence the name

“quasi steady state”.

The QSSA therefore allows us to set the left-hand-side of equation (6.19) to zero in the slow

part of the trajectory (so that dv
dτ is not large). This implies that

v ≈ u

u +K . (6.20)

This can then be substituted into equation (6.18) to find

du

dτ
= −λu
u +K , (6.21)

which can be solved via separation of variables to give

u +K ln(u) = −λτ +C1, (6.22)
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where C1 is a constant. This is an implicit equation for u(τ). We know that, at the start of the

slow part of the trajectory (so that τ is small, but not small enough to be in the fast part of the

trajectory), u ≈ 1 (since u does not change during the fast part of the trajectory; this can be

seen from the phase plane, and will be confirmed in the following subsection when we analyse

the fast part of the trajectory). As a result, C1 ≈ 1.

In summary, in the slow part of the trajectory, we have

u +K ln(u) = −λτ + 1, (6.23)

v = u

u +K . (6.24)

Fast part

We now consider the fast part of the trajectory. Again,

du

dτ
= −u + (u +K − λ)v, (6.25)

ϵ
dv

dτ
= u − (u +K)v. (6.26)

To “zoom in” on small values of τ , where the trajectory is fast, we rescale time by setting

τ = ϵσ. (6.27)

Then, d
dτ =

1
ϵ

d
dσ , and the model becomes

du

dσ
= −ϵu + ϵ(u +K − λ)v, (6.28)

dv

dσ
= u − (u +K)v. (6.29)

Now, since ϵ is small, we neglect terms of O(ϵ) to obtain

du

dσ
= 0, (6.30)

dv

dσ
= u − (u +K)v. (6.31)

This implies that u is constant (which we know to be one in the fast trajectory, from the initial

condition (u(0), v(0)) = (1,0)), so that

dv

dσ
= 1 − (1 +K)v. (6.32)

Solving this equation via separation of variables, applying the initial condition v(0) = 0, and

then re-inserting σ = τ
ϵ , gives rise to the final solution in the fast part of the trajectory,

u = 1, (6.33)

v = 1

1 +K (1−
(1+K) τ

ϵ ) . (6.34)
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Uptake of substrate

One quantity of interest is the rate at which the substrate is taken up in order to be transformed

into the product. For the vast majority of the trajectory, we are in the slow part, so that (as we

found following application of the QSSA),

du

dτ
= −λu
u +K . (6.35)

This equation is in the form

du

dτ
= −r(u). (6.36)

The function r(u) is referred to as the uptake function.

Note (please ignore if you have not taken Differential Equations 2): For those of you

who have taken Differential Equations 2 (A6), the analysis undertaken above corresponds to

an application of boundary layer theory (the fast part of the trajectory is inside the boundary

layer near τ = 0). In our analysis, we have identified the leading order inner and outer solutions.

Identification of two of the constants corresponded to matching the inner and outer solutions.

Please note: Differential Equations 2 is not a pre-requisite for this course, and so understanding

this analysis in these terms is not necessary here.

6.1.4 Extension to more complex biochemical reactions

In general, uptake of a substrate can occur with multiple enzymes simultaneously. In such a

scenario, the non-dimensionalised rate equations have the form

du

dτ
= f(u, v1, v2, . . . , vn), (6.37)

ϵi
dvi
dτ

= gi(u, v1, v2, . . . , vn), (6.38)

for i = 1,2, . . . , n.

In such a system, the quasi steady state approximation can be applied multiple times to give

gi(u, v1, v2, . . . , vn) ≈ 0. These n equations can be solved simultaneously to find each vi in terms

of u, leading to a single equation describing the uptake of the substrate

du

dτ
= f(u, v1(u), v2(u), . . . , vn(u)). (6.39)

(6.40)

This is again in the form

du

dτ
= −r(u), (6.41)

(6.42)

where r(u) is the uptake function.

6.2 Summary

Now that we have reached the end of this chapter, in addition to the techniques learnt in previous

chapters you should be able to:
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• Apply the Law of Mass Action to turn a set of biochemical reactions into a system of

ODEs.

