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Course overview

Riemannian Geometry is the study of curved spaces and provides an important tool with diverse appli-

cations from group theory to general relativity. The surprising power of Riemannian Geometry is that

we can use local information to derive global results.

This course will study the key notions in Riemannian Geometry: geodesics and curvature. Building on

the theory of surfaces in R3, we will describe the notion of Riemannian submanifolds, and study Jacobi

fields, which exhibit the interaction between geodesics and curvature. We will prove the Hopf–Rinow

theorem, which shows that various notions of completeness are equivalent on Riemannian manifolds, and

classify the spaces with constant curvature. The highlight of the course will be to see how curvature

influences topology. We will see this by proving the Cartan–Hadamard theorem, Bonnet–Myers theorem

and Synge’s theorem.

Prerequisities. We will assume familiarity with material from the Differentiable Manifolds, so we

recommend you read through the lecture notes of that course. An understanding of the theory of surfaces

in R3, and topological notions such as covering spaces and the fundamental group would also be very

helpful.

Disclaimer. These lecture notes are intended to cover the essential course material, but there are no

pictures and possibly a few typos. The lectures will contain additional motivation and intuition which

will greatly help you to understand the ideas in the course. Moreover, I would suggest combining these

lecture notes with material from the recommended reading below.

Recommended texts

� W. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd edition,

(Academic Press, 1986).

� M.P. do Carmo, Riemannian Geometry, (Birkhause, 1992).

� S. Gallot, D. Hulin and J. Lafontaine, Riemannian Geometry, (Springer, 1987).

� J.M. Lee, Riemmanian Manifolds: An Introduction to Curvature, (Springer, 1997).

The most relevant material is M.P. do Carmo, Riemannian Geometry, §0-7, §8.1-8.4 and §9.
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1 Riemannian manifolds: definitions and examples

Riemannian geometry is the study of smooth curved objects, which play a role in analysis, engineering

(like imaging), group theory, number theory, physics (especially gravity) and topology. The smooth

curved objects in question are called Riemannian manifolds and the basic examples come from surfaces.

There are three key examples:

� the flat plane R2 (which is flat or zero curvature);

� the sphere S2 (which is positively curved);

� the hyperbolic plane H2 (which is negatively curved).

These three examples give the basic models for what objects with zero, positive and negative curvature

look like even in higher dimensions. (Another way to think about areas of negative curvature is a saddle,

like regions near points on the inner circle of a torus in R3.)

In this course there are two key notions in Riemannian geometry that we will study:

� geodesics – “shortest paths between points”

� curvature – “area of small geodesic triangles: fat (bigger than in flat space/sum of angles> π) means

positive curvature, thin (smaller than flat space/sum of angles< π) means negative curvature”

Both of these ideas are primarily “local”: they are things you can work out near a given point on your

object. (This is clear on the torus in R3 where points on the inner circle are where the torus is negatively

curved but on the outer circle it looks more like a piece of a sphere, so is positively curved.)

One of the most striking things about Riemannian geometry is that we can take local information

(particularly curvature) and deduce “global” results (particularly concerning topology). Let M be an

n-dimensional Riemannian manifold and let K denote its curvature. Some highlights of Riemannian

geometry include (stated roughly):

� If K ≤ 0 then M is essentially Rn topologically (Cartan–Hadamard Theorem).

� If K ≥ δ > 0 then M has finite diameter (and is therefore compact) and there are only finitely

many distinct closed loops (Bonnet–Myers Theorem).

� If 1
4 < K ≤ 1 then M is essentially the n-dimensional sphere Sn topologically (Sphere Theorem).

One of the main aims of this course will be the precise statement and understanding of these and similar

results. Along the way we will develop the language and tools necessary to formulate and tackle problems

in many areas of mathematics.

1.1 Definition

Riemannian geometry was invented by Riemann in his habilitation thesis, which he first announced

through his inaugural lecture in 1854, in what must rank as one of the greatest maths job talks ever

given! The key idea is to have a notion of a way of measuring distance which varies from point to point,

known as a Riemannian metric. We give a fake definition which will give the necessary intuition.

Fake definition: A Riemannian metric g on a manifold M is a smooth choice of positive definite inner

product on each tangent space, i.e. for each p ∈M we have a symmetric bilinear map gp : TpM×TpM → R
which is positive definite.

Remark. We recall that for an n-dimensional manifold M and p ∈ M we denote by TpM the tangent

space to M at p, which is an n-dimensional vector space. We also recall that the tangent bundle

TM = ∪p∈MTpM

is a vector bundle of rank n over M whose sections, which we denote by Γ(TM), are the vector fields on

M .

4



Jason D. Lotay C3.11 Riemannian Geometry

To formally define a Riemannian metric we recall another important vector bundle on a manifold. If

M is an n-dimensional manifold we let

S2T ∗
pM = {symmetric bilinear maps gp : TpM × TpM → R}.

Then

S2T ∗M = ∪p∈MS
2T ∗

pM

is a vector bundle of rank 1
2n(n+ 1) over M . The true definition of Riemannian metric becomes clear.

Definition 1.1. Let M be a manifold. A Riemannian metric g on M is a section of S2T ∗M , i.e. g ∈
Γ(S2T ∗M), which is positive definite (meaning that gp is positive definite for all p ∈ M). We will often

simply say that g is a metric on M for brevity. (We will see that Riemannian metrics are, in fact, related

to metrics in the sense of metric spaces later.)

A Riemannian manifold (M, g) is a manifold M with a Riemannian metric g on M .

Remark. Every manifold admits a Riemannian metric – see the Differentiable Manifolds lecture notes

for a proof. Of course the Riemannian metric is not unique (in fact, there are always infinitely many

on any given manifold), and the geometry of the Riemannian manifold can vary wildly even though one

has the same underlying manifold. For a simple example, consider the sphere, ellipsoid and dumbbell in

R3, which are all diffeomorphic to the 2-sphere S2, but clearly have very different geometries as curved

objects (i.e. Riemannian manifolds).

Therefore, the interesting questions become: how does the choice of manifold restrict the possible

Riemannian metric and, conversely, what does the existence of a certain type of Riemannian metric

encode about the ambient manifold? These will be central questions that will guide us throughout this

course.

1.2 Examples

Let us try to understand what Riemannian metrics are more concretely. Any inner product can be viewed

as a symmetric matrix. For example, if ⟨., .⟩ is an inner product on Rn then there is a symmetric matrix

A such that if x, y ∈ Rn are vectors then

⟨x, y⟩ = xTAy.

The inner product is positive definite if and only if all of the eigenvalues of A are positive.

Therefore, at each point p ∈M , we can view gp as a symmetric matrix, and so (locally) we can think

of g as a symmetric matrix of functions. Let us see this in practice on Rn. This is actually all we will

need to understand since the picture is local.

Remark. Recall that, if we are given coordinates (x1, . . . , xn) on Rn then we have the standard vector

fields

∂i =
∂

∂xi

for i = 1, . . . , n on Rn, which are everywhere linearly independent. Therefore any vector field X on Rn

can be written as

X =

n∑
i=1

ai∂i

for smooth functions ai : Rn → R for i = 1, . . . , n. We shall use this notation throughout the course.

Example. On Rn, we have the standard Riemannian metric g0 which is given by

g0(

n∑
i=1

ai∂i,

n∑
j=1

bj∂j) =

n∑
i=1

aibi,
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i.e. thinking of tangent vectors as vectors in Rn, g0 is just the usual dot product on Rn.

We see that

g0(∂i, ∂i) = 1 and g0(∂i, ∂j) = 0 if i ̸= j.

Hence, with respect to the basis {∂1, . . . , ∂n}, the matrix of g0 is the identity matrix, as we would expect.

As we well know, the matrix of a map depends on the choice of basis. We see this concretely in the

next example, which is based on polar coordinates.

Example. Suppose we are on R2 and we define polar coordinates on R2 \ {0} as usual:

x1 = r cos θ and x2 = r sin θ.

Formally, if we define f : R+ × R → R2 \ {0} by

f(r, θ) = (r cos θ, r sin θ),

then f is a local diffeomorphism and if we denote the standard basis vector fields on R+ × R in the

coordinates (r, θ) by ∂r and ∂θ then, if we denote the pushforward of f by f∗,

X = f∗(∂r) = cos θ∂1 + sin θ∂2 =
x1
r
∂1 +

x2
r
∂2,

Y = f∗(∂θ) = −r sin θ∂1 + r cos θ∂2 = −x2∂1 + x1∂2

are everywhere linearly independent on R2 \ {0}. It is usual to simply write X = ∂r and Y = ∂θ.

We see that, with respect to the standard Euclidean metric, we have

g0(X,X) =
x21 + x22
r2

= 1, g0(X,Y ) = 0, g0(Y, Y ) = x21 + x22 = r2.

Hence, g0 with respect to the basis X,Y on R2 \ {0} is(
1 0

0 r2

)
.

So, we see that even though g0 is independent of the choice of basis, the matrix of g0 changes, and does

not even have to be constant. Moreover, we see that this matrix we have written down has eigenvalues

1 and r2 so is positive definite as long as r ̸= 0, which we have assumed.

Remark. The polar coordinates example also shows the following key issue. Since the matrix of g0 has

eigenvalues 1 and r2 in that example, it is tempting to say that g0 degenerates (i.e. is no longer positive

definite) when r = 0. Of course, this is not the case, and instead what is happening is that our polar

coordinates degenerate at r = 0. Therefore, to check that one has a well-defined Riemannian metric using

local coordinates, one needs to be wary that degeneracy in the matrix could be a result of bad choices of

coordinates, rather than a genuine failure for the metric to be well-defined.

Example. LetM ⊆ Rn be a manifold. We can define a Riemannian metric onM by gp(X,Y ) = g0(X,Y ),

since if X,Y ∈ TpM then X,Y ∈ TpRn. We call this the induced (Riemannian) metric on M .

Remark. In the case where M is a surface in R3 then the induced metric is nothing other than the first

fundamental form of M .

Example. In particular, by our previous example, we get that the n-sphere Sn has a Riemannian metric

g induced from the Euclidean metric on Rn+1, where we let

Sn =

{
(x0, . . . , xn) ∈ Rn+1 :

n∑
i=0

x2i = 1

}
.
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We call g the standard round metric on Sn.

Example. Suppose we are on S2 and we take standard local coordinates

f(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ)

where θ ∈ (0, π) and ϕ ∈ R (typically, we restrict ϕ to [0, 2π)). We see that if we take the vector fields

X1 = f∗(∂θ) = cos θ cosϕ∂1 + cos θ sinϕ∂2 − sin θ∂3

X2 = f∗(∂ϕ) = − sin θ sinϕ∂1 + sin θ cosϕ∂2

on S2 \ {N,S}, where N = (0, 0, 1) and S = (0, 0,−1) are the North and South poles respectively, they

are every linearly independent (and usually just called ∂θ and ∂ϕ). Moreover, with respect to the induced

metric g on S2 we have

g(X1, X1) = 1, g(X1, X2) = 0, g(X2, X2) = sin2 θ.

So we can identify the induced metric on S2 with the matrix(
1 0

0 sin2 θ

)

away from the poles. We see, in fact, that the eigenvalues of the matrix are 1 and sin2 θ and so the matrix

is positive definite if and only if sin θ ̸= 0, i.e. we are not at the poles.

Example. In contrast, if we are on S3 and we take the vector fields

E1 = −x1∂0 + x0∂1 − x3∂2 + x2∂3,

E2 = −x2∂0 + x3∂1 + x0∂2 − x1∂3,

E3 = −x3∂0 − x2∂1 + x1∂2 + x0∂3,

then these are everywhere linearly independent on S3, and with respect to the induced metric g we have

g(Ei, Ej) = δij

so globally g can be viewed as the identity matrix.

Remark. The previous two examples indicate how there is sometimes trade-off between making a natural

choice of basis of vector fields to write the metric, but then the metric coefficients become functions, or

choosing a special basis so that the metric becomes constant (usually the identity matrix). We will see

that both types of bases have their uses.

Remark. On any parallelizable manifold M we can find a basis for the vector fields on (M, g) so that

g can be globally viewed as the identity matrix. The same argument shows that for any Riemannian

manifold, on any chart we can choose a basis for the vector fields so that the metric is given by the

identity matrix on that chart.

Example. Let f : R2 → R3 be given by

f(θ, ϕ) = ((2 + cos θ) cosϕ, (2 + cos θ) sinϕ, sin θ)

so that f(R2) is the 2-torus T 2 ⊆ R3.

Then

X1 = f∗(∂θ) = − sin θ cosϕ∂1 − sin θ sinϕ∂2 + cos θ∂3,

X2 = f∗(∂ϕ) = −(2 + cos θ) sinϕ∂1 + (2 + cos θ) cosϕ∂2

7
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are vector fields on T 2 which are everywhere linearly independent (and again usually just called ∂θ and

∂ϕ). We see that, with respect to the induced metric g, we have

g(X1, X1) = 1, g(X1, X2) = 0, g(X2, X2) = (2 + cos θ)2.

So, we can identify g with the matrix (
1 0

0 (2 + cos θ)2

)
.

We see that this matrix is positive definite everywhere, and so gives a global formula for the metric.

1.3 Pullback and local metrics

The examples show that when we have a diffeomorphism f : M → N between manifolds M and N ,

vector fields X,Y ∈ Γ(TM) on M and a metric h on N , then we can see how the metric acts on the

pushforward vector fields f∗(X) and f∗(Y ). This then seems to give us a metric g on M defined by

g(X,Y ) = h(f∗(X), f∗(Y )). This leads us to the recall the following definition.

Definition 1.2. Let f : M → N be a smooth map between manifolds M and N and let h be a

Riemannian metric on N . We define the pullback f∗h of h by f as:

(f∗h)p(X,Y ) = hf(p)(dfp(X), dfp(Y ))

for p ∈M and X,Y ∈ TpM . If X,Y are vector fields on M then

(f∗h)(X,Y ) = h(f∗(X), f∗(Y )).

We saw in the Differentiable Manifolds course that the pullback can take a Riemannian metric on N

to a Riemannian metric on M as follows.

Proposition 1.3. Let M be a manifold and let (N,h) be a Riemannian manifold. Let f :M → N be an

immersion (so dfp is injective for all p ∈M). Then g = f∗h is a Riemannian metric on M .

Remark. In particular, if f is a diffeomorphism then f∗h is a Riemannian metric, since the differential

dfp is an isomorphism.

Proof. Let p ∈M and let X,Y ∈ TpM . Since h is symmetric and bilinear and smooth and f is smooth,

we see that g is symmetric and bilinear and smooth, so we only need to check that it is positive definite.

We see that

gp(X,X) = hf(p)(dfp(X),dfp(X)) ≥ 0

and gp(X,X) = 0 if and only if dfp(X) = 0. But dfp is injective so dfp(X) = 0 if and only if X = 0.

Hence g is positive definite and thus g is a Riemannian metric.

Example. Let M ⊆ Rn be a manifold and let i :M → Rn be the inclusion map. Then i is an immersion

so g = i∗g0 is a Riemannian metric. This metric is just the induced metric we saw before.

Before we continue, we make the following useful definition.

Definition 1.4. Let (U,φ) be a chart on an n-dimensional manifold M , so that U is an open set in M

and φ : U → φ(U) ⊆ Rn is a diffeomorphism onto an open subset of Rn. The coordinate vector fields in

the chart (U,φ) are given by

Xi = (φ−1)∗(∂i) for i = 1, . . . , n.

In other words, we pushforward the standard vector fields on Rn, restricted to φ(U), using the diffeo-

morphism φ−1 : φ(U) → U . We also say {X1, . . . , Xn} is the coordinate frame field in (U,φ).
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Remark. As we have seen, it is often convenient to view the chart (U,φ) in terms of a map f from an

open set in Rn into M , so that f = φ−1. We already saw this explicitly in the case of S2 and T 2 ⊆ R3,

for example.

Given a chart (U,φ) on (M, g), φ−1 : φ(U) → U ⊆ M is a diffeomorphism (so in particular an

immersion). Hence, (φ−1)∗g is a Riemannian metric on φ(U) ⊆ Rn, so we can write it in terms of a

symmetric matrix of functions on Rn. In particular, we see that

(φ−1)∗g(∂i, ∂j) = g((φ−1)∗(∂i), (φ
−1)∗(∂j)) = g(Xi, Xj),

where Xi are the coordinate vector fields. Thus, the matrix of g with respect to the coordinate vector

fields on U is the same as the matrix of (φ−1)∗g with respect to the standard vector fields on Rn. This

means we can easily write down local expressions for Riemannian metrics.

Alternatively, we can also write the Euclidean metric g0 on Rn as

g0 = dx21 + . . .+ dx2n.

The rule is that

dxidxj(∂k, ∂l) = dxidxj(∂l, ∂k) =

{
1 if i = k, j = l or i = l, j = k

0 otherwise

Then any Riemannian metric on Rn can be written as∑
i,j

gijdxidxj

where gij is a positive definite symmetric matrix of functions. We see that if we write

(φ−1)∗g =
∑
i,j

gijdxidxj

then

g(Xi, Xj) = gij .

This gives us a way to think about Riemannian metrics on any Riemannian manifold in terms of symmetric

positive definite matrices of functions on Rn, at least locally.

Remark. We shall use the notation gij frequently in the rest of the course for the functions g(Xi, Xj)

where {X1, . . . , Xn} is the coordinate frame field in the chart (U,φ).

Example. Let Hn be the n-dimensional upper half-space

Hn = {(x1, . . . , xn) : xn > 0}

and define the hyperbolic metric g on Hn by

g =
dx21 + . . .+ dx2n

x2n
.

This metric plays an important role in geometry and topology.

Example. If f : R+ × R → R2 \ {0} is f(r, θ) = (r cos θ, r sin θ) then X1 = f∗(∂r) and X2 = f∗(∂θ) in

our notation before, so

f∗g0(∂r, ∂r) = g0(f∗(∂r), f∗(∂r)) = 1,

f∗g0(∂r, ∂θ) = g0(f∗(∂r), f∗(∂θ)) = 0,

f∗g0(∂θ, ∂θ) = g0(f∗(∂θ), f∗(∂θ)) = r2.
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Therefore

f∗g0 = dr2 + r2dθ2.

Example. Let f(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ) define local coordinates on S2. The standard

induced Riemannian metric g on S2 is determined in the coordinates (θ, ϕ) by

f∗g(∂θ, ∂θ) = g0(f∗∂θ, f∗∂θ) = 1, f∗g(∂θ, ∂ϕ) = 0, f∗g(∂ϕ, ∂ϕ) = sin2 θ

so

f∗g = dθ2 + sin2 θdϕ2.

in these coordinates (which, again, should look familiar).

1.4 Isometries and local isometries

Before we give more examples of Riemannian manifolds, we want to understand when two Riemannian

manifolds are the same. Clearly being diffeomorphic is not enough, since we can have many different

Riemannian metrics on S2, for example. The correct notion is the obvious one we now give.

Definition 1.5. A smooth map f : (M, g) → (N,h) between Riemannian manifolds is an isometry if f

is a diffeomorphism and g = f∗h. (Notice that this makes sense because if f is a diffeomorphism then

f∗h is a Riemannian metric by Proposition 1.3).

Clearly, the isometries on (M, g) form a group, in fact a subgroup of Diff(M), which we denote

Isom(M, g).

We say that f is a local isometry at p if there exists open sets U ∋ p and V ∋ f(p) such that f : U → V

is an isometry, and that f is a local isometry if it is a local isometry at all p ∈M .

Example. The identity map id : (M, g) → (M, g) is an isometry.

Example. Recall for a linear map f(x) = Ax on Rn we have that f∗g0 = g0 if and only if A ∈ O(n).

The reason is that f∗ is multiplication by A so

f∗g0(∂i, ∂j) = g0(f∗∂i, f∗∂j) = g0(A∂i, A∂j) = g0

(
n∑

k=1

aki∂k,

n∑
l=1

alj∂l

)
=

n∑
k=1

akiakj

since g0(∂i, ∂j) = δij .

Thus f∗g0 = g0 if and only if
∑n

k=1 akiakj = δij , i.e. A
TA = I, so A ∈ O(n).

Notice that translations f(x) = x+ a for any a ∈ Rn are also isometries, since f∗ = id.

Hence (modulo the fact that you need to prove isometries are linear) we have Isom(Rn, g0) = O(n)⋉Rn.

Example. Clearly, Isom(Sn, g) = O(n + 1) for the standard round metric by the previous examples

(since this is the subgroup of the isometry group of Rn+1 which preserves the n-sphere).

Example. Let us consider (H2, g). Let z = x1 + ix2, so that

g =
dzdz̄

|Imz|2
.

If f : H2 → H2 is holomorphic then

f∗dz = d(f(z)) = f ′(z)dz

and

f∗dz̄ = f ′(z)dz̄

10
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so

f∗g =
|f ′(z)|2dzdz̄
|Imf(z)|2

.

Hence f is an isometry if and only if it is a diffeomorphism such that

|f ′(z)|2|Imz|2 = |Imf(z)|2.

Now if we let

f(z) =
az + b

cz + d

where a, b, c, d ∈ R with ad− bc = 1, so identified with a matrix(
a b

c d

)
∈ SL(2,R),

then

f(z) = f(x1 + ix2)

=
ax1 + aix2 + b

cx1 + cix2 + d

=
(acx21 + acx22 + bd) + i(ad− bc)x2

|cz + d|2

=
(ac|z|2 + bd) + iImz

|cz + d|2
,

and

f ′(z) =
ad− bc

(cz + d)2
= (cz + d)−2.

Hence we see that, since f sends H2 to H2 and is smooth with smooth inverse

f−1(z) =
dz − b

−cz + a
,

we deduce that f is an isometry. In fact, these Möbius transformations give all of the orientation

preserving isometries of H2.

Notice the isometries include dilations! This is very surprising, but hints as to the nature of hyperbolic

geometry.

Example. Recall that for SU(n) we have

TA SU(n) = {B ∈Mn(C) : ĀTB+B̄TA = 0, tr(ĀTB) = 0} = {AX ∈Mn(C) : X+X̄T = 0, tr(X) = 0}.

I claim that g given by

gA(B,C) = − tr(ĀTBĀTC) = − tr(XY ) = gA(AX,AY )

for all A ∈ SU(n), B = AX,C = AY ∈ TA SU(n) is a Riemannian metric. Notice that

tr(XY ) = tr(X̄Ȳ ) = tr(XTY T) = tr((Y X)T) = tr(Y X) = tr(XY ).

It is also positive definite because if we write x1, . . . ,xn for the columns of X then

− tr(X2) = tr(X̄TX) =

n∑
j=1

|xj |2.

Hence g is a Riemannian metric on SU(n).

Let LC : SU(n) → SU(n) be given by LC(A) = CA. I claim that LC is an isometry. For AX,AY ∈
TA SU(n) we have

(L∗
Cg)A(AX,AY ) = gCA((LC)∗(AX), (LC)∗(AY )) = gCA(CAX,CAY ) = − tr(XY ) = gA(AX,AY ).

11
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Hence g is left-invariant. Moreover RC : SU(n) → SU(n) given by RC(A) = AC is an isometry since

(R∗
Cg)A(AX,AY ) = gAC(AXC,AY C) = − tr(AC

T
AXCAC

T
AY C) = − tr(C̄TXY C)

= − tr(XY ) = gA(AX,AY )

so g is also right-invariant. Hence, we call g a bi-invariant Riemannian metric (i.e. both left and right-

invariant).

In the special case of SU(2) ∼= S3, this metric is (up to a multiplicative constant) nothing other than

the standard round metric, and left and right-multiplication are rotations which generate SO(4).

We now make an interesting observation, which shows that the local functions defining a Riemannian

metric can help detect whether two Riemannian manifolds are locally isometric.

If we have charts (U,φ) on (M, g) and (V, ψ) on (N,h) such that φ(U) = ψ(V ) = W and (φ−1)∗g =

(ψ−1)∗h on W then

(ψ−1 ◦ φ)∗h = φ∗ ◦ (ψ−1)∗h = φ∗ ◦ (φ−1)∗g = g

so the map f = ψ−1 ◦ φ : U → V is an isometry. This is equivalent to saying that

gij = g((φ−1)∗∂i, (φ
−1)∗∂j) = (φ−1)∗g(∂i, ∂j) = (ψ−1)∗h(∂i, ∂j) = hij ,

i.e. the local functions gij and hij are equal.

Let us now look at some more sophisticated examples of Riemannian manifolds.

Example. We have minimal surfaces (that is, surfaces whose mean curvature is 0) in R3 known as the

helicoid

M1 = {(s cos t, s sin t, t) : s, t ∈ R}

and the catenoid

M2 = {(cosh z cos θ, cosh z sin θ, z) : z, θ ∈ R}.

Define local coordinates on M1 by

f1(x1, x2) = (sinhx1 cosx2, sinhx1 sinx2, x2)

and on M2 by

f2(x1, x2) = (coshx1 cosx2, coshx1 sinx2, x1).

Then

(f1)∗∂1 = coshx1 cosx2∂1 + coshx1 sinx2∂2 and (f1)∗∂2 = − sinhx1 sinx2∂1 + sinhx1 cosx2∂2 + ∂3,

so

(f1)
∗g0 = cosh2 x1dx

2
1 + (1 + sinh2 x1)dx

2
2 = cosh2 x1(dx

2
1 + dx22).

Similarly,

(f2)∗∂1 = sinhx1 cosx2∂1 + sinhx1 sinx2∂2 + ∂3 and (f2)∗∂2 = − coshx1 sinx2∂1 + coshx1 cosx2∂2

and hence

(f2)
∗g0 = (1 + sinh2 x1)dx

2
1 + cosh2 x1dx

2
2 = cosh2 x1(dx

2
1 + dx22).

We deduce that M1 and M2 are locally isometric.

Example. If we consider the pseudo-sphere

M =

{(
t− tanh t,

cos θ

cosh t
,
sin θ

cosh t

)
: t, θ ∈ R

}

12
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and let f : R+ × R be the obvious parametrization of M ∩ {(x1, x2, x3) ∈ R3 : x1 > 0} i.e.

f(t, θ) =

(
t− tanh t,

cos θ

cosh t
,
sin θ

cosh t

)
then

f∗(∂t) = tanh2 t∂1 −
cos θ sinh t

cosh2 t
∂2 −

sin θ sinh t

cosh2 t
∂3

and

f∗(∂θ) = − sin θ

cosh t
∂2 +

cos θ

cosh t
∂3.

Hence the induced Riemannian metric on M is given in these coordinates by g = f∗g0 so

g(∂t, ∂t) = tanh4 t+ sech2t tanh2 t = tanh2 t,

g(∂t, ∂θ) = 0 and

g(∂θ, ∂θ) = sech2t.

So the metric g = tanh2 tdt2 + sech2tdθ2 in these coordinates.

Now define j : {(x1, x2) ∈ R2 : x2 > 1} → R+ × R by j(x1, x2) = (cosh−1 x2, x1). Then we see that

j∗(∂1) = ∂θ and j∗(∂2) =
1√
x21 − 1

∂t =
1

sinh t
∂t.

Hence, the metric on M in these coordinates is given by h = (f ◦ j)∗g0 = j∗g which satisfies

h(∂1, ∂1) = g(∂θ, ∂θ) = sech2t = x−2
2 ,

h(∂1, ∂2) = 0 and

h(∂2, ∂2) =
1

sinh2 t
g(∂t, ∂t) =

tanh2 t

sinh2 t
= sech2t = x−2

2 .

Thus in these coordinates the metric is given by h =
dx2

1+dx2
2

x2
2

. This shows that the pseudosphere (minus

a circle) is locally isometric to the upper half-plane with the hyperbolic metric, where the local isometry

is

f ◦ j(x1, x2) = f(cosh−1 x2, x1) =

(
cosh−1 x2 −

√
x22 − 1

x2
,
cosx1
x2

,
sinx1
x2

)

1.5 Group actions

Example. Given a discrete group G acting freely and properly discontinuously on a manifold M , the

quotient map π : M → M/G is a local diffeomorphism and hence an immersion. Thus by Proposition

1.3, if we have a Riemannian metric h on M/G we can define a Riemannian metric g on M by g = π∗h.

In general we cannot pushforward a Riemannian metric, but there is a special case where we can.

Theorem 1.6. Let G be a discrete group acting freely and properly discontinuously by isometries on a

Riemannian manifold (M, g); i.e. suppose that if x ∈ G 7→ fx ∈ Diff(M) denotes the group action then

fx ∈ Isom(M, g) for all x ∈ G.

There exists a Riemannian metric h on M/G such that if π : M → M/G is the projection map then

g = π∗h (so π is a local isometry).

Proof. The idea is to define h so that g = π∗h and show that this is well-defined.

First observe that the map dπp : TpM → Tπ(p)M/G is an isomorphism for all p ∈ M and π is

surjective, so we can define h by

hπ(p)(X,Y ) = gp((dπp)
−1X, (dπp)

−1Y ).

13
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To show that is well-defined we need to show it does not depend on the choice of p, so if π(q) = π(p) we

should get the same answer on the right-hand side for q as for p. So, if we choose q such that π(q) = π(p)

then q = fx(p) for some x ∈ G by definition of π so π(p) = π ◦ fx(p) and hence differentiating gives

dπp = d(π ◦ fx)p = dπfx(p) ◦ d(fx)p = dπq ◦ d(fx)p.

We deduce that

dπq = dπp ◦
(
d(fx)p

)−1

and thus

(dπq)
−1 = d(fx)p ◦ (dπp)−1.

We deduce that

gq((dπq)
−1X, (dπq)

−1Y ) = gfx(p)(d(fx)p ◦ (dπp)
−1X,d(fx)p ◦ (dπp)−1Y )

= (f∗xg)p((dπp)
−1X, (dπp)

−1Y )

= gp((dπp)
−1X, (dπp)

−1Y )

as fx is an isometry. Morever, h is positive definite because

hπ(p)(X,X) = gp((dπp)
−1X, (dπp)

−1X) ≥ 0

and equals zero if and only if X = 0 since dπ−1
p is an isomorphism.

We also see that, by definition,

gp(U, V ) = hπ(p)(dπpU,dπpV ) = (π∗h)p(U, V )

for all p ∈M and U, V ∈ TpM so g = π∗h. (In fact, h is clearly the unique choice of Riemannian metric

on M/G such that π∗h = g.)

Example. Since id and − id are isometries on Rn+1, we see that RPn, the Möbius band and the Klein

bottle obtain Riemannian metrics from Sn, the cylinder and the torus in R3 respectively.

Example. We know that Rn/Zn inherits a Riemannian metric g from Rn where Zn acts on Rn by

x 7→ x + 2πa for a ∈ Zn, and that π : Rn → Rn/Zn is then a local isometry. We also see that if

f : Rn/Zn → Tn ⊆ R2n is the natural diffeomorphism

f([(x1, . . . , xn)]) =
(
cos(x1), sin(x1), . . . , cos(xn), sin(xn)

)
and h is the induced Riemannian metric on Tn, we have that

f∗h = g.

Example. We recall a construction from the Differentiable Manifolds course to get a Riemannian metric

on CPn. Recall the vector field

E =

n+1∑
j=1

x2j−1∂2j − x2j∂2j−1

on S2n+1, which satisfies π∗(E) = 0 where π : S2n+1 → CPn is the projection map. For z ∈ S2n+1 we

have E(z) = iz (identifying tangent vectors in Cn with Cn) and we let

Hz = {X ∈ TzS2n+1 : g(X,E(z)) = 0}

where g is the round metric on S2n+1 and we know

Φz = dπz : Hz → Tπ(z)CPn

is invertible so we can define a Riemannian metric h on CPn by

hπ(z)(X,Y ) = gz(Φ
−1
z (X),Φ−1

z (Y )),

which is called the Fubini–Study metric.

This is related to group actions because CPn = S2n+1/U(1).

14
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2 The Levi-Civita connection

Let (M, g) be a Riemannian manifold. In this section we want to define a fundamental object in Rie-

mannian geometry called the Levi-Civita connection.

2.1 Fundamental Theorem of Riemannian Geometry

We recall that the Lie bracket [X,Y ] = X ◦ Y − Y ◦ X, which is equal to the Lie derivative LXY ,

gave a means to measure how the vector field Y varies with respect to X. We will now introduce

another method for differentiating vector fields, depending on the Riemannian metric, which allows us to

“connect” tangent spaces (i.e. compare tangent vectors in different tangent spaces). This is a key idea in

Riemannian geometry which we state as the following theorem.

Theorem 2.1 (Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Riemannian

manifold. There exists a unique map ∇ : Γ(TM) × Γ(TM) → Γ(TM) denoted by ∇ : (X,Y ) 7→ ∇XY

such that, if X,Y, Z ∈ Γ(TM) and a, b are smooth functions on M then:

(i) ∇aX+bY Z = a∇XZ + b∇Y Z,

(ii) ∇X(Y + Z) = ∇XY +∇XZ,

(iii) ∇X(aY ) = a∇XY +X(a)Y ,

(iv) X
(
g(Y,Z)

)
= g(∇XY,Z) + g(Y,∇XZ),

(v) ∇XY −∇YX = [X,Y ].

We call ∇XY the covariant derivative of Y with respect to X and call ∇ the Levi-Civita connection of g.

Remark. Properties (i)-(iii) say ∇ is a connection (on TM). Property (iv) says that the connection

is compatible with the Riemannian metric g. Property (v) says that the connection is torsion-free (or

symmetric).

One can define connections more generally which do not satisfy properties (iv) or (v) and on other

vector bundles but we shall not be concerned with them in this course, although they are of importance

in differential geometry.

Proof. The proof goes as follows. You first suppose that there is a map ∇ satisfying (i)-(v). You then

deduce that you get a formula which defines ∇. So, then any other map ∇′ satisfying (i)-(v) is also

defined by the same formula so must equal ∇, hence ∇ is unique if it exists. Second, you define a map

∇ by the formula and show that it satisfies (i)-(v), which means you have constructed ∇.

Suppose ∇ exists first and satisfies (i)-(v). Then (iv) implies that

X
(
g(Y, Z)

)
= g(∇XY,Z) + g(Y,∇XZ),

Y
(
g(Z,X)

)
= g(∇Y Z,X) + g(Z,∇YX),

Z
(
g(X,Y )

)
= g(∇ZX,Y ) + g(X,∇ZY ).

We deduce from (v) that

X
(
g(Y, Z)

)
+ Y

(
g(Z,X)

)
− Z

(
g(X,Y )

)
= 2g(∇XY, Z) + g(X, [Y,Z])− g(Y, [Z,X])− g(Z, [X,Y ]).

Re-arranging, we see that

g(∇XY, Z) =
1

2

(
X
(
g(Y,Z)

)
+Y

(
g(Z,X)

)
−Z

(
g(X,Y )

)
−g(X, [Y,Z])+g(Y, [Z,X])+g(Z, [X,Y ])

)
, (*)

so ∇XY is uniquely defined by g if it exists using this formula (*) (called the Koszul formula).

Now, we can also define ∇XY by (*) and we just need to check (i)-(v) are satisfied.
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For (i), if W is another vector field, we can calculate

g(∇aX+bY Z,W ) =
1

2

(
(aX + bY )

(
g(Z,W )

)
+ Z

(
g(W,aX + bY )

)
−W

(
g(aX + bY, Z)

)
− g(aX + bY, [Z,W ]) + g(Z, [W,aX + bY ]) + g(W, [aX + bY, Z])

)
= g(a∇XZ + b∇Y Z,W ) +

1

2

(
Z(a)g(W,X) + Z(b)g(W,Y )−W (a)g(X,Z)

−W (b)g(Y, Z) + g(Z,W (a)X +W (b)Y )− g(W,Z(a)X + Z(b)Y )
)

which gives (i).

Property (ii) is obvious as everything on the right-hand side of (*) is linear in its arguments.

For property (iii) we need to make an observation about the Lie bracket. We see that

[aX, bY ] = (aX) ◦ (bY )− (bY ) ◦ (aX)

= ab(X ◦ Y ) + aX(b)Y − ab(Y ◦X)− bY (a)X

= ab[X,Y ] + aX(b)Y − bY (a)X.

We can then compute:

g(∇X(aY ), Z) =
1

2

(
X
(
g(aY, Z)

)
+ aY

(
g(Z,X)

)
− Z

(
g(X, aY )

)
− g(X, [aY, Z]) + g(aY, [Z,X]) + g(Z, [X, aY ])

)
= g(a∇XY,Z) +

1

2

(
X(a)g(Y,Z)− Z(a)g(X,Y ) + g(X,Z(a)Y ) + g(Z,X(a)Y )

)
.

Now for (iv) we see that the last five terms in (*) are anti-symmetric in Y,Z, so g(∇XY,Z) +

g(∇XZ, Y ) = X
(
g(Y, Z)

)
.