• Identify the “slow” and “fast” parts of trajectories (where relevant) when undertaking a

phase plane analysis.

• Apply the QSSA to find and solve equations for the “slow” part of the trajectory arising

in the Michaelis-Menten model (or similar biochemical reaction models).

• Rescale time, find and solve equations for the “fast” part of the trajectory arising in the

Michaelis-Menten model (or similar biochemical reaction models).

• Find the uptake function describing the uptake of substrate in (the slow part of) a bio-

chemical reaction model.



Chapter 7: Neuron signalling and excitable systems

In this chapter, we will study a model of neuron signalling as an example of an excitable system.

In terms of the mathematical techniques that we will use, this chapter represents an application

of phase plane analysis (as in Chapter 4).

In the body, information is transmitted in the form of electric currents through neurons. For

example, the eyes receive signals from the outside world; this information is then transmitted

through a network of neurons to the muscles, which then respond to the signals.

A neuron receives electric current through its dendrites (the receiving parts of the neuron). If

sufficient electric current is received, then the neuron “fires”. The current passes down the outer

membrane of the axon (a long cylindrical tube that extends from the neuron). The current

moves from one neuron to another via synapses and into the dendrites of the receiving neuron.

Again, in the receiving neuron, if sufficient current is received through its synapses, then it

“fires” and the process continues.

In the 1950s, Alan Hodgkin and Andrew Huxley studied the squid giant axon, which is one the

components of the nervous system in squid that allow them to move quickly through the water

via short and fast movements. They performed experiments and constructed a mathematical

model to explain the mechanisms underlying the initiation and transmission of electric current

in the squid giant axon. In 1963, Hodgkin and Huxley received the Nobel Prize in Physiology

or Medicine for their research.

The Hodgkin-Huxley model is made up of four differential equations. They solved these equa-

tions numerically and showed that the resulting solutions exhibited the same behaviour that

was observed in experiments.

Rather than studying the full system, in this chapter we will focus on the Fitzhugh-Nagumo

model, which captures the essence of the Hodkin-Huxley model in only two equations. Richard

Fitzhugh constructed the model and Jinichi Nagumo built an electric circuit to reproduce the

model’s behaviour (both in the 1960s).

7.1 Fitzhugh-Nagumo model

We will study a specific form of the Fitzhugh-Nagumo model, given by

ϵ
dv

dt
= f(v) −w + Ia, (7.1)

dw

dt
= bv − γw. (7.2)

In this model, v is the voltage (specifically, the difference in voltage between the axon and the

surrounding medium; this quantity is measurable in experiments), Ia is the applied current, w

51



Mathematical modelling in biology 52

is a composite variable (arising from reducing the Hodkin-Huxley model to only two equations),

and b and γ are positive-valued parameters. The parameter ϵ≪ 1, so that v is a “fast” variable

and w is a “slow” variable.

The function f(v) is assumed to be of the form

f(v) = v(a − v)(v − 1), (7.3)

in which 0 < a < 1.

We consider two forms of this model: Ia = 0 and Ia > 0.

In principle, it is possible to study the Fitzhugh-Nagumo model analytically in a similar fashion

to the Michaelis-Menten model, by considering the fast and slow parts of the trajectory (and

applying the QSSA on the slow part of the trajectory). Here, however, we focus on undertaking

phase plane analyses.

First, we introduce the concept of an excitable system, and demonstrate that this system can

be excitable when Ia = 0. Second, we demonstrate that periodic trajectories may occur when

Ia > 0.

7.1.1 Excitability (Ia = 0)

Definition. A system is excitable if a small perturbation from a stable steady state yields a

fast return to the steady state, but a larger perturbation yields a large excursion before returning

to the steady state.

In the scenario in which Ia = 0, we draw the nullclines and consider the directions of the

trajectories in each region of the plane, as we considered in Chapter 4. There are two cases, as

shown in Figure 7.1: i) If b/γ is large, there is only a single steady state (at (0,0)), as shown in

the top left panel of Figure 7.1; ii) If b/γ is small, there are three steady states, as shown in the

top right panel of Figure 7.1.