Finally, for (v) we see that the first five terms in (*) are symmetric inX,Y (in particular g(X, [Z, Y ]) =

−g(X, [Y, Z]) and g(Y, [X,Z]) = −g(Y, [Z,X])), so g(∇XY −∇YX,Z) = g(Z, [X,Y ]).

Remark. Recall that, for a diffeomorphism f and vector fields X,Y we have f∗[X,Y ] = [f∗X, f∗Y ].

Therefore, since the standard vector fields on Rn satisfy

[∂i, ∂j ] = 0,

the coordinate vector fields in a chart (U,φ) on M always satisfy

[Xi, Xj ] = 0.

This is handy when using the Koszul formula.

Let us try to understand the Levi-Civita connection in simple examples.

Example. On Rn, [∂i, ∂j ] = 0 and g0(∂i, ∂j) = δij are constant functions (where ∂i are the standard

vector fields as usual), so g0(∇∂i∂j , ∂k) = 0 and hence

∇∂i
∂j = 0.

Example. On the standard n-torus Tn ⊆ R2n we have the standard coordinates

f(θ1, . . . , θn) = (cos θ1, sin θ1, . . . , cos θn, sin θn)

and coordinate vector fields

Xi = f∗(∂i) = − sin θi∂2i−1 + cos θi∂2i.

We see that g(Xi, Xj) = δij constant and [Xi, Xj ] = 0, so

∇Xi
Xj = 0.
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Example. On S2 we let f(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ) and let X1 = f∗∂θ and X2 = f∗∂ϕ be

the coordinate vector fields on S2. Then [X1, X2] = 0. We also have g(X1, X1) = 1, g(X1, X2) = 0 and

g(X2, X2) = sin2 θ. Of course these are really functions on S2 but it is clear that we can think of them

as functions on R2 (using the identification f). Under this identification if h = h(θ, ϕ) is a function on

S2 then we have that

X1(h) =
∂h

∂θ
and X2(h) =

∂h

∂ϕ
.

This is always true whenever we differentiate using the coordinate vector fields. We can therefore calculate

by (*)

g(∇X1X1, X1) =
1

2
X1(g(X1, X1)) = 0

and

g(∇X1
X1, X2) =

1

2

(
2X1(g(X1, X2))−X2(g(X1, X1))

)
= 0

since g(X1, X1) is constant and g(X1, X2) = 0. Since X1, X2 form a basis when sin θ ̸= 0,

∇X1X1 = 0.

However, we see that

g(∇X2X2, X1) =
1

2
(2X2(g(X2, X1))−X1(g(X2, X2))) = −1

2

∂

∂θ
sin2 θ = − sin θ cos θ

and

g(∇X2
X2, X2) =

1

2

(
X2(g(X2, X2))

)
=

1

2

∂

∂ϕ
sin2 θ = 0,

so the inner product of ∇X2
X2 with X1 (which is unit) is non-zero, and thus

∇X2
X2 = − sin θ cos θX1.

Finally, we compute

g(∇X1
X2, X1) =

1

2

(
X1

(
g(X2, X1)

)
+X2

(
g(X1, X1)

)
−X1

(
g(X1, X2)

))
= 0

and

g(∇X1
X2, X2) =

1

2

(
X1

(
g(X2, X2)

)
+X2

(
g(X2, X1)

)
−X2

(
g(X1, X2)

))
=

1

2

∂

∂θ
sin2 θ = sin θ cos θ.

Since g(X2, X2) = sin2 θ and [X1, X2] = 0,

∇X1X2 = ∇X2X1 =
sin θ cos θ

sin2 θ
X2 = cot θX2.

We see that this only makes sense for sin θ ̸= 0 as we would expect.

Example. We saw that on S3 we have everywhere linearly independent vector fields

E1 = −x1∂0 + x0∂1 − x3∂2 + x2∂3

E2 = −x2∂0 + x3∂1 + x0∂2 − x1∂3

E3 = −x3∂0 − x2∂1 + x1∂2 + x0∂3.

Clearly, if g is the induced metric then g(Ei, Ej) = δij which are constant. We can also compute

[E1, E2] = (−x1∂0 + x0∂1 − x3∂2 + x2∂3)(−x2∂0 + x3∂1 + x0∂2 − x1∂3)

− (−x2∂0 + x3∂1 + x0∂2 − x1∂3)(−x1∂0 + x0∂1 − x3∂2 + x2∂3)

= −x1∂2 − x0∂3 + x3∂0 + x2∂1 − (−x2∂1 − x3∂0 + x0∂3 + x1∂2)

= −2E3.
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Similarly, [E2, E3] = −2E1 and [E3, E1] = −2E2, i.e.

[Ei, Ej ] = −2ϵijkEk

(where ϵijk is the permutation symbol). Then,

g(∇Ei
Ej , Ek) =

1

2

(
− g(Ei, [Ej , Ek]) + g(Ej , [Ek, Ei]) + g(Ek, [Ei, Ej ])

)
=

1

2

(
2ϵjki − 2ϵkij − 2ϵkij

)
= −ϵijk.

Hence,

∇E1
E2 = −∇E2

E1 = −E3, ∇E2
E3 = −∇E3

E2 = −E1, ∇E3
E1 = −∇E1

E3 = −E2.

and ∇E1E1 = ∇E2E2 = ∇E3E3 = 0.

2.2 Christoffel symbols

It is useful to encode the Levi-Civita connection locally as follows.

Definition 2.2. Suppose (U,φ) is a coordinate chart on (M, g) and let Xi = (φ−1)∗∂i ∈ Γ(TU).

Since {Xi : i = 1, . . . , n} defines a basis for Γ(TU) we can define functions Γk
ij on U by

∇Xi
Xj =

n∑
k=1

Γk
ijXk

which are called the Christoffel symbols of ∇ (or g) in the chart (U,φ).

The Christoffel symbols depend on the choice of coordinates!

Example. On Rn, ∇∂i∂j = 0 so Γk
ij = 0.

Similarly on Tn with respect to the standard chart we have Γk
ij = 0.

Example. For S2 we see that ∇X1
X1 = 0 so

Γ1
11 = Γ2

11 = 0

and ∇X2X2 = − sin θ cos θX1 so

Γ1
22 = − sin θ cos θ, Γ2

22 = 0.

Finally, ∇X1X2 = ∇X2X1 = cot θX2 so

Γ1
12 = Γ1

21 = 0, Γ2
12 = Γ2

21 = cot θ.

The following proposition allows us to compute the Levi-Civita connection ∇ locally when using the

coordinate vector fields.

Proposition 2.3. Let (U,φ) be a coordinate chart on (M, g) and let Xi be the coordinate vector fields

on U . Let g be given by (gij) on U (where gij = g(Xi, Xj)).

Then Γk
ij = Γk

ji and if (gij) = g−1 and we define ∂kgij = Xk(gij) then

Γk
ij =

1

2

n∑
l=1

gkl(∂igjl + ∂jgil − ∂lgij).

Remarks. The fact that the Christoffel symbols are symmetric in i, j justifies the definition of a symmet-

ric (or torsion-free) connection. We also see that the Christoffel symbols are defined by the Riemannian

metric and its first derivatives.
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Proof. First, ∇Xi
Xj − ∇Xj

Xi = [Xi, Xj ] = 0 which is equivalent to
∑n

k=1(Γ
k
ij − Γk

ji)Xk = 0 which is

then equivalent to the statement that Γk
ij is symmetric in i, j.

We now calculate

g(∇XiXj , Xl) =

n∑
m=1

g(Γm
ijXm, Xl) =

n∑
m=1

Γm
ij gml

=
1

2

(
Xi

(
g(Xj , Xl)

)
+Xj

(
g(Xi, Xl)

)
−Xl

(
g(Xi, Xj)

))
=

1

2
(∂igjl + ∂jgil − ∂lgij)

using the formula for the Levi-Civita connection and the fact that [Xi, Xj ] = 0. Finally,

Γk
ij =

n∑
l,m=1

Γm
ij gmlg

kl

since
∑n

l=1 gmlg
kl = δkm.

Example. If we take the usual coordinate frame on Tn ⊆ R2n; i.e.Xi = f∗∂i where f(θ1, . . . , θn) =

(cos θ1, sin θ1, . . . , cos θn, sin θn) then gij = g(Xi, Xj) = δij constant so Γk
ij = 0.

Example. For S2, take f(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ) so X1 = f∗∂θ and X2 = f∗∂ϕ. Thus

(gij) =

(
1 0

0 sin2 θ

)
and (gij) =

(
1 0

0 cosec2θ

)
.

If either of i or j is 1 then gij is constant and ∂2 = ∂ϕ of anything is zero. Let us calculate Γ1
12 and Γ2

12

using the formula. We see that

Γ1
12 =

1

2

2∑
l=1

g1l(∂1g2l + ∂2g1l − ∂lg12) =
1

2
g11(∂1g21 + ∂2g11 − ∂1g12) = 0

and

Γ2
12 =

1

2

2∑
l=1

g2l(∂1g2l + ∂2g1l − ∂lg12) =
1

2
g22∂1g22 =

1

2 sin2 θ

∂

∂θ
(sin2 θ) =

2 sin θ cos θ

2 sin2 θ
= cot θ.

Example. Let f : R2 → R3 be given by f(θ, ϕ) = ((2 + cos θ) cosϕ, (2 + cos θ) sinϕ, sin θ) so that

f(R2) = T 2 ⊆ R3 and let X1 = f∗∂θ, X2 = f∗∂ϕ. We saw that we can identify g with the matrix(
1 0

0 (2 + cos θ)2

)

and hence g−1 is given by (
1 0

0 (2 + cos θ)−2

)
.

Then if i or j is 1 then ∂kgij = 0 and ∂2 = ∂ϕ of anything is zero and both g and g−1 are diagonal.
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Hence,

Γ1
11 =

1

2

2∑
l=1

g1l(∂1g1l + ∂1g1l − ∂lg11) = 0

Γ1
22 =

1

2

2∑
l=1

g1l(∂2g2l + ∂2g2l − ∂lg22) = −1

2
∂θ(2 + cos θ)2 = (2 + cos θ) sin θ

Γ1
12 =

1

2

2∑
l=1

g1l(∂1g2l + ∂2g1l − ∂lg12) = 0 = Γ1
21

Γ2
11 =

1

2

2∑
l=1

g2l(∂1g1l + ∂1g1l − ∂lg11) = 0

Γ2
22 =

1

2

2∑
l=1

g2l(∂2g2l + ∂2g2l − ∂lg22) = 0

Γ2
12 =

1

2

2∑
l=1

g2l(∂1g2l + ∂2g1l − ∂lg12) =
1

2
(2 + cos θ)−2∂θ(2 + cos θ)2 = − sin θ

2 + cos θ
= Γ2

21.

Remark. We will see that at any point p ∈ (M, g) we can choose local coordinates (i.e. a chart (U,φ)

containing p) so that

gij = δij and Γk
ij = 0 at p.

A set of coordinates that ensure this are called geodesic normal coordinates, which, unsurprisingly, involve

using geodesics - the subject of the next section.

2.3 Parallel transport

Let (M, g) be an n-dimensional Riemannian manifold.

Now we want to make sense of the term “connection” as a means to “connect” tangent spaces. We

do this using curves and distinguished vector fields.

Recall that if we have a curve α : (−ϵ, ϵ) → M then we have the tangent vector field α′ along α so

that t 7→ α′(t) ∈ Tα(t)M is smooth. Further, if we have a function f = f(α(t)) defined along the curve α

in M , then

α′(f) = (f ◦ α)′(t) = d

dt
f(α(t))

since we can also view α′ = α∗(∂t).

Definition 2.4. Let α be a curve in M and X be a vector field along α (i.e. X(α(t)) ∈ Tα(t)M and

t 7→ X(α(t)) is smooth). We say that X is parallel (along α) if ∇α′X = 0.

Remark. If we have a curve α : (−ϵ, ϵ) → (M, g) and a vector field X along α, then one can write

X ′ = ∇α′X

for ease of notation. You may also see in some textbooks (e.g. do Carmo) the notation D
Dt for ∇α′ , but

we will avoid this.

Suppose that α is contained in a chart (U,φ), then write (φ ◦ α)(t) = (x1(t), . . . , xn(t)) and, if

Xi = (φ−1)∗∂i as usual then write X =
∑n

i=1 aiXi. We see that

α′ =

n∑
i=1

x′i(φ
−1
i )∗∂i =

n∑
i=1

x′iXi.

20



Jason D. Lotay C3.11 Riemannian Geometry

Moreover,

∇α′

n∑
i=1

aiXi =

n∑
i=1

α′(ai)Xi + ai∇α′Xi

=

n∑
i=1

a′iXi +

n∑
i=1

ai∇∑n
j=1 x′

jXj
Xi =

n∑
i=1

a′iXi +

n∑
i,j=1

aix
′
j∇XjXi

=

n∑
k=1

a′kXk +

n∑
i,j,k=1

aix
′
jΓ

k
ijXk

=

n∑
k=1

a′k +

n∑
i,j=1

Γk
ijaix

′
j

Xk. (**)

So the condition to be parallel is a first order ODE on X in local coordinates.

Let us see how this works in examples.

Example. On Rn, Γk
ij = 0 so

∇α′X =

n∑
k=1

a′k∂k,

so the parallel vector fields are given by a′k = 0, which means ak is constant and so X ∈ Span{∂1, . . . , ∂n}.
Notice that the parallel vector fields are independent of the choice of curve.

Similarly, on Tn, Γk
ij = 0 so the parallel vectors fields are (constant) linear combinations of the

coordinate vector fields Xi.

Example. Let X1, X2 be the usual coordinate vector fields on S2 which are the pushforwards of ∂θ, ∂ϕ

under f(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ). Then

Γ1
11 = Γ2

11 = 0, Γ1
22 = − sin θ cos θ, Γ2

22 = 0, Γ1
12 = 0, Γ2

12 = cot θ.

So, if X = a1X1 + a2X2, then given any curve α(t) = f(θ(t), ϕ(t)) we have that

∇α′X = (a′1 − (sin θ cos θ)a2ϕ
′)X1 + (a′2 + cot θ(a1ϕ

′ + a2θ
′))X2.

We see that if α is a curve with ϕ constant (so a line of longitude) so we can take for example θ = t

and ϕ′ = 0 then we have

∇α′X = a′1X1 + (a′2 + cot ta2)X2

so X1 is parallel along α (as a1 = 1 and a2 = 0) but X2 is not (as a2 = 1 and a1 = 0), in fact

∇α′X1 = 0, ∇α′X2 = cot tX2

If α is a curve with θ constant (so a line of latitude) then if we take ϕ = t we have

∇α′X = (a′1 − sin θ cos θa2)X1 + (a′2 + cot θa1)X2.

Hence, X1 and X2 are both parallel along α (which means a′1 = 0 and a′2 = 0 solve ∇α′X = 0) if and

only if θ = π
2 (so the equator). We see that

∇α′X1 = cot θX2 and ∇α′X2 = − sin θ cos θX1.

Example. Suppose we have the 2-torus in R3 parametrised as usual by f(θ, ϕ), with vector fields

X1 = f∗∂θ and X2 = f∗∂ϕ, so [X1, X2] = 0 and

Γ1
22 = (2 + cos θ) sin θ, Γ2

12 = − sin θ

2 + cos θ
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and otherwise Γk
ij = 0. Hence, if X = a1X1 + a2X2 and α(t) = f(θ(t), ϕ(t)) is a curve on T 2, then we

compute

∇α′X = (a′1 + (2 + cos θ) sin θa2ϕ
′)X1 + (a′2 −

sin θ

2 + cos θ
(a1ϕ

′ + a2θ
′))X2.

We see that if α is a curve with ϕ constant so we take α(t) = f(t, ϕ) then

∇α′X = a′1X1 + (a′2 −
sin t

2 + cos t
a2)X2.

Again, we see that X1 is parallel along α but X2 is not. Similarly, if α(t) = f(θ, t) then

∇α′X = (a′1 + (2 + cos θ) sin θa2)X1 + (a′2 −
sin θ

2 + cos θ
a1)X2,

so we see that

∇α′X1 = − sin θ

2 + cos θ
X2 and ∇α′X2 = (2 + cos θ) sin θX1,

so we see that X1 and X2 are both parallel if and only if θ = 0 or θ = π, which is the inner and outer

ring on the torus.

We can now define a fundamental notion in Riemannian geometry which is parallel transport. This is

how we “connect” tangent spaces using the Levi-Civita connection.

Theorem 2.5. Let p, q ∈M and let α : [0, L] →M be a curve between p and q.

Given X0 ∈ TpM there exists a unique parallel vector field X along α such that X(p) = X0.

The map τα : TpM → TqM given by τα(X0) = X(q) is an isometry, so an isomorphism such that

gp(X0, Y0) = gq(τα(X0), τα(Y0)),

called the parallel transport along α.

Proof. It is enough to show that the result holds for curves α contained in a chart (U,φ) since using

compactness of [0, L] we can cover it with a finite number of intersecting open intervals I1, . . . , Im so that

each α(Ij) is contained in a coordinate chart, and the uniqueness result will prove that the vector field is

well-defined along α (as it agrees on the overlap of any of the intervals).

As we saw above, by (**) we see that X is parallel if and only if the right-hand side of (**) is zero.

This is n linear first order ODEs in n unknowns (a1, . . . , an), together with the n initial conditions that

(a1(0), . . . , an(0)) = X0, so a solution exists on all of [0, L] and is unique as claimed.

To see that τα is an isomorphism, let β(t) = α(L− t) and consider τβ : TqM → TpM . There exists a

unique parallel vector field Y along β such that Y (q) = X(q). However, β′(t) = −α′(L− t) so ∇α′X = 0

implies that ∇β′X = 0, so X is also parallel along β. The uniqueness of Y means that Y (p) = X0. We

deduce that τβ ◦ τα = id so τα is an isomorphism (as it is clearly linear).

Let X,Y be vector fields along α. Then, since α′ = α∗(∂t), along α we have that

d

dt
g(X,Y ) = α′(g(X,Y )

)
= g(∇α′X,Y ) + g(X,∇α′Y ).

If X0, Y0 ∈ TpM , then let X,Y be the unique parallel vector fields along α such that X(p) = X0 and

Y (p) = Y0. Then d
dtg(X,Y ) = 0 as X,Y are parallel so g(X,Y )(α(t)) is independent of t ∈ [0, L]. We

deduce that

gp(X0, Y0) = gp(X(p), Y (p)) = g(X,Y )(α(0)) = g(X,Y )(α(L)) = gq(X(q), Y (q)) = gq(τα(X0), τα(Y0)).

Thus τα is an isometry as claimed.

Example. On Rn for any curve α from p to q and X0 ∈ TpRn = Rn, the parallel vector field X along α is

constant, so τα(X0) = X0; i.e. parallel transport is just translation along the curve and is thus effectively

the identity.
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The same will be true for Tn ⊆ R2n since again the Christoffel symbols vanish.

Example. Suppose α in S2 is given by α(t) = (sin θ cos t, sin θ sin t, cos θ) = f(θ, t) in our usual parametri-

sation for some θ ∈ (0, π). Then α′ = X2 (again in our usual notation) and if we write X = a1X1+ a2X2

then X is parallel along α if and only if

∇α′X = (a′1 − sin θ cos θa2)X1 + (a′2 + cot θa1)X2 = 0,

so

a′1 = sin θ cos θa2 and a′2 = − cot θa1.

Differentiating again we see that a′′i = − cos2 θai, hence we see that

a1(t) = a1(0) cos(t cos θ) + a2(0) sin θ sin(t cos θ) and a2(t) = a2(0) cos(t cos θ)−
a1(0)

sin θ
sin(t cos θ)

for θ ̸= π
2 and for θ = π

2 we have that a1(t) = a1(0) and a2(t) = a2(0).

Hence the parallel transport map

τα : Tα(0)S2 → Tα(t)S2

is the map τα : X(0) → X(t) where X is parallel. Then for any a1, a2 ∈ R we have

τα(a1X1 + a2X2) = (a1 cos(t cos θ) + a2 sin θ sin(t cos θ))X1 + (− a1
sin θ

sin(t cos θ) + a2 cos(t cos θ))X2,

which is the identity when θ = π
2 for any t. Therefore, with respect to the orthonormal basis E1 = X1

and E2 = X2

sin θ the matrix of τα is (
cos(t cos θ) sin(t cos θ)

− sin(t cos θ) cos(t cos θ)

)
,

which is clearly a rotation (and thus an isometry as we expected). Notice that the size of the rotation

around a loop (so for t = 2π) depends on θ: this is related to the idea of holonomy.

Example. We can perform a similar calculation for T 2 ⊆ R3. In this case, if we take parallel transport

around a loop where ϕ is constant, we get the identity map. Instead, parallel transport around a loop

where θ is constant will give a rotation by 2π sin θ, which will be the identity when θ = 0 or π (i.e. the

inner and outer circle). Notice this is in marked contrast to T 2 ⊆ R4.

Remark. In fact, we can recover the Levi-Civita connection from the parallel transport maps: we can

define the derivative using a similar formula to the Lie derivative, but using the parallel transport instead

of the flow of the vector field.
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3 Geodesics

We now move on to one of the central ideas in Riemannian geometry, that of geodesics. You already saw

geodesics as critical curves for the length functional in the Differentiable Manifolds course. We shall now

give an alternative definition which does not involve a variational characterisation (that, in principle,

would involve us comparing a potential geodesic against all other curves with the same endpoints).

However, a key result we shall prove is that the notion we give is the same as before; i.e. that they are

locally the shortest paths between points.

3.1 Definition

We begin with the formal definition.

Definition 3.1. A curve γ in (M, g) is a geodesic if

∇γ′γ′ = 0.

Since
d

dt
g(γ′, γ′) = γ′

(
g(γ′, γ′)

)
= 2g(∇γ′γ′, γ′) = 0

it follows that |γ′| =
√
g(γ′, γ′) is constant along the curve γ. We say γ is normalised (or parameterized

by arclength) if |γ′| = 1.

Remark. Using our simplify notation from earlier, as γ′ is a vector field along γ we could write the

geodesic equation as

γ′′ = ∇γ′γ′ = 0.

This may be reminiscent of formulae you have seen elsewhere, or the idea that geodesics are curves with

“zero acceleration”.

In a coordinate chart (U,φ) we can write φ ◦ γ = (x1, . . . , xn) and

(φ ◦ γ)′ =
n∑

i=1

x′i∂i = φ∗(γ
′)

by the Chain rule. Hence,

γ′ =

n∑
i=1

x′i(φ∗)
−1(∂i) =

n∑
i=1

x′iXi

where Xi = (φ−1)∗∂i are the coordinate vector fields.

We therefore see from the properties of the Levi-Civita connection from the Fundamental Theorem

of Riemannian Geometry, and the definition of the Christoffel symbols, that

∇γ′γ′ =

n∑
i=1

∇γ′(x′iXi)

=

n∑
i=1

γ′(x′i)Xi + x′i∇γ′Xi

=

n∑
i=1

x′′iXi + x′i

n∑
j=1

x′j∇Xj
Xi

=

n∑
i=1

x′′iXi +

n∑
j,k=1

x′ix
′
jΓ

k
jiXk

=

n∑
k=1

(x′′k +

n∑
i,j=1

Γk
ijx

′
ix

′
j)Xk.
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Remark. This result of course follows from the more general formula for ∇α′X we derived during our

discussion of parallel transport.

We deduce the following result.

Proposition 3.2. Let (U,φ) be a chart on (M, g) and let γ be a curve in U . If we write φ◦γ = (x1, . . . , xn)

then γ is a geodesic if and only if

x′′k +

n∑
i,j=1

Γk
ijx

′
ix

′
j = 0

for all k, which are called the geodesic equations.

These equations should be familiar to you if you have studied surfaces in R3 or general relativity.

Notice again that these equations are dependent on the coordinate chart we choose.

3.2 Examples

Let us calculate the geodesics in some examples.

Example. For Rn, we saw that Γk
ij = 0 so the geodesic equations for γ = (x1, . . . , xn) are simply

x′′k = 0

which define straight lines xk(t) = akt + bk. We see that the condition for γ to be normalised is:∑n
i=1 a

2
i = 1.

Example. If we let f : R+ × R → R2 \ {0} be f(r, θ) = (r cos θ, r sin θ), then we saw that the pullback

metric g = f∗g0 was given by

(gij) =

(
1 0

0 r2

)
so

(gij) =

(
1 0

0 1
r2

)
.

Therefore, we see that the Christoffel symbols are (recalling that in this setting X1 = ∂r and X2 = ∂θ):

Γ1
11 = 0, Γ1

22 = −r, Γ1
12 = 0, Γ2

11 = 0, Γ2
22 = 0, Γ2

12 =
1

r
;

so

∇X1
X1 = 0, ∇X1

X2 = ∇X2
X1 =

1

r
X2, ∇X2

X2 = −rX1.

We see that the geodesic equations now are (since x1 = r and x2 = θ)

r′′ − r(θ′)2 = 0 and θ′′ +
2

r
r′θ′ = 0.

We see straight away that θ′ = 0 and r′′ = 0 gives a solution, which corresponds to a ray emanating from

the origin.

However, it is now not as easy to see that all geodesics are just straight lines. This shows how

important it is to choose the right coordinates!

Example. On the standard n-torus Tn ⊆ R2n we saw that Γk
ij = 0 when we choose f(θ1, . . . , θn) =

(cos θ1, sin θ1, . . . , cos θn, sin θn) and thus the geodesic equations are given by

θ′′k = 0.

We deduce that θk = akt+ bk, so the geodesics are

γ(t) = (cos(a1t+ b1), sin(a1t+ b1), . . . , cos(ant+ bn), sin(ant+ bn)),
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the images in Tn of the straight lines in Rn.

Example. For S2 suppose we take a normalised geodesic

γ(t) = (sin θ(t) cosϕ(t), sin θ(t) sinϕ(t), cos θ(t)).

So here f = f(θ, ϕ) is as usual and X1 = f∗∂θ and X2 = f∗∂ϕ. Since

Γ1
11 = Γ1

12 = 0, Γ1
22 = − sin θ cos θ, Γ2

11 = Γ2
22 = 0, Γ2

12 = cot θ,

we see that the geodesic equations are

θ′′ − sin θ cos θ(ϕ′)2 = 0 and ϕ′′ + 2 cot θθ′ϕ′ = 0.

and

|γ′|2 = (θ′)2 + sin2 θ(ϕ′)2 = 1.

We see that ϕ′ = 0 and θ′′ = 0 gives a solution if θ′ = 1, which is

γ(t) =
(
sin(t+ θ0) cosϕ0, sin(t+ θ0) sinϕ0, cos(t+ θ0)

)
with θ0, ϕ0 constant, called a great circle.

It is useful to compare this to our discussion of parallel transport on (S2, g).

We shall see that all geodesics are great circles in S2 (and in fact in Sn) are great circles.

Example. Suppose we take the upper half-plane planeH2 = {(x1, x2) ∈ R2 : x2 > 0} and the hyperbolic

metric

g =
dx21 + dx22

x22
.

We can compute that the Christoffel symbols are:

Γ1
11 = Γ1

22 = 0, Γ2
11 = −Γ2

22 =
1

x2
, Γ1

12 = − 1

x2
, Γ2

12 = 0.

We have the geodesic equations for γ(t) = (x1(t), x2(t)) are given by

x′′1 − 2

x2
x′1x

′
2 = 0, x′′2 +

1

x2
((x′1)

2 − (x′2)
2) = 0.

There is clearly a solution given by x1 is constant and x2 = et, so vertical half-lines are geodesics (and

notice that they are defined for all t ∈ R).

We have seen that it is quite laborious to compute the Christoffel symbols, but there is a much faster

way as follows.

Proposition 3.3. Let (U,φ) be a chart on (M, g) and let

L =
1

2

∑
i,j

gijx
′
ix

′
j .

Then γ given by φ ◦ γ = (x1, . . . , xn) is a geodesic if and only if, for all k,

d

dt

(
∂L

∂x′k

)
− ∂L

∂xk
= 0.

This is a straightforward calculation, but we will prove this formula later without computation because

what it says is that γ is a geodesic if and only if the Euler–Lagrange equations for the function L are

satisfied, which means that γ must be critical point for
∫
L, which we will see is the energy of the curve.

So, if we show that geodesics are critical for energy (which will follow from the fact that they are locally

length minimizing), then this formula is a direct consequence.
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Proof. The proof is an easy calculation, which I give for completeness. We see that

d

dt
gij = γ′(g(Xi, Xj))

= g(∇γ′Xi, Xj) + g(Xi,∇γ′Xj)

= g(
∑
l

x′l∇Xl
Xi, Xj) + g(Xi,

∑
l

x′l∇Xl
Xj)

= g(
∑
l,m

x′lΓ
m
liXm, Xj) + g(Xi,

∑
l,m

x′lΓ
m
ljXm)

=
∑
l,m

(x′lΓ
m
li gmj + x′lΓ

m
lj gim).

Therefore

d

dt

∂L

∂x′k
=

d

dt
(
∑
i

gikx
′
i)

=
∑
i

gikx
′′
i +

∑
i,l,m

(x′l(Γ
m
li gmk + Γm

lkgim)x′i)

=
∑
i

(
gikx

′′
i +

∑
l,m

(Γm
li gmk + Γm

lkgim)x′ix
′
l

)
.

We then see that

∂L

∂xk
=

1

2

∑
i,j

Xk(gij)x
′
ix

′
j

=
1

2

∑
i,j

(
g(∇Xk

Xi, Xj) + g(Xi,∇Xk
Xj)

)
x′ix

′
j

=
1

2

∑
i,j,l

(Γl
kiglj + Γl

kjgil)x
′
ix

′
j

=
∑
i,j,l

Γl
kigljx

′
ix

′
j

=
∑
i,l,m

Γm
kigmlx

′
ix

′
l

since the sum is symmetric in i, j. Multiplying by gka and notice that
∑

k g
kagki = δia we deduce that

the equation in the proposition holds if and only if

x′′a +
∑
i,l

(
Γa
li +

∑
m

(gkaΓm
lkgim − gkaΓm

kigml)
)
x′ix

′
l = 0

The last two terms cancel, since the sum is symmetric in i, l and the Christoffel symbols are symmetric

in the lower indices, and hence

x′′k +
∑
i,j

Γk
ijx

′
ix

′
j = 0

upon relabeling.

Remark. The proof shows that the Euler–Lagrange equations for the energy given in Proposition 3.3

are equivalent to the geodesic equations. This means that we can compute the Christoffel symbols using

the Euler–Lagrange equations! This is computationally expedient.

Example. For the case of polar coordinates, g = dr2 + r2dθ2 so L = 1
2

(
(r′)2 + r2(θ′)2

)
. We see that

∂L

∂r′
= r′ and

∂L

∂r
= r(θ′)2

so we have a geodesic equation:

d

dt

(
∂L

∂r′

)
− ∂L

∂r
= r′′ − r(θ′)2 = 0.
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Even more simply,
∂L

∂θ′
= r2θ′ and

∂L

∂θ
= 0

so the other geodesic equation is:

d

dt

(
∂L

∂θ′

)
− ∂L

∂θ
= (r2θ′)′ = r2θ′′ + 2rr′θ′ = 0.

Example. For S2 the answer is similar since g = dθ2 + sin2 θdϕ2 so L = 1
2

(
(θ′)2 + sin2 θ(ϕ′)2

)
. Then

∂L

∂θ′
= θ′ and

∂L

∂θ
= sin θ cos θ(ϕ′)2,

so the first geodesic equation is:

d

dt

(
∂L

∂θ′

)
− ∂L

∂θ
= θ′′ − sin θ cos θ(ϕ′)2 = 0.

We also have
∂L

∂ϕ′
= sin2 θϕ′ and

∂L

∂ϕ
= 0

so the other geodesic equation is

d

dt

(
∂L

∂ϕ′

)
− ∂L

∂ϕ
= (sin2 θϕ′)′ = sin2 θϕ′′ + 2 sin θ cos θθ′ϕ′ = 0.

Example. Finally, we do the case of (H2, g), where

L =
1

2

(x′1)
2 + (x′2)

2

x22
.

Therefore we easily compute:

∂L

∂x′1
=
x′1
x22

and
∂L

∂x1
= 0,

∂L

∂x′2
=
x′2
x22

and
∂L

∂x2
= − (x′1)

2 + (x′2)
2

x32
,

so we have the geodesic equations:(
x′1
x22

)′

= 0 and

(
x′2
x22

)′

+
(x′1)

2 + (x′2)
2

x32
= 0,

which is equivalent to our previous equations.

3.3 Isometries

Suppose we want to understand all geodesics in (H2, g). Clearly solving the general equations is hard,

but one trick that will be useful more generally is to use isometries.

It is important to note that an isometry f : (M, g) → (N,h) identifies the metrics on M and N , and

since the metric uniquely determines the Levi-Civita connection, it identifies the Levi-Civita connections

and hence the geodesics. Moreover, the condition to be a geodesic is a local one, so if f is only a local

isometry then we may restrict to open subsets U of M and V of N where it is an isometry and see

that any part of a geodesic in U will be mapped to a geodesic in V . Therefore, we have the following

important result.

Lemma 3.4. A local isometry f : (M, g) → (N,h) between Riemannian manifolds maps geodesics in

(M, g) to geodesics in (N,h).
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Example. Recall that the orientation-preserving isometries of (H2, g) are the Möbius transformations

f(z) =
az + b

cz + d

where a, b, c, d ∈ R with ad− bc = 1.

We can then see what happens to the vertical half-line under a Möbius transformation. Well,

f(ix2) =
acx22 + bd+ ix2

c2x22 + d2
= u+ iv

and we see that

(2cdu− (ad+ bc))2 + (2cdv)2 = 1

which defines a circle centered at a point on the line x2 = 0 if cd ̸= 0. If cd = 0 then either c = 0 or d = 0

(but not both) and in both cases we just get back the vertical half-line we started with. Hence, we have

geodesics of H2 given by vertical half-lines and semi-circles centered at points on x2 = 0 (equivalently,

the circles which meet the x1-axis at right angles). Notice again that v never reaches zero as t → ±∞
because x2 is an exponential in t.

3.4 Existence and uniqueness

We now want to see later how geodesics give a distinguished way to “move” inside the manifold. To see

this, we need an existence and uniqueness result for geodesics, which is important in its own right. Here,

for p ∈ (M, g) we introduce the notation Bϵ(0) ⊆ TpM for

Bϵ(0) = {X ∈ TpM : |X| < ϵ}

where |X| =
√
gp(X,X).

Theorem 3.5. Let p ∈M . There exist an open set U ∋ p, ϵ > 0 and a smooth map Γ : (−2, 2)×V →M

where

V = {(q,X) : q ∈ U,X ∈ Bϵ(0) ⊆ TqM}

such that γ(q,X)(t) = Γ(t, q,X) is the unique geodesic in M with γ(q,X)(0) = q and γ′(q,X)(0) = X.

Proof. The geodesic equations are a system of second order ODEs, which are linear in the second deriva-

tives, so standard ODE theory states that there exist an open set U ∋ p, ϵ′ > 0 and δ > 0 such that for

all q ∈ U and Y ∈ Bϵ′(0) there exists a unique geodesic α(q,Y ) : (−δ, δ) → M with α(q,Y )(0) = q and

α′
(q,Y )(0) = Y . Moreover, the map (t, q, Y ) 7→ α(q,Y )(t) is smooth.

If δ ≥ 2, we are done, but if δ < 2 we define a curve

γ(q,X)(t) = α(q, 2Xδ )

(
δt

2

)
where X ∈ B δϵ′

2
(0) ⊆ Bϵ′(0) (so Y = 2X

δ ∈ Bϵ′(0)) and t ∈ (−2, 2) (so | δt2 | < ϵ).

Now γ(q,X)(0) = q, γ′(q,X)(0) =
δ
2α

′
(q, 2Xδ )

(0) = X and

∇γ′
(q,X)

γ′(q,X) =
δ2

4
∇α′

(q, 2X
δ

)
α′
(q, 2Xδ )

= 0

so γ(q,X) is a geodesic. By the uniqueness result, γ(q,X) is the unique geodesic with the given initial

conditions, so the result follows with ϵ = δϵ′

2 .

The uniqueness result has important consequences. In particular, we can describe all of the geodesics

in simple examples.

Example. Given q ∈ S2 and unit Y ∈ TqS2, let γ be the unique geodesic such that γ(0) = q and

γ′(0) = Y . There exists T ∈ SO(3) such that T (0, 0, 1) = q and T (0, 1, 0) = Y . We have a geodesic
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α(t) = (0, sin t, cos t) such that α(0) = (0, 0, 1) and α′(0) = (0, 1, 0). Since T is an isometry it takes

geodesics to geodesics. Therefore β(t) = T (α(t)) is a geodesic with β(0) = q and β′(0) = Y , so uniqueness

of geodesics means that γ = β. Therefore, every geodesic in S2 is a great circle.