We restrict our attention to the scenario in which b/γ is large and the only steady state is at

(0,0).

As shown by the blue arrows in the middle left panel of Figure 7.1, if a small perturbation is

made from the steady state in the positive v direction, then the system simply returns to the

steady state.

However, if a large perturbation is made from the steady state in the positive v direction, then

the system undergoes a large excursion before returning to the steady state (middle right panel

of Figure 7.1). The system is excitable. This represents a situation in which the neuron fires;

the resulting plot of v as a function of time is shown in the bottom left panel of Figure 7.1 and

can be compared against experimental data.

We note here the existence of fast and slow dynamics, as in the Michaelis-Menten model. When

the trajectory is far from the v-nullcline, then the system evolves quickly (and v changes quickly),

whereas when the trajectory is close to the v-nullcline, then the system evolves more slowly.

7.1.2 Periodic firing (Ia > 0)

In the previous analysis, when Ia = 0 the phase planes illustrate that no periodic solutions are

possible: trajectories simply tend to a steady state.
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In contrast, when Ia > 0, periodic solutions may be possible. A scenario in which Ia > 0 leads to

similar nullclines to those seen in Figure 7.1, but the cubic v nullcline is shifted vertically. This

leads to four cases, shown in Figure 7.2.

In the case shown in the top right panel of Figure Figure 7.2, in which the steady state lies

between the turning points of the v nullcline, periodic trajectories arise. These are illustrated

in Figure Figure 7.3.

7.2 Summary

Now that we have reached the end of this chapter, in addition to the techniques learnt in previous

chapters you should be able to:

• Use phase plane analysis to identify whether or not a system is excitable.

• Identify slow and fast parts of trajectories in relevant systems.

• Use phase plane analysis to find periodic trajectories.
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Figure 7.1: The Fitzhugh-Nagumo model when Ia = 0. Top left: Nullclines and directions of

trajectories in each region when b/γ is large enough that there is only one steady state. Top

right: Nullclines and directions of trajectories in each region when b/γ is large enough that

there are three steady states. Middle left: When b/γ is large, a small perturbation from the

steady state in the positive v direction leads to a trajectory that returns to the steady state

quickly. Middle right: When b/γ is large, a large enough perturbation from the steady state

in the positive v direction leads to a trajectory that involves a large excursion before returning

to the steady state. Fast and slow parts of the trajectory can be seen. The middle left and

right panels illustrate that the system is excitable. Bottom left: The temporal evolution of

v(t) corresponding to the scenario illustrated in the middle right panel (i.e. with a sufficiently

large perturbation in the positive v direction from the steady state at (0,0)). Parameter values:

ϵ = 0.01, a = 0.1, γ = 1 and Ia = 0. In the top right panel, b = 0.1; in all other panels, b = 0.5.
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Figure 7.2: Nullclines in the Fitzhugh-Nagumo model for different values of Ia > 0. Top left:

Case 1 (Ia = 0.01 and b = 0.5). Top right: Case 2 (Ia = 0.1 and b = 0.5). Bottom left: Case 3

(Ia = 0.35 and b = 0.5). Bottom right: Case 4 (Ia = 0.005 and b = 0.1). Other parameter values

(which apply to all panels): ϵ = 0.01, a = 0.1 and γ = 1.

0 1 2 3 4 5
-0.4

0

0.4

0.8

-0.4 0 0.4 0.8
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.4                   0                  0.4                 0.8
𝑣

𝑤

0              1               2             3            4            5
Time (𝑡)

𝑣

0.8

0.4

0

-0.4

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

Figure 7.3: Periodic trajectories in the Fitzhugh-Nagumo model (case 2 in Figure 7.2). Left:

Phase plane analysis. Right: Corresponding plot of v(t) as a function of t.
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Final remark: Congratulations on reading to the end of these notes! I hope that you enjoyed

this course, and that you are interested in learning more mathematical biology in future. Best

of luck in the Part A examinations! ,