Remark. For the next example, and for the rest of the course, we let ei denote the vector in Rn with 1

in the ith place and 0 otherwise.

Example. Let p ∈ Sn and unit vector X ∈ TpSn. As in the argument for S2, there exists T ∈ SO(n+1)

such that T (0, . . . , 0, 1) = p and T (0, . . . , 0, 1, 0) = X, so the unique geodesic γ through p with tangent

vector X at p is given by T (α) where α is the geodesic through en+1 with tangent vector en.

Let ρ(x1, . . . , xn+1) = (−x1, . . . ,−xn−1, xn, xn+1). This is an isometry of Sn with ρ(en+1) = en+1

and ρ(en) = en. Therefore ρ(α) = α by the uniqueness of geodesics, so α ∈ Span{en, en+1} and hence

α = sin ten+cos ten+1, a great circle. Therefore all of the geodesics in Sn are great circles; that is Π∩Sn

for 2-planes Π through 0.

Example. Theorem 3.5 shows that the geodesics we found earlier on the hyperbolic upper-half plane

(H2, g), i.e. the vertical half-lines and semi-circles centred on the horizontal axis, comprise all of the

geodesics on (H2, g).

Example. By Theorem 1.6, the projection map π : Sn → RPn = Sn/Z2 is a local isometry. Therefore,

if γ̃ is a normalized geodesic in Sn then γ = π ◦ γ̃ is a normalized geodesic in RPn.

Notice that although γ̃(t + 2π) = γ̃(t) (as the circumference of a great circle is 2π), we have that

γ(t+ π) = γ(t) since γ̃(t+ π) = −γ̃(t) and so π(γ̃(t+ π)) = π(γ̃(t)).

Let [p] ∈ RPn and X ∈ T[p]RPn with |X| = 1. Since we can take p ∈ Sn and dπp : TpSn → T[p]RPn is

an isomorphism, there exists a unique great circle α through p with dπp(α
′(0)) = X and the projection

π ◦α of α is a geodesic through [p] with (π ◦α)′(0) = X. By Theorem 3.5, there exists a unique geodesic

γ in RPn through [p] with γ′(0) = X. Hence γ = π ◦ α.
In other words, every geodesic in RPn is the projection of a great circle in Sn, as we might expect.

3.5 Exponential map

Definition 3.6. We define a smooth map expp : V → M by expp(q,X) = γ(q,X)(1), which we call the

exponential map. We often restrict to expp : Bϵ(0) ⊆ TpM → M by expp(X) = γ(p,X)(1), which we still

call the exponential map.

Notice that

γ(p,tX)(1) = expp(tX) = γ(p,X)(t),

when both sides make sense, so the exponential map moves points along geodesics emanating from p.

This fact also means we usual care about the exponential map acting on unit tangent vectors, if this is

well-defined.

Example. In (Rn, g0) we have γ(p,X)(t) = p + tX, so expp(X) = p + X. This clearly makes sense for

any vector X, regardless of size. In other words the exponential map expp : Rn → Rn is just translation

by p. Since it is a translation, it is a diffeomorphism.

Example. A similar example occurs in Tn ⊆ R2n. If p = (cos θ1, sin θ1, . . . , cos θn, sin θn) and X =

f∗(
∑n

i=1 ai∂i) where f(x1, . . . , xn) = (cosx1, sinx1, . . . , cosxn, sinxn) as usual, then we have

γ(p,X)(t) = (cos(a1t+ θ1), sin(a1t+ θ1), . . . , cos(ant+ θn), sin(ant+ θn))

so

expp(X) = (cos(a1 + θ1), sin(a1 + θ1), . . . , cos(an + θn), sin(an + θn))
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which is again “translation” along the circles in Tn by p. Notice that if a1 = 2π and ai = 0 otherwise,

then expp(X) = p, so unlike the Rn case the exponential map is not injective, and so it is only a local

diffeomorphism.

Example. On S2 we recall we have geodesics, for c ∈ R given by

γ(t) = (sin(ct+ θ0) cosϕ0, sin(ct+ θ0) sinϕ0, cos(ct+ θ0).

These all start from the same point p = γ(0) = f(θ0, ϕ0), in the usual notation, but γ′(0) = cX1, so we

see that

expp(cX1) = γ(1) = (sin(c+ θ0) cosϕ0, sin(c+ θ0) sinϕ0, cos(c+ θ0)).

We see that expp(2πX1) = expp(X1) so again the exponential map is not injective.

Example. We saw on the hyperbolic plane (H2, g) that we have geodesics for c ∈ R given by

γ(t) = (x1, x2e
ct).

so γ(0) = (x1, x2) = p and γ′(0) = c∂2. Hence,

expp(c∂2) = γ(1) = (x1, x2e
c).

Now we see that, at least in this direction, the exponential map is defined for all c ∈ R (since ec > 0 for

all c) and it is injective. So there is a question: is the exponential map a diffeomorphism or not in this

setting?

Example. For SU(n) (as well as other compact matrix Lie groups) with its bi-invariant Riemannian

metric, the exponential map expI : TI SU(n) → SU(n) is expI(X) = exp(X), recalling that

su(n) = TI SU(n) = {X ∈Mn(C) : X + X̄T = 0, tr(X) = 0}.

Notice that since X ∈ su(n) is skew-Hermitian, exp(X) ∈ SU(n). This motivates the name “exponential

map”. We also see that geodesics through I are 1-parameter subgroups γ(t) = exp(tX). More generally,

geodesics through A ∈ SU(n) will be γ(t) = A exp(tX) for X ∈ su(n). This is all part of the more general

theory relating Lie algebras and Lie groups

So we have a suspicion, based on these examples, that the exponential map might “fill out” a neigh-

bourhood of the point we care about. This turns out to be correct. The exponential map thus allows us

to locally identify a open neighbourhood in the tangent space of the manifold (and thus in Rn) with an

open neighbourhood of the manifold. Moreover, this identification encodes the behaviour of the geodesics,

unlike say random choices of coordinate charts. We will see the importance of this later.

We can even do slightly better as the next theorem shows.

Theorem 3.7. Given p ∈M there exist an open set W ∋ p and δ > 0 such that for all q ∈W

expq : Bδ(0) ⊆ TqM → expq(Bδ(0)) ⊇W

is a diffeomorphism onto its image.

Proof. The key to the proof is to calculate the differential of the exponential map at 0. The exponential

map expp : TpM → M so its differential d(expp)0 : T0(TpM) → Texpp(0)
M = TpM . Since TpM is just a

vector space, we may identify T0(TpM) = TpM , which means d(expp)0 : TpM → TpM . If X ∈ TpM then

d(expp)0(X) =
d

dt
expp(tX)|t=0 =

d

dt
γ(p,X)(t)|t=0 = γ′(p,X)(0) = X.

Thus d(expp)0 = id, the identity.
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The rest of the proof now follows from the inverse function theorem. Let U, V, ϵ be as in Theorem 3.5.

Define F : V ⊆ TM →M ×M by F (q,X) = (q, expq(X)). Hence,

dF(p,0) : T(p,0)TM ∼= TpM × T0(TpM) ∼= TpM × TpM → TpM × TpM

can be written

dF(p,0) =

(
I 0

A I

)
for some matrix A. Hence, dF(p,0) is an isomorphism so F is a local diffeomorphism. Thus there exist

ϵ > δ > 0 and open sets Ũ ⊆ U and W̃ ⊆M ×M such that (p, p) ∈ W̃ and if

Ṽ = {(q,X) : q ∈ Ũ ,X ∈ Bδ(0) ⊆ TqM} ⊆ V

then F : Ṽ → W̃ is a diffeomorphism. Choose an open set W ∋ p such that W ×W ⊆ W̃ .

Then if q ∈W we have that W ⊆ expq(Bδ(0)) as required.

Remark. Using the exponential map, for any p ∈ M we can define local coordinates on (M, g) called

geodesic normal coordinates (U,φ) at p which have the property that the functions gij and Christoffel

symbols Γk
ij in (U,φ)

φ(p) = 0, gij(p) = δij , Γk
ij = 0.

This means that if we call the geodesic normal coordinates x = (x1, . . . , xn) then every Riemannian

metric equals the Euclidean metric “to first order” in geodesic normal coordinates x.

3.6 Length and normal neighbourhoods

We want to show geodesics are locally length minimizing; i.e. if the geodesic is sufficiently short then it

minimizes the distance between the two endpoints amongst all nearby curves. We first define what we

mean by the length.

Definition 3.8. The length of a curve α : [0, L] →M is

L(α) =

∫ L

0

|α′(t)|dt =
∫ L

0

√
g
(
α′(t), α′(t)

)
dt.

For normalised geodesics γ : [0, L] →M , L(γ) = L since |γ′| = 1.

The curve α is (length) minimizing if L(α) ≤ L(β) for all curves β : [0, L] →M such that α(0) = β(0)

and α(L) = β(L).

Example. For the normalised geodesics γ(t) = (sin(t+ θ0) cosϕ0, sin(t+ θ0) sinϕ0, cos(t+ θ0)) in S2 for

t ∈ [0, L] we see that γ(2π) = γ(0), which means that if L = 2π then γ is a full circle, which is has length

2π as we expect. Similarly, γ(π) = −γ(0), so if L = π we get a half-circle whose length is π.

Since every geodesic in Sn is contained in some S2 ⊆ Sn, we see that the same argument works for

normalised geodesics in Sn: full great circles have length 2π and half great circles have length π.

Example. On RPn we observed that normalised geodesics are given by γ = π◦α where α is a normalised

geodesic in Sn and π is the projection map. Since γ(π) = π ◦ α(π) = π(−α(0)) = π ◦ α(0) = γ(0), as we

saw before, this shows that normalised geodesics with length π in RPn are loops (rather than 2π).

Notice that geodesics cannot be length minimizing globally in general. For example, if we take

geodesics longer than π on the sphere then they are no longer minimizing (because it is longer than a

half-circle), whereas straight lines in Rn are always minimizing.

How small the geodesic should be so that it is minimizing will depend on the Riemannian metric g

on M . In order to understand this we make the next definition.
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Definition 3.9. An open set U ⊆M with U ∋ p is called a normal neighbourhood of p if there exists an

open set V ⊆ TpM such that expp : V → U is a diffeomorphism.

If Bϵ(0) ⊆ V we define Bϵ(p) = expp(Bϵ(0)) to be the geodesic ball of radius ϵ centered at p and

∂Bϵ(p) = Sϵ(p) to be the geodesic sphere of radius ϵ around p.

An open setW ⊆M is a totally normal neighbourhood if it is a normal neighbourhood of every q ∈W .

Remark. Theorem 3.7 ensures the existence of totally normal neighbourhoods. The geodesics in the

normal neighbourhood at p which emanate from p are often called radial geodesics. Notice that given a

point q ∈ Bϵ(p) radial geodesics from p to q are the unique geodesics from p to q contained in Bϵ(p) by

Theorem 3.5.

The idea should be that geodesics in normal neighbourhoods are minimizing. Let us see that this

gives us the correct notion in the examples we understand.

Example. Given p ∈ Rn and X ∈ TpRn = Rn, then expp(X) = p + X so expp is defined for all

X ∈ TpRn = Rn and expp(TpRn) = Rn, so expp defines a diffeomorphism between TpRn and Rn.

Hence Rn is a totally normal neighbourhood and so geodesics of any length should be minimizing in

Rn: this is true because the shortest path between two points is the unique straight line between them.

Observe that the geodesic ball Bϵ(p) is the usual metric ball of radius ϵ about p in Rn.

Example. Given the North pole N ∈ Sn, (you can think of n = 2 if it helps) expN is a map which

follows a great circle, and if X ∈ TNSn such that |X| = π then expN (X) = S, the South pole.

Hence

expN : Bπ(0) ⊆ TNSn → Sn \ {S}

is a diffeomorphism, so Sn \ {S} is a normal neighbourhood of N . Generally, given p ∈ Sn, Sn \ {−p} is

a normal neighbourhood of p diffeomorphic to Bπ(0).

We deduce that geodesics starting at p of length less than π are minimizing, as we would expect.

3.7 Geodesics are locally length minimizing

To prove our result about geodesics begin locally length minimizing we need a key lemma, called the

Gauss Lemma, which is a little bit tricky. We observe again that if p ∈ M and X ∈ TpM then we can

identify TX(TpM) with TpM since there are both just copies of Rn and based at the same point in M .

Lemma 3.10. (Gauss Lemma). Let p ∈ M and X ∈ TpM such that expp(X) defined. If Y ∈
TX(TpM) ∼= TpM then

gexpp(X)

(
d(expp)X(X),d(expp)X(Y )

)
= gp(X,Y ).

Remark. The Gauss Lemma says that (normalised) radial geodesics r 7→ expp(rZ) in Bϵ(p) for Z ∈ TpM

with |Z| = 1 and r ∈ (0, ϵ) are orthogonal to the geodesic spheres Sδ(p) for δ ∈ (0, ϵ). In other words, we

have “geodesic polar coordinates” near p given by r ∈ (0, ϵ) (the “radial” coordinate) and Z ∈ TpM with

|Z| = 1 (which is the “angle” coordinate since Z lies in the unit sphere in TpM).

Proof. Write Y = Y T + Y ⊥ where Y T ∈ Span{X} and Y ⊥ ∈ Span{X}⊥.
The geodesic γ(p,X) so that γ(p,X)(0) = p and expp(X) = γ(p,X)(1) satisfies γ(p,X)(t) = expp(tX) so

γ′(p,X)(t) = d(expp)tX(X).

Notice that this means that

γ′(p,X)(0) = d(expp)0(X) = X
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(since d(expp)0 = id) as we know but also that

γ′(p,X)(1) = d(expp)X(X).

Moreover,

|γ′(p,X)(t)|
2 = gγ(p,X)(t))

(
γ′(p,X)(t), γ

′
(p,X)(t)

)
= gexpp(tX)

(
d(expp)tX(X),d(expp)tX(X)

)
is constant by Definition 3.1 because γ is a geodesic. Thus, choosing t = 0 and t = 1 gives

gexpp(X)

(
d(expp)X(X),d(expp)X(X)

)
= gp(X,X).

Hence, since Y T ∈ Span{X} (so Y T = λX for some constant λ) we see that

gexpp(X)

(
d(expp)X(X),d(expp)X(Y T)

)
= gp(X,Y

T)

as d(expp)X is linear and g is bilinear.

So since gp(X,Y
⊥) = 0 by definition it is now enough to show that

gexpp(X)

(
d(expp)X(X),d(expp)X(Y ⊥)

)
= 0.

There exists ϵ > 0 such that if

X(t) = X cos t+ Y ⊥ sin t

then expp(sX(t)) is well-defined for s ∈ [0, 1] and t ∈ (−ϵ, ϵ). (In other words, if expp(X) is defined, then

so is expp(Z) for all Z in a little sector based at 0 containing X.) Let

f(s, t) = expp(sX(t))

so s 7→ f(s, t) = expp(sX(t)) are radial geodesics. We can differentiate f to get

∂f

∂s
= d(expp)sX(t)(X(t)) and

∂f

∂t
= d(expp)sX(t)(sX

′(t)).

(Notice that ∂f
∂s and ∂f

∂t are vector fields on the image of f which are tangent to curves where t and s are

constant respectively.) Hence, since f(1, 0) = expp(X) and X ′(0) = Y ⊥ we see that

gexpp(X)

(
d(expp)X(X),d(expp)X(Y ⊥)

)
= gexpp(X)

(
∂f

∂s
(1, 0),

∂f

∂t
(1, 0)

)
Now the covariant derivative along curves where t is constant (i.e. the radial geodesics s 7→ f(s, t)) is

∇ ∂f
∂s

∂f

∂s
= 0,

since s 7→ f(s, t) is a geodesic and ∂f
∂s is the tangent vector field to this geodesic.

To continue the proof we will need the following important lemma which we will use a number of

times in the course.

Lemma 3.11 (Symmetry Lemma). Let V ⊆ R2 be open, let A ⊆ R2 be connected such that V ⊆ A ⊆ V̄

and ∂A is a curve with vertex angles ̸= π. Let f : A→ (M, g) be smooth and let (u, v) be coordinates on

A. Then

∇ ∂f
∂u

∂f

∂v
= ∇ ∂f

∂v

∂f

∂u
.

Here, ∂f
∂u and ∂f

∂v are the vector fields in f(A) ⊆ M which are tangent to the curves where v and u are

constant respectively.

Remark. The conditions on A ensure that the notion of smooth map on A is well-defined. The vertex

angle at a point x where α is not smooth is the angle between the two rays meeting at x.
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Proof. Let (U,φ) be a coordinate chart at p ∈ f(A) and write φ◦f(u, v) = (x1(u, v), . . . , xn(u, v)) . Then

∇ ∂f
∂u

∂f

∂v
= ∇ ∂f

∂u

n∑
j=1

∂xj
∂v

Xj =

n∑
j=1

∂2xj
∂u∂v

Xj +

n∑
j,k=1

∂xj
∂u

∂xk
∂v

∇Xk
Xj .

The first term is clearly symmetric in u, v and since ∇Xk
Xj =

∑n
i=1 Γ

i
kjXi is symmetric in j, k the second

term is symmetric in j, k and hence u, v also.

Applying the Symmetry Lemma (Lemma 3.11) in our situation gives

∇ ∂f
∂s

∂f

∂t
= ∇ ∂f

∂t

∂f

∂s
.

Now we see that, using our earlier calculation in proving Theorem 2.5,

∂

∂s
g

(
∂f

∂s
,
∂f

∂t

)
= g

(
∇ ∂f

∂s

∂f

∂s
,
∂f

∂t

)
+ g

(
∂f

∂s
,∇ ∂f

∂s

∂f

∂t

)
= g

(
∇ ∂f

∂t

∂f

∂s
,
∂f

∂s

)
=

1

2

∂

∂t

∣∣∣∣∂f∂s
∣∣∣∣2

=
1

2

∂

∂t
|X(t)|2 = 0

as |X(t)|2 = |X|2 + |Y ⊥|2 is constant.

Thus,

g

(
∂f

∂s
,
∂f

∂t

)
(1, 0) = g

(
∂f

∂s
,
∂f

∂t

)
(s, 0)

for all s. Now
∂f

∂t
(s, 0) = d(expp)sX(sY ⊥) → 0 as s→ 0

so

g

(
∂f

∂s
,
∂f

∂t

)
(1, 0) = gexpp(X)

(
d(expp)X(X),d(expp)X(Y ⊥)

)
= 0

as required.

We can now state our main result about geodesics.

Theorem 3.12. Geodesics γ : [0, L] → (M, g) in Bϵ(p) with γ(0) = p are minimizing. Moreover if

α : [0, L] →M is a curve such that α(0) = γ(0), α(L) = γ(L) and L(α) = L(γ) then α([0, L]) = γ([0, L]).

Proof. Suppose α is a comparison curve to γ and suppose without loss of generality that γ(0) ̸= γ(L)

(otherwise γ is simply the constant geodesic which is clearly minimizing). Since we are in Bϵ(p) the

unique geodesic from γ(0) to γ(L) is the radial geodesic.

If α([0, L]) ⊈ Bϵ(p) then let T ∈ (0, L] be least such that α(T ) ∈ Sϵ(p). Thus L(α) ≥ L(α|[0,T ]) and

α|[0,T ] is a curve contained in Bϵ(p). Reparameterise such that α|[0,T ] is defined on [0, L] (this does not

change its length), and call this α. If we can show that this new α is at least as long as the radial geodesic

from α(0) = p to α(L) = q then we are done, since we will have shown that any curve connecting p to any

other point in the geodesic ball is at least as long as a radial geodesic, so radial geodesics are minimizing.

Hence we now assume that α is contained in Bϵ(p). Without loss of generality we can assume α(t) ̸= p

for t > 0 (since otherwise it stays at p for a while before moving away from p). Thus we can write

α(t) = expp(r(t)X(t))

for t ∈ (0, L] where r : (0, L] → R+ is piecewise smooth and X(t) is a curve in TpM with |X(t)| = 1.

Notice that

q = γ(L) = α(L) = expp
(
r(L)X(L)

)
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so we can write the geodesic γ : [0, L] →M from p to q as

γ(s) = expp

(
sr(L)X(L)

L

)
since it is a radial geodesic.

In the notation of the proof of the Gauss Lemma, α(t) = f(r(t), t) so

α′(t) = r′(t)
∂f

∂s
(r(t), t) +

∂f

∂t
(r(t), t).

The Gauss Lemma implies that

g

(
∂f

∂s
,
∂f

∂s

)
(r(t), t) = gexpp(r(t)X(t))

(
d(expp)r(t)X(t)(X(t)),d(expp)r(t)X(t)(X(t))

)
= gp(X(t), X(t)) = 1

and

g

(
∂f

∂s
,
∂f

∂t

)
(r(t), t) = gexpp(r(t)X(t))

(
d(expp)r(t)X(t)(X(t)),d(expp)r(t)X(t)(X

′(t))
)

= gp(X(t), X ′(t)) =
1

2

d

dt
|X(t)|2 = 0

since |X(t)| = 1 for all t.

Hence

|α′|2 = |r′|2 +
∣∣∣∣∂f∂t

∣∣∣∣2 ≥ |r′|2.

Integrating we see that

L(α) =

∫ L

0

|α′(t)|dt ≥
∫ L

0

|r′(t)|dt ≥
∫ L

0

r′(t)dt = r(L) = L(γ)

since we observed that, as γ is a radial geodesic, L(γ) = L. |r(L)X(L)|
L = r(L) as r(L) > 0 and |X(L)| = 1.

We deduce that γ is minimizing.

Moreover L(α) = L(γ) only if ∂f
∂t = 0, so X ′(t) = 0 which means X(t) = X is constant, and

|r′| = r′ > 0. Therefore α is a monotonic reparametrization of γ (as γ(s) = expp(
sr(L)X

L )), so α([0, L]) =

γ([0, L]).

We have shown geodesics are locally minimizing (i.e. in a neighbourhood of each point it is minimizing).

We now show that we can ensure a locally minimizing curve has to be a geodesic.

Proposition 3.13. If γ : [0, L] →M is a curve with |γ′| constant and it is locally minimizing then γ is

a geodesic.

Proof. Let t ∈ [0, L] and let W be a totally normal neighbourhood of γ(t). Then there exists δ > 0 such

that if we let α = γ|[t−δ,t+δ]∩[0,L] then α is minimizing and and α is contained in W . Therefore α is a

curve from p to q in a geodesic ball centred at p as W is a totally normal neighbourhood.

By Theorem 3.12 L(α) is the length of the radial geodesic β(s) = expp(sX) from p to q, so α is a

monotonic parametrisation of β; i.e. α(s) = expp(r(s)X) for some positive increasing function r such

that r(0) = 0. However, |α′|2 = |r′|2 by the proof of Theorem 3.12 so |r′| = r′ (as r is increasing) is

constant which means that r is a multiple of s. Hence α is a radial geodesic and thus γ is a geodesic on

[t− δ, t+ δ] ∩ [0, L] and in particular at t.

Since t was arbitrary, γ satisfies the geodesic equation at t for all t and so is a geodesic.

3.8 First variation formula

We now want to take an alternative approach to studying the minimizing properties of geodesics using

the viewpoint of the Calculus of Variations. We first define what we mean by a variation of a curve.
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Definition 3.14. Let α : [0, L] → (M, g) be a curve. A variation of α is a smooth map f : (−ϵ, ϵ) ×
[0, L] → M , for some ϵ > 0, such that f(0, t) = α(t) for all t ∈ [0, L]. A variation f is proper if

f(s, 0) = α(0) and f(s, L) = α(L) for all s ∈ (−ϵ, ϵ).
The variation field of f is the vector field Vf (t) =

∂f
∂s (0, t) along α.

Writing down a variation explicitly can be quite challenging, whereas writing down a vector field along

a curve (the variation field) is very easy. This motivates us to prove that given a vector field along a

curve we can construct a variation which realises that vector field as the variation field.

Proposition 3.15. Given a vector field V along a curve α : [0, L] → (M, g), there exists a variation f

of α such that V = Vf , the variation field of f . Moreover, if V (0) = V (L) = 0 we can choose f to be

proper.

Proof. For each t ∈ [0, L] let Wt = {expα(t)(X) : |X| < δt} be a totally normal neighbourhood of α(t),

where δt > 0. Since {Wt : t ∈ [0, L]} covers α([0, L]), which is compact, there is a finite subcover

{Wt1 , . . . ,Wtk}. Let δ = mini{δti}, let 0 < ϵ < δ/maxt∈[0,L] |V (t)| and let f(s, t) = expα(t)(sV (t)) for

s ∈ (−ϵ, ϵ), t ∈ [0, L]. We may then calculate

Vf (t) =
∂f

∂s
(0, t) =

d

ds

(
expα(t)(sV (t))

)
|s=0 = d(expα(t))0(V (t)) = V (t)

as required. Moreover, if V (0) = V (L) = 0 then f(s, 0) = α(0) and f(s, L) = α(L) so f is proper.

From the point of view of the Calculus of Variations it is more convenient to work with a different

functional than the length functional when studying curves and geodesics; namely, the energy functional.

Definition 3.16. The energy of a curve α : [0, L] → (M, g) is

E(α) =

∫ L

0

|α′(t)|2dt.

The energy of a variation f of α is

Ef (s) =

∫ L

0

|∂f
∂t

(s, t)|2dt.

Our next result shows the relationship between length and energy.

Lemma 3.17. Let α : [0, L] → (M, g) be a curve. Then

L(α)2 ≤ LE(α)

with equality if and only if |α′| is constant.

Proof. By the Cauchy–Schwarz inequality, (
∫ L

0
abdt)2 ≤

∫ L

0
a2dt

∫ L

0
b2dt with equality if and only if

b = λa for some constant λ. Setting a = 1 and b = |α′| gives the result.

We know that geodesics locally minimize length. We now show that they locally minimize energy as

well.

Lemma 3.18. Let p, q ∈ (M, g) and let γ : [0, L] → M be a minimizing geodesic between p and q. For

all curves α : [0, L] → M such that α(0) = p, α(L) = q, we have that E(γ) ≤ E(α) and equality holds if

and only if α is a minimizing geodesic.

Proof. From Lemma 3.17 we deduce that

LE(γ) = L(γ)2 ≤ L(α)2 ≤ LE(α)

with equality if and only if L(α) = L(γ) and |α′| constant. Proposition 3.13 gives the result.
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Theorem 3.19 (First Variation Formula). Let α : [0, L] → (M, g) be a curve and let f be a variation of

α. Then the energy Ef of f satisfies

1

2
E′

f (0) = −
∫ L

0

g(Vf ,∇α′α′)dt− g(Vf (0), α
′(0)) + g(Vf (L), α

′(L)).

Proof. Using the Symmetry Lemma (Lemma 3.11)

d

ds

∫ L

0

g(
∂f

∂t
,
∂f

∂t
) dt = 2

∫ L

0

g(∇ ∂f
∂s

∂f

∂t
,
∂f

∂t
)dt

= 2

∫ L

0

g(∇ ∂f
∂t

∂f

∂s
,
∂f

∂t
)dt

= 2

∫ L

0

d

dt
g(
∂f

∂s
,
∂f

∂t
)dt− 2

∫ L

0

g(
∂f

∂s
,∇ ∂f

∂t

∂f

∂t
)dt.

We deduce that
1

2
E′

f (s) = g(
∂f

∂s
,
∂f

∂t
)|L0 −

∫ L

0

g(
∂f

∂s
,∇ ∂f

∂t

∂f

∂t
)dt.

Setting s = 0 gives the result.

We now have a new characterisation of geodesics.

Corollary 3.20. A curve α : [0, L] → (M, g) is a geodesic if and only if for all proper variations f of α,

E′
f (0) = 0.

Proof. Suppose α is a geodesic and f is a proper variation of α. Then ∇α′α′ = 0, Vf (0) = Vf (L) = 0

and α is smooth so E′
f (0) = 0 by Theorem 3.19.

Now suppose that E′
f (0) = 0 for all proper variations f of α. Let h : [0, L] → R be a smooth function

such that h(t) > 0 for t ∈ (0, L) and h(0) = h(L) = 0 and let V (t) = h(t)∇α′α′. Proposition 3.15 implies

there exists a proper variation f such that Vf = V . Theorem 3.19 then implies that

E′
f (0) = −

∫ L

0

h|∇α′α′|2dt = 0

so α is a geodesic.
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4 Curvature

We now move on to the other key idea in the course: namely, curvature. Curvature is something we

understand intuitively but if you think about it our usual notions involve the way the object sits inside

Euclidean space: we see the ellipsoid as being a different curvature from the round sphere exactly this

way. We therefore need to think about curvature “intrinsically”.

So far, we have seen objects that are defined by at most first derivatives of the Riemannian metric, for

example geodesics are determined by the Christoffel symbols, which depend on the Riemannian metric

and its first derivatives. As a result, we have never truly noticed the curvature of the manifold: for

example, we have seen that geodesics are just (locally at least) the images of straight lines.

To understand curvature we need to look at second derivatives of the Riemannian metric and, just as

the Riemannian metric is an operator on vector fields, curvature is defined in a similar way. Initially, it

will look a bit abstract, but we will soon see how to give a natural intuitive interpretation of curvature.

Let (M, g) be a Riemannian manifold with Levi-Civita connection ∇ throughout.

4.1 Riemann curvature

Proposition 4.1. For vector fields X,Y, Z on (M, g) we define

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

which is a vector field on M . Then R(., .) is bilinear in its arguments, R(X,Y ) is a linear operator and

R(X,Y )Z(p) ∈ TpM only depends on X(p), Y (p), Z(p) ∈ TpM .

The operator R(X,Y ) which sends vector fields to vector fields given X,Y ∈ Γ(TM) is called the

Riemann curvature operator. Notice that R(X,Y ) = −R(Y,X).

Remark. We can informally think about this as pushing the vector Z around a parallelogram determined

by the vector fields X and Y . The outcome of this procedure is a new tangent vector which may be

different from Z. The limit of this procedure as the sides of the parallelogram goes to 0 is the operator

R(X,Y ) (when [X,Y ] = 0).

Proof. Clearly R(X1 + X2, Y ) = R(X1, Y ) + R(X2, Y ), R(X,Y1 + Y2) = R(X,Y1) + R(X,Y2) and

R(X,Y )(Z1 + Z2) = R(X,Y )Z1 +R(X,Y )Z2 by Theorem 2.1.

Let f :M → R be a smooth function. By Theorem 2.1 and the fact that

[fX, Y ] = (fX)Y − Y (fX) = f(XY − Y X)− Y (f)X

we see that

R(fX, Y )Z = ∇fX∇Y Z −∇Y ∇fXZ −∇[fX,Y ]Z = f∇X∇Y Z −∇Y (f∇XZ)−∇f [X,Y ]−Y (f)XZ

= f∇X∇Y Z − f∇Y ∇XZ − Y (f)∇XZ − f∇[X,Y ]Z + Y (f)∇XZ = fR(X,Y )Z

so R(., .) is bilinear in its arguments as R(Y,X) = −R(X,Y ).

A similar argument works for R(X,Y )(fZ):

R(X,Y )(fZ) = (∇X∇Y −∇Y ∇X −∇[X,Y ])(fZ)

= ∇X(f∇Y Z + Y (f)Z)−∇Y (f∇XZ +X(f)Z)− f∇[X,Y ]Z − [X,Y ](f)Z

= f∇X∇Y Z +X(f)∇Y Z + Y (f)∇XZ +XY (f)Z − f∇Y ∇XZ − Y (f)∇XZ

−X(f)∇Y Z − Y X(f)Z − f∇[X,Y ]Z − [X,Y ](f)Z = fR(X,Y )Z.

Thus R(X,Y ) is linear as claimed.
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For the final part, if we let {X1, . . . , Xn} be a coordinate frame field in a chart (U,φ) at p and write

X =
∑n

i=1 aiXi, Y =
∑n

i=1 biXi and Z =
∑n

i=1 ciXi then a direct computation shows that

R(X,Y )Z =

n∑
i,j,k=1

aibjckR(Xi, Xj)Xk

and since R(Xi, Xj)Xk is independent of X,Y, Z, this shows that R(X,Y )Z(p) only depends on X(p),

Y (p) and Z(p).

Example. Suppose M = Rn with the Euclidean metric g0. If ∂i are the standard vector fields on Rn,

then we know that [∂i, ∂j ] = 0 and ∇∂i
∂j = 0 so

R(∂i, ∂j)∂k = 0.

Since R is linear, we see that R(X,Y ) = 0 for all vector fields X,Y on Rn.

Example. Just in case we do not believe the previous example, let us calculate things in polar coordinates

instead on R2 \ {0}. In this case, we recall that X1 = f∗∂r, X2 = f∗∂θ so [X1, X2] = 0 and

∇X1X1 = 0, ∇X1X2 = ∇X2X1 =
1

r
X2, ∇X2X2 = −rX1.

Hence, we see that

R(X1, X2)X1 = ∇X1
∇X2

X1 −∇X2
∇X1

X1

= ∇X1
(
1

r
X2)−∇X2

(0)

= X1(
1

r
)X2 +

1

r
∇X1

X2

= − 1

r2
X2 +

1

r2
X2 = 0.

Similarly, we find that

R(X1, X2)X2 = ∇X1∇X2X2 −∇X2∇X1X2

= ∇X1(−rX1)−∇X2(
1

r
X2)

= X1(−r)X1 −
1

r
∇X2

X2

= −X1 +
1

r
rX1 = 0.

So R(X1, X2) = 0 as we would expect.

It is more usual to think about Riemann curvature in the following way.

Definition 4.2. We define R by

R(X,Y, Z,W ) = g(R(X,Y )Z,W )

for vector fields X,Y, Z,W on M . This is well-defined because at p ∈ M it only depends on gp and the

values of X,Y, Z,W at p. We call R the Riemann curvature tensor.

Remark. If Xi are coordinate vector fields we let Rijkl = R(Xi, Xj , Xk, Xl). If we take geodesic normal

coordinates (x1, . . . , xn) at p so that gij = δij and Γk
ij = 0 at p = (0, . . . , 0) as mentioned earlier, we find

that

gij = δij −
∑
k,l

1

3
Rijklxkxl +O(|x|3),

so R measures the true first difference between the Riemannian metric on M and the Euclidean metric

on M .
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Example. We see that R = 0 on Rn. We call Riemannian manifolds for which R = 0 flat.

Example. Since ∇XiXj = [Xi, Xj ] = 0 for the standard vector fields on Tn ⊆ R2n we see that R = 0

and hence Tn is flat.

Example. On S2, if X1 = f∗∂θ and X2 = f∗∂ϕ for f(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ) as usual, we

have [X1, X2] = 0 and

∇X1
X1 = 0, ∇X2

X2 = − sin θ cos θX1, and ∇X2
X1 = ∇X1

X2 = cot θX2.

Therefore,

R(X1, X2)X1 = ∇X1
∇X2

X1 −∇X2
∇X1

X1 = ∇X1
(cot θX2) = −cosec2θX2 + cot θ∇X1

X2 = −X2

and

R(X1, X2)X2 = ∇X1
∇X2

X2 −∇X2
∇X1

X2 = −∇X1
(sin θ cos θX1)−∇X2

(cot θX2) = sin2 θX1.

Therefore, we see that on S2 with the usual X1, X2 we have that

R(X1, X2, X1, X1) = 0, R(X1, X2, X1, X2) = −g(X2, X2) = − sin2 θ,

R(X1, X2, X2, X1) = sin2 θg(X1, X1) = sin2 θ, R(X1, X2, X2, X2) = 0.

If we let E1 = X1 and E2 = X2

sin θ then E1, E2 are orthonormal and by linearity we see that

R(E1, E2, E2, E1) = 1

which suggests maybe this should be some definition of having curvature 1, as we would expect the sphere

to have.

Example. Remember on S3 we had vector fields E1, E2, E3 which are orthonormal and

∇Ei
Ej =

1

2
[Ei, Ej ] = −ϵijkEk.

We see that

R(E1, E2)E2 = ∇E1
∇E2

E2 −∇E2
∇E1

E2 −∇[E1,E2]E2

= ∇E1
0 +∇E2

E3 + 2∇E3
E2

= −E1 + 2E1 = E1.

Hence,

R(E1, E2, E2, E1) = g(E1, E1) = 1.

Similarly,

R(E2, E3, E3, E2) = R(E3, E1, E1, E3) = 1.

We also see that

R(E1, E2)E3 = ∇E1
∇E2

E3 −∇E2
∇E1

E3 −∇[E1,E2]E3

= −∇E1
E1 −∇E2

E2 + 2∇E3
E3 = 0.

We deduce that

R(E1, E2, E3, Ei) = 0

for all i.

Before we continue with examples, we notice that R has various symmetries which we now derive.
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Proposition 4.3. Let X,Y, Z,W be vector fields on (M, g).

(a) R(Y,X,Z,W ) = −R(X,Y, Z,W ).

(b) R(X,Y,W,Z) = −R(X,Y, Z,W ).

(c) R(Z,W,X, Y ) = R(X,Y, Z,W ).

(d) (Bianchi identity) R(X,Y, Z,W ) +R(Y,Z,X,W ) +R(Z,X, Y,W ) = 0.

Proof. (a) is immediate as R(X,Y ) = −R(Y,X). (b) is the same as showing R(X,Y, Z, Z) = 0 since then

0 = R(X,Y, Z +W,Z +W ) = R(X,Y, Z,W ) +R(X,Y,W,Z)

as R(X,Y, Z, Z) = R(X,Y,W,W ) = 0, which gives the result. First,

g(∇X∇Y Z,Z) = X
(
g(∇Y Z,Z)

)
− g(∇Y Z,∇XZ) =

1

2
X
(
Y
(
g(Z,Z)

))
− g(∇Y Z,∇XZ)

and

g(∇[X,Y ]Z,Z) =
1

2
[X,Y ]

(
g(Z,Z)

)
.

So

R(X,Y, Z, Z) = g(R(X,Y )Z,Z) =
1

2

(
X
(
Y
(
g(Z,Z)

)
)− Y

(
X
(
g(Z,Z)

)))
− 1

2
[X,Y ]

(
g(Z,Z)

)
= 0.

(d) is really just a restatement of the Jacobi identity for the Lie bracket:

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y

= ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z +∇Y ∇ZX −∇Z∇YX −∇[Y,Z]X +∇Z∇XY −∇X∇ZY −∇[Z,X]Y

= ∇X [Y,Z]−∇[Y,Z]X +∇Y [Z,X]−∇[Z,X]Y +∇Z [X,Y ]−∇[X,Y ]Z

= [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

by the Jacobi identity, so taking the inner product with W using g gives the result.

Finally, for (c), we use (d):

R(X,Y, Z,W ) +R(Y, Z,X,W ) +R(Z,X, Y,W ) = 0

R(Y,Z,W,X) +R(Z,W, Y,X) +R(W,Y,Z,X) = 0

R(Z,W,X, Y ) +R(W,X,Z, Y ) +R(X,Z,W, Y ) = 0

R(W,X, Y, Z) +R(X,Y,W,Z) +R(Y,W,X,Z) = 0.

Adding plus using (a) and (b) gives 2R(Z,X, Y,W ) + 2R(W,Y,Z,X) = 0 and the result follows from

using (a) again.

As ever, it is good to have a local understanding of the Riemann curvature tensor.

Proposition 4.4. Let (U,φ) be a coordinate chart and Xi be the coordinate vector fields. We have that

R(Xi, Xj)Xk =

n∑
l=1

Rl
ijkXl

where, letting ∂lΓ
k
ij = Xl(Γ

k
ij):

Rl
ijk = ∂iΓ

l
jk − ∂jΓ

l
ki +

n∑
m=1

Γl
imΓm

jk −
n∑

m=1

Γl
jmΓm

ki.

Moreover,

Rijkl = R(Xi, Xj , Xk, Xl) =

n∑
m=1

Rm
ijkglm.

42



Jason D. Lotay C3.11 Riemannian Geometry

Proof. Since the Xi form a basis for the vector fields on U , we can write R(Xi, Xj)Xk as claimed. Since

[Xi, Xj ] = 0 we know that

R(Xi, Xj)Xk = (∇Xi∇Xj −∇Xj∇Xi)Xk =

n∑
l=1

Rl
ijkXl.

The formula for Rl
ijk then follows from Proposition 2.3.

The final claim follows from the calculation:

Rijkl = R(Xi, Xj , Xk, Xl) = g(R(Xi, Xj)Xk, Xl) = g(

n∑
m=1

Rm
ijkXm, Xl) =

n∑
m=1

Rm
ijkglm.

Example. Let H2 = {(x1, x2, x3) ∈ R3 : x21 + x22 − x23 = −1, x3 > 0} with the Riemannian metric given

by the restriction g of dx21 + dx22 − dx23. Let

f(θ, ϕ) = (sinh θ cosϕ, sinh θ sinϕ, cosh θ)

parameterize H2 and let

X1 = f∗∂θ = cosh θ cosϕ∂1 + cosh θ sinϕ∂2 + sinh θ∂3

and

X2 = f∗∂ϕ = − sinh θ sinϕ∂1 + sinh θ cosϕ∂2.

Then

g(X1, X1) = cosh2 θ cos2 ϕ+ cosh2 θ sin2 ϕ− sinh2 θ = cosh2 θ − sinh2 θ = 1,

g(X1, X2) = 0 and g(X2, X2) = sinh2 θ.

Thus

f∗g = dθ2 + sinh2 θdϕ2

in these coordinates so we can calculate the Christoffel symbols by looking at

L =
1

2
(θ′)2 +

1

2
sinh2 θ(ϕ′)2.

We compute

d

dt

(
∂L

∂θ′

)
− ∂L

∂θ
= θ′′ − sinh θ cosh θ(ϕ′)2

= x′′1 +
∑
i,j

Γ1
ijx

′
ix

′
j ,

d

dt

(
∂L

∂ϕ′

)
− ∂L

∂ϕ
= (sinh2 θϕ′)′

= sinh2 θϕ′′ + 2 sinh θ cosh θθ′ϕ′

= sinh2 θ(x′′2 +
∑
i,j

Γ2
ijx

′
ix

′
j).

Hence,

Γ1
11 = Γ2

11 = 0, Γ1
22 = − sinh θ cosh θ, Γ2

22 = 0, Γ1
12 = 0, Γ2

12 = coth θ

and hence that

∇X1X1 = 0, ∇X2X2 = − sinh θ cosh θX1, and ∇X2X1 = ∇X1X2 = coth θX2.
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Thus, since [X1, X2] = 0,

R(X1, X2)X2 = ∇X1
∇X2

X2 −∇X2
∇X1

X2

= ∇X1
(− sinh θ cosh θX1)−∇X2

(coth θX2)

= X1(− sinh θ cosh θ)X1 − coth θ∇X2
X2

= (− cosh2 θ − sinh2 θ)X1 + cosh2 θX1

= − sinh2 θX1.

Hence,

R(X1, X2, X2, X1) = − sinh2 θg(X1, X1) = − sinh2 θ.

If we let E1 = X1 and E2 = X2

sinh θ which are orthonormal, then by linearity

R(E1, E2, E2, E1) = −1.

Notice this is the opposite sign to the S2 case, and suggests the definition of curvature −1.

4.2 Sectional curvature

As we have seen the Riemann curvature tensor is some complicated object which is a little difficult to

understand. However, the essential idea is that one can restrict to looking at pieces of the Riemann

curvature tensor which together tell you everything.

Definition 4.5. Let σ = Span{X,Y } ⊆ TpM be a 2-plane. The sectional curvature of σ is given by

K(σ) = K(X,Y ) =
R(X,Y, Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
.

Notice that this is well-defined; i.e. K(σ) is independent of the choice of basis for σ.

Any other basis is of the form {aX + bY, cX + dY } where (ad − bc)2 ̸= 0 so that the vectors are

linearly independent. Clearly

R(aX + bY, cX + dY, cX + dY, aX + bY ) = (ad− bc)2gR(X,Y, Y,X)

using the properties of R in Proposition 4.3. Moreover,

g(aX + bY, aX + bY )g(cX + dY, cX + dY )− g(aX + bY, cX + dY )2

=
(
a2g(X,X) + 2abg(X,Y ) + b2g(Y, Y )

)(
c2g(X,Y ) + 2cdg(X,Y ) + d2g(Y, Y )

)
−
(
acg(X,X) + (ad+ bc)g(X,Y ) + bdg(Y, Y )

)2
= (ad− bc)2

(
g(X,X)g(Y, Y )− g(X,Y )2

)
.

Therefore the factor of (ad− bc)2 ̸= 0 cancels and K(σ) is independent of the choice of basis.

Now we want to show the claim that the sectional curvature actually contains all of the useful infor-

mation.

Proposition 4.6. Let R̄ be such that it has the same properties as R given in Proposition 4.3. Suppose

that for all p ∈M and for all 2-dimensional subspaces σ = Span{X,Y } ⊆ TpM we have that

K̄(σ) =
R̄(X,Y, Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
= K(σ).

Then R = R̄.

This result can be paraphrased as “the sectional curvature determines the Riemann curvature”.
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Proof. Suppose that K = K̄, which is equivalent to saying that R(X,Y, Y,X) = R̄(X,Y, Y,X) for all

X,Y . Then R(X + Z, Y, Y,X + Z) = R̄(X + Z, Y, Y,X + Z) for X,Y, Z so

R(X,Y, Y,X) +R(Z, Y, Y, Z) + 2R(X,Y, Y, Z)

= R̄(X,Y, Y,X) + R̄(Z, Y, Y, Z) + 2R̄(X,Y, Y, Z),

using the fact that R̄(Z, Y, Y,X) = R̄(Y,X,Z, Y ) = R̄(X,Y, Y, Z) and the same is true for R. Thus

R(X,Y, Y, Z) = R̄(X,Y, Y, Z)

for all X,Y, Z. So, R(X,Y +W,Y +W,Z) = R̄(X,Y +W,Y +W ), Z) for all X,Y, Z,W which implies

R(X,Y,W,Z) +R(X,W, Y, Z) = R̄(X,Y,W,Z) + R̄(X,W, Y, Z)

and thus

R(X,Y, Z,W )− R̄(X,Y, Z,W ) = R(X,W, Y, Z)− R̄(X,W, Y, Z)

= R(Y,Z,X,W )− R̄(Y, Z,X,W ) (***)

using the symmetry properties of R, R̄. We see that cyclic permutations of X,Y, Z leave (***) invariant

so

(R− R̄)(X,Y, Z,W ) = (R− R̄)(Y,Z,X,W ) = (R− R̄)(Z,X, Y,W ).

The Bianchi identity then means that

2(R− R̄)(X,Y, Z,W ) = (R− R̄)(Y, Z,X,W ) + (R− R̄)(Z,X, Y,W ) = −(R− R̄)(X,Y, Z,W )

so R(X,Y, Z,W ) = R̄(X,Y, Z,W ) for all X,Y, Z,W .

Example. For Rn, K = 0 since R = 0. The same is true for any flat manifold such as Tn ⊆ R2n or the

cylinder S1 × R.

Example. For S2, we that TpS2 = Span{X1, X2} where g(X1, X1) = 1 and g(X2, X2) = sin2 θ and

g(X1, X2) = 0 so that

K(X1, X2) =
R(X1, X2, X2, X1)

g(X1, X1)g(X2, X2)− g(X1, X2)2
=

sin2 θ

sin2 θ
= 1

so K(TpS2) = 1 for all p ∈ S2.

Example. We see that on S3, K(Ei, Ej) = 1 for i ̸= j, so all of the sectional curvatures are 1.

Example. For H2 with the hyperbolic metric g, we see that TpH2 = Span{X1, X2} where g(X1, X1) = 1

and g(X2, X2) = sinh2 θ and g(X1, X2) = 0 so that

K(X1, X2) =
R(X1, X2, X2, X1)

g(X1, X1)g(X2, X2)− g(X1, X2)2
=

− sinh2 θ

sinh2 θ
= −1

so K(TpH2) = −1 for all p ∈ H2.

Since we have an isometry from (H2, g) to the hyperbolic upper half-plane (H2, h), we deduce that

the hyperbolic upper half-plane has constant sectional curvature −1. We can also see this explicitly using

our earlier formula for the Christoffel symbols on (H2, h)

You have probably seen the symbol K being used for curvature before when studying surfaces in R3,

and this is no coincidence.

Proposition 4.7. Let M be an oriented surface in R3. Then the sectional curvature K(TpM) = K(p),

the Gaussian curvature of M at p.
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Proof. (Not examinable). The result holds by the Christoffel symbol formula for the curvature given

in Proposition 4.4.

Example. You have probably seen in a earlier course that the Gaussian curvature of T 2 ∈ R3 at a point

p = ((2 + cos θ) cosϕ, (2 + cos θ) sinϕ, sin θ) is given by

K(p) =
cos θ

2 + cos θ
,

which is certainly not constant.

We can confirm this since we know that when X1 = f∗∂θ and X2 = f∗∂ϕ, then [X1, X2] = 0 and

∇X1X1 = 0, ∇X1X2 = ∇X2X1 = − sin θ

2 + cos θ
X2, ∇X2X2 = (2 + cos θ) sin θX1.

Hence,

R(X1, X2)X1 = ∇X1∇X2X1 −∇X2∇X1X1

= ∇X1
(− sin θ

2 + cos θ
X2)

= − 2 cos θ + 1

(2 + cos θ)2
X2 +

sin2 θ

(2 + cos θ)2
X2

=
−2 cos θ − cos2 θ

(2 + cos θ)2
X2

= − cos θ

2 + cos θ
X2.

Therefore,

R(X1, X2, X2, X1) = −R(X1, X2, X1, X2) = cos θ(2 + cos θ)

Hence,

K(X1, X2) =
R(X1, X2, X2, X1)

g(X1, X1)g(X2, X2)− g(X1, X2)2
=

cos θ

2 + cos θ
.

Hence the torus in R3 is not flat and not isometric to the 2-torus in R4.

Notice on the inner circle (cos θ = −1) we see that K < 0 and on the outer circle (cos θ = 1) we see

that K > 0 and on the middle circles (cos θ = 0) we see that K = 0 (flat). This fits with the discussion

we had right at the beginning of the course.

Remark. It is important to note that the sectional curvature is a local quantity and so is preserved by

local isometries.

Example. Since the pseudosphere minus a circle is locally isometric to the hyperbolic upper half-plane,

it has a metric with constant sectional curvature −1.

Example. Recall that RP2, the Möbius band and the Klein bottle obtain Riemannian metrics from S2,

the cylinder and the torus in R3 respectively.

Since the projection map is a local isometry, we know that RP2 has constant sectional curvature 1,

the Möbius band is flat (since the cylinder is flat) and the Klein bottle has areas of both positive and

negative curvature like T 2 in R3.

Example. Recall that we defined an action of Zn on (Rn, g0) by isometries inducing a metric g on Rn/Zn

such that (Rn/Zn, g) is isometric to (Tn, h) where Tn ⊆ R2n has the induced metric h.

The metric g must be flat since π : Rn → Rn/Zn is a local isometry. This reconfirms that Rn/Zn is

flat and shows that (Tn, h) is flat. In particular, (R2/Z2, g) is not isometric to T 2 ⊆ R3 with its induced

metric, as we know.
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4.3 Ricci and scalar curvature

We now introduce further curvature quantities which are kinds of “average” curvatures. They play a

crucial role in geometry and mathematical physics.

Definition 4.8. We define the Ricci curvature tensor Ric ∈ Γ(S2T ∗M) by

Ric(X,Y ) =

n∑
i=1

R(Ei, X, Y,Ei)

for all p ∈M , X,Y ∈ TpM , where {E1, . . . , En} is an orthonormal frame for TpM . Notice that

Ric(Y,X) =

n∑
i=1

R(Ei, Y,X,Ei) =

n∑
i=1

R(X,Ei, Ei, Y ) =

n∑
i=1

R(Ei, X, Y,Ei) = Ric(X,Y )

so it is symmetric as claimed.

We can interpret the Ricci curvature as a trace as follows. Given vector fields X,Y, Z on M we have

a map Z 7→ R(Z,X)Y which sends vector fields to vector fields. At each point this only depends on the

value of X,Y, Z at p, so gives a well-defined map from TpM to TpM , and thus may be viewed as a matrix

once we choose a basis for TpM . The Ricci curvature is then given by

Ric(X,Y ) = tr
(
Z 7→ R(Z,X)Y

)
.

Notice that this does not depend on the choice of basis for TpM just by linear algebra (the trace is

invariant under coordinate transformations).

Let us try to understand the Ricci curvature tensor locally.

If (U,φ) is a coordinate chart on M and {X1, . . . , Xn} is the coordinate frame then we can write an

orthonormal frame {E1, . . . , En} on U as Ek =
∑n

l=1 alkXl for an invertible matrix of functions A = (aij).

Notice that

δkl = g(Ek, El) = g

 n∑
i=1

aikXi,

n∑
j=1

ajkXj

 =

n∑
i,j=1

aikgijajk

which is (in matrix notation) ATgA = I. Thus g = (AT)−1A−1 = (AAT)−1 so g−1 = AAT and hence

Ric(Xi, Xj) =

n∑
k=1

R(Xi, Ek, Ek, Xj) =

n∑
k,l,m=1

R(Xi, alkXl, amkXm, Xj)

=

n∑
k,l,m=1

Rilmjalkamk =

n∑
l,m=1

Rilmjg
lm

because gij =
∑n

k=1 aikajk.

Remark. If we take geodesic normal coordinates and locally let Ω be the Riemannian volume form so

that (φ−1)∗Ω =
√
det(gij)Ω0 where Ω0 is the standard volume form on Rn, then

(φ−1)∗Ω = (1− 1

6

∑
i,j

Rijxixj +O(|x|3))Ω0.

So the Ricci curvature measures the first difference between the Riemannian volume form and the Eu-

clidean volume form.

Example. For a 2-dimensional Riemannian manifold M , take {E1, E2} to be an orthonormal basis for

TpM . We see that

K(TpM) = R(E1, E2, E2, E1) = Ric(E1, E1) = Ric(E2, E2).

Hence the sectional curvatures are given by the Ricci curvatures on unit vectors and hence the Ricci

curvature defines the Riemann curvature tensor. In particular the Ricci curvatures are just the Gaussian

curvature if M is a surface in R3.
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Remark. The Ricci curvature also determines the Riemann curvature tensor in 3 dimensions, but in

higher dimensions they are different.

Remark. Now the Ricci curvature tensor is a symmetric (0, 2)-tensor, and the same is true of the

Riemannian metric so we can compare them. We say that (M, g) is Einstein if Ric = λg for some

constant λ. The equation Ric = λg is the Riemannian version of Einstein’s field equations from General

Relativity in the absence of matter.

Of particular geometric interest is the case where λ = 0, where M is Ricci-flat. Notice that Ricci-flat

is definitely not the same thing as being flat!

Definition 4.9. The scalar curvature S of M is a smooth function on M given by

S(p) =

n∑
i,j=1

R(Ei, Ej , Ej , Ei) =

n∑
j=1

Ric(Ej , Ej)

for p ∈ M where {E1, . . . , En} is an orthonormal frame for TpM . We can view this as a “trace” of the

Ricci curvature tensor.

Remark. We see that for ϵ > 0 small and p ∈ M that we can relate the volume of the geodesic ball

Bϵ(p) with that of the Euclidean ball Bϵ(0) by

vol(Bϵ(p)) =

(
1− S

6(n+ 2)
ϵ2 +O(ϵ4)

)
vol(Bϵ(0)),

so the scalar curvature measures the differences in these volumes.

If {E1, . . . , En} is an orthonormal frame on a chart (U,φ), then by our above calculation we can write

S =

n∑
i,j=1

R(Ei, Ej , Ej , Ei) =

n∑
i,j,k,l=1

Rijklg
ilgjk =

n∑
i,j=1

Ric(Xi, Xj)g
ij .

Scalar curvature is a rather weak invariant of (M, g). In particular, being scalar flat (S = 0) definitely

does not mean that the manifold is flat. It is now known by the solution of the Yamabe problem that

all manifolds admit Riemannian metrics with constant scalar curvature, and such metrics still form an

active research area.

Example. For oriented surfaces M in R3, we see that for p ∈M

K(p) = K(TpM) = Ric(E1, E1) = Ric(E2, E2),

where {E1, E2} is an orthonormal basis for TpM and thus

S(p) = Ric(E1, E1) + Ric(E2, E2) = 2K(p),

so the scalar curvature is just twice the sectional (or Gaussian) curvature.
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5 Riemannian submanifolds

The aim of this section is to extend many of the ideas from surfaces in R3 to a more general setting. To

do this we consider Riemannian submanifolds.

For this section we let ι : (M, gM ) → (N, g), where (M, gM ) is an n-dimensional Riemannian manifold

and N is an (n+m)-dimensional Riemannian manifold, be an isometric embedding, i.e. ι is an injective

immersion such that ι :M → ι(M) is a homemorphism and ι∗g = gM .

We are assuming that ι is an embedding so that M is an (embedded) submanifold of N with the

induced metric, but much of what we can say can be generalised to when ι is simply an immersion. We

identify M with ι(M).

We also denote the Levi-Civita connections on M and N by ∇M and ∇N .

Remark. Typically we will be given M as a submanifold in (N, g) and ι will be the inclusion map.

5.1 Tangential and normal vector fields

Definition 5.1. For p ∈M we define the normal space (TpM)⊥ to M at p (in N) to be

(TpM)⊥ = {X ∈ TpN : gp(X,Y ) = 0 ∀Y ∈ TpM}.

We can then write TpN = TpM ⊕ (TpM)⊥ and therefore any X ∈ TpN can be written uniquely as

X = XT +X⊥ where XT ∈ TpM and X⊥ ∈ (TpM)⊥.

Remark. The normal bundle (TM)⊥ of M (in N) is given by

(TM)⊥ =
⋃
p∈M

(TpM)⊥

and is a rank m vector bundle over M .

Example. We can view the round n-sphere (Sn, g) as a Riemannian submanifold of (Rn+1, g0). For

x ∈ Sn, since TxSn = (Span{x})⊥, we then have that the normal space at x is

(TxSn)⊥ = Span{x}.

(Notice that the normal bundle has rank 1 as we would expect.)

Definition 5.2. A vector field X along (or on) M is an assignment of X(p) ∈ TpN for all p ∈ M such

that the map p 7→ X(p) for p ∈M is smooth.

We can uniquely write a vector field X along M as X = XT + X⊥ where XT(p) ∈ TpM and

X⊥(p) ∈ (TpM)⊥ for all p ∈M . Note that the projection maps X 7→ XT and X 7→ X⊥ are smooth.

We call XT a tangent vector field on M and X⊥ a normal vector field on M , and XT and X⊥ the

tangential and normal components of X.

Remark. A normal vector field on M is nothing other than a section of the normal bundle (TM)⊥.

Example. If M = Rn ⊆ N = Rn+m and we take the Euclidean metric on N (and hence the Euclidean

metric on M), then we see that the tangent vector fields along M are spanned by {∂1, . . . , ∂n} and the

normal vector fields along M are spanned by {∂n+1, . . . , ∂n+m}.

Example. A normal vector field X⊥ on Sn ⊆ (Rn+1, g0) must satisfy

X⊥(x) = f(x)x

for some smooth function f : Sn → R.
Equivalently, if we use polar coordinates on Rn+1 \ {0} and let r denote distance from 0 then

X⊥ = fr∂r
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5.2 Second fundamental form

Suppose X and Y are tangent vector fields on M . Choose any extensions X̄ and Ȳ of X to Y to vector

fields on N . We can then calculate

∇M
X Y = (∇N

X̄ Ȳ )T

(The fact that (∇N
X̄
Ȳ )T is independent of the choice of extensions X̄ and Ȳ of X and Y is fairly obvious,

but we shall not prove it.) Since X̄ and Ȳ are arbitrary we simply write X̄ = X and Ȳ = Y for simplicity.

The fact that we have tangential and normal components for the covariant derivative of tangent vector

fields on M leads us to the following natural definition.

Definition 5.3. The second fundamental form B of M (in N) is defined for tangent vector fields X,Y

on M by

B(X,Y ) = ∇N
XY −∇M

X Y = (∇N
XY )⊥.

Thus B(X,Y )(p) ∈ (TpM)⊥ for all p ∈M . In fact, B(X,Y )(p) only depends on X(p), Y (p) ∈ TpM .

The second fundamental form helps us to understand how M “sits inside” N .

Remark. This definition of the second fundamental form extends the one you will have seen for surfaces

in R3.

Example. If we let M = Rn ⊆ (N, g) = (Rn+m, g0) as before, we see that

∇N
∂i
∂j = 0 = ∇M

∂i
∂j .

We deduce that ∇N
XY = ∇M

X Y for all tangent vector fields X,Y alongM . Hence the second fundamental

form of M is B = 0 in this case.

We now examine some of the properties of B.

Proposition 5.4. Let X,Y, Z be tangent vector fields on M and a, b be smooth functions on M . The

second fundamental form satisfies

B(Y,X) = B(X,Y ) and B(aX + bY, Z) = aB(X,Z) + bB(Y, Z).

Hence, B is a quadratic form on tangent vector fields with values in normal vector fields.

Proof. Using property (v) of the Levi-Civita connection, we see that

B(X,Y )−B(Y,X) = ∇N
XY −∇M

X Y −∇N
Y X +∇M

Y X = [X,Y ] + [Y,X] = 0,

since the Lie bracket is skew-symmetric.

Clearly B(X+Y,Z) = B(X,Z)+B(Y,Z) and then linearity in the second entry follows by symmetry.

We can easily calculate

B(aX, bY ) = ∇N
aX(bY )−∇M

aX(bY ) = a(∇N
X(bY )−∇M

X (bY ))

= a(X(b)Y + b∇N
XY −X(b)Y − b∇M

X Y ) = abB(X,Y ).

This completes the proof.

Remark. One can use the ideas from the proof of the previous proposition to show that B(X,Y )(p)

only depends on X(p), Y (p) and so B can be viewed as a symmetric 2-tensor on M with values in the

normal bundle.
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Example. Let us compute the second fundamental form of S3 in (R4, g0) from the definition, so S3 has

the round metric. Recall the vector fields

E1 = −x1∂0 + x0∂1 − x3∂2 + x2∂3

E2 = −x2∂0 + x3∂1 + x0∂2 − x1∂3

E3 = −x3∂0 − x2∂1 + x1∂2 + x0∂3

on R4 that restrict to give orthonormal tangent vector fields on S3. We also have the vector field

E0 = x0∂0 + x1∂1 + x2∂2 + x3∂3

which is orthogonal to E1, E2, E3 and is unit length when restricted to S3. (Note that E0 = r∂r if r is

the distance from 0 in R4.) Thus E0 is a unit normal vector field along S3.

We already computed ∇S3

Ei
Ej for i, j ∈ {1, 2, 3} so we just need to calculate ∇R4

Ei
Ej for i, j = 1, 2, 3.

We see that

∇R4

E1
E1 = ∇−x1∂0+x0∂1−x3∂2+x2∂3(−x1∂0 + x0∂1 − x3∂2 + x2∂3)

= (−x1∇∂0 + x0∇∂1 − x3∇∂2 + x2∇∂3)(−x1∂0 + x0∂1 − x3∂2 + x2∂3)

= −x0∂0 − x1∂1 − x2∂2 − x3∂3

= −E0.

Similarly, ∇R4

E2
E2 = ∇R4

E3
E3 = −E0. Therefore,

B(Ei, Ei) = −E0 for i = 1, 2, 3.

We similarly can calculate

∇R4

E1
E2 = ∇−x1∂0+x0∂1−x3∂2+x2∂3

(−x2∂0 + x3∂1 − x0∂2 − x1∂3)

= (−x1∇∂0
+ x0∇∂1

− x3∇∂2
+ x2∇∂3

)(−x2∂0 + x3∂1 − x0∂2 − x1∂3)

= x3∂0 + x2∂1 + x1∂2 − x0∂3

= −E3 = ∇S3

E1
E2.

We similarly see that ∇R4

Ei
Ej = ∇S3

Ei
Ej whenever i ̸= j. Hence,

B(Ei, Ej) = 0 for i ̸= j.

Notice that we have the relation

B(Ei, Ej) = −g0(Ei, Ej)E0 = −δijE0.

Associated to the second fundamental form are a collection of operators called shape operators, which

we now define.

Definition 5.5. For a normal vector field ξ on M we define the shape operator Sξ : Γ(TM) → Γ(TM)

by

g(Sξ(X), Y ) = g(B(X,Y ), ξ)

for all tangent vector fields X,Y on M . Since B is symmetric we see that Sξ is a self-adjoint operator

on tangent vector fields, i.e.

g(Sξ(X), Y ) = g(X,Sξ(Y ))

for tangent vector fields X,Y on M .

Example. For S3 in (R4, g0) we gave a unit normal vector field E0 along S3 and tangent vector fields

along S3 so that

B(Ei, Ej) = −g0(Ei, Ej)E0.
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We therefore see that the shape operator SE0
must satisfy

g0(SE0
(Ei), Ej) = g0(B(Ei, Ej), E0) = −g0(Ei, Ej).

Hence, SE0 = − id.

We now give an alternative way to calculate the shape operators which may sometimes prove useful.

Proposition 5.6. If X and ξ are tangent and normal vector fields along M then

Sξ(X) = −(∇N
Xξ)

T.

Proof. We notice that

g(Sξ(X), Y ) = g(B(X,Y ), ξ) = g(∇N
XY, ξ) = X(g(Y, ξ))− g(Y,∇N

Xξ) = −g((∇N
Xξ)

T, Y ).

Here we used the fact that g(∇M
X Y, ξ) = 0 and g(Y, ξ) = 0.

5.3 The Fundamental Equations

To gain more of an understand of the geometry of M inside N we need to measure how “curved” the

normal directions to M are, so we define the following, which is clearly analogous to the definition of the

Riemann curvature.

Definition 5.7. We define the normal connection ∇⊥ on M by

∇⊥
Xξ = (∇N

Xξ)
⊥ = ∇N

Xξ − (∇N
Xξ)

T = ∇N
Xξ + Sξ(X)

for tangent vector fields X and normal vector fields ξ on M . Notice that ∇⊥
Xξ is a normal vector field.

We then define the normal curvature R⊥ of M by

R⊥(X,Y )ξ = ∇⊥
X∇⊥

Y ξ −∇⊥
Y ∇⊥

Xξ −∇⊥
[X,Y ]ξ

for tangent vector fields X,Y and normal vector fields ξ onM . Notice that R⊥(X,Y )ξ is a normal vector

field.

Remark. Just as for Riemann curvature, for each p ∈ M we have that
(
R⊥(X,Y )ξ

)
(p) only depends

on X(p), Y (p), ξ(p).

Now that we have all of these various objects describing the geometry of submanifolds we can relate

them all using the so-called Fundamental Equations of Gauss, Codazzi and Ricci.

Theorem 5.8 (The Fundamental Equations). Let X,Y, Z,W be tangent vector fields and let ξ, ζ be

normal vector fields on M . Let RM , RN be Riemann curvature associated with ∇M ,∇N respectively.

(a) (Gauss) g(RN (X,Y )Z,W ) = g(RM (X,Y )Z,W ) + g(B(X,Z), B(Y,W ))− g(B(X,W ), B(Y, Z)).

(b) (Codazzi) g(RN (X,Y )Z, ξ) = g
(
(∇N

XB)(Y,Z), ξ
)
− g
(
(∇N

Y B)(X,Z), ξ
)
where

(∇N
XB)(Y, Z) = ∇⊥

X(B(Y,Z))−B(∇M
X Y, Z)−B(Y,∇M

X Z).

(c) (Ricci) g(RN (X,Y )ξ, ζ) = g(R⊥(X,Y )ξ, ζ)− g([Sξ, Sζ ]X,Y ), where [Sξ, Sζ ] = Sξ ◦ Sζ − Sζ ◦ Sξ.

Proof. Recall that

∇N
XY = (∇N

XY )T + (∇N
XY )⊥ = ∇M

X Y +B(X,Y ),

∇N
Xξ = (∇N

Xξ)
T + (∇N

Xξ)
⊥ = −SξX +∇⊥

Xξ.
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Using this, we observe that

RN (X,Y )Z = ∇N
X∇N

Y Z −∇N
Y ∇N

XZ −∇N
[X,Y ]Z

= ∇N
X(∇M

Y Z +B(Y, Z))−∇N
Y (∇M

X Z +B(X,Z))−∇M
[X,Y ]Z −B([X,Y ], Z)

= (∇M
X ∇M

Y −∇M
Y ∇M

X −∇M
[X,Y ])Z +B(X,∇M

Y Z)− SB(Y,Z)X +∇⊥
XB(Y,Z)

−B(Y,∇M
X Z) + SB(X,Z)Y −∇⊥

YB(X,Z)−B([X,Y ], Z)

= RM (X,Y )Z +B(X,∇M
Y Z)− SB(Y,Z)X +∇⊥

XB(Y, Z)

−B(Y,∇M
X Z) + SB(X,Z)Y −∇⊥

YB(X,Z)−B([X,Y ], Z).

Therefore,

g(RN (X,Y )Z,W ) = g(RM (X,Y )Z,W )− g(SB(Y,Z)X,W ) + g(SB(X,Z)Y,W ),

from which (a) follows as g(SξZ,W ) = g(B(Z,W ), ξ) by definition.

Using the above calculation, we have that

g(RN (X,Y )Z, ξ) = g(B(X,∇M
Y Z), ξ)− g(B(Y,∇M

X Z), ξ) + g(∇⊥
XB(Y, Z), ξ)− g(∇⊥

YB(X,Z), ξ)

− g(B([X,Y ], Z), ξ)

= g(∇⊥
XB(Y,Z)−B(∇M

X Y,Z)−B(Y,∇M
X Z), ξ)

− g(∇⊥
YB(X,Z)−B(∇M

Y X,Z)−B(X,∇M
Y Z), ξ)

= g(∇N
XB(Y,Z), ξ)− g(∇N

Y B(X,Z), ξ),

using the fact that [X,Y ] = ∇M
X Y −∇M

Y X, from which (b) follows.

For (c), we calculate

RN (X,Y )ξ = ∇N
X∇N

Y ξ −∇N
Y ∇N

Xξ −∇N
[X,Y ]ξ

= ∇N
X(−SξY +∇⊥

Y ξ)−∇N
Y (−SξX +∇⊥

Xξ) + Sξ([X,Y ])−∇⊥
[X,Y ]ξ

= −∇M
X (Sξ(Y ))−B(SξY,X)− S∇⊥

Y ξX +∇M
Y (SξX) +B(SξX,Y ) + S∇⊥

XξY + Sξ[X,Y ]

+ (∇⊥
X∇⊥

Y −∇⊥
Y ∇⊥

X −∇⊥
[X,Y ])ξ.

Therefore,

g(RN (X,Y )ξ, ζ) = g(R⊥(X,Y )ξ, ζ)− g(B(SξY,X), ζ) + g(B(SξX,Y ), ζ)

= g(R⊥(X,Y )ξ, ζ)− g(Sζ ◦ SξY,X) + g(Sζ ◦ SξX,Y ),

from which (c) follows by the self-adjointness of the shape operator.

5.4 Hypersurfaces

We now see how to relate the theory of surfaces in R3 to more general Riemannian Geometry.

Definition 5.9. An n-dimensional submanifold of an (n+ 1)-dimensional manifold N is called a hyper-

surface in N .

For this subsection we let m = 1, i.e. M is a hypersurface in (N, g) with the induced metric. Fur-

thermore, we suppose that M and N are both oriented. In this situation we can define the principal

curvatures as for surfaces in R3.

Definition 5.10. Let p ∈M and let {E1, . . . , En} be any positively oriented orthonormal basis of TpM .

We can then define a unit normal vector ν(p) ∈ (TpM)⊥ uniquely by requiring that {E1, . . . , En, ν(p)}
be a positively oriented orthonormal basis for TpN . This then defines a unit normal vector field ν on M .
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For each p ∈ M the shape operator defines a self-adjoint map Sν : TpM → TpM , so has a positively

oriented orthonormal basis of eigenvectors, which we also denote {E1, . . . , En}, i.e.

SνEi = λiEi.

We call λi the principal curvatures of M at p and Ei the principal directions at p.

We call the function KM given by

KM (p) =

n∏
i=1

λi(p)

the Gaussian curvature of M and HM given by

HM (p) =
1

n

n∑
i=1

λi(p)

the mean curvature of M .

We are most interested in the case where N = Rn+1.

Definition 5.11. If (N, g) = (Rn+1, g0) the Gauss map of the oriented hypersurface M is given by

ν :M → Sn where ν(p) ∈ (TpM)⊥ ⊆ TpRn+1 = Rn+1 is unit for all p ∈M .

Since Tν(p)Sn and TpM are naturally parallel planes in Rn+1, we can view dνp : TpM → TpM for all

p ∈M .

Remark. The Gauss map is the natural generalisation of the Gauss map for surfaces in R3.

One may define the second fundamental form of a surface in R3 using the derivative of the Gauss map.

We see from the definition of the shape operator Sν that it plays the role of the derivative of the Gauss

map in the definition of the second fundamental form above. Therefore, the next result is no surprise.

Lemma 5.12. Let (N, g) = (Rn+1, g0) and let ν be the Gauss map on the oriented hypersurface M .

Then dνp = −Sν(p) for all p ∈M .

Proof. If X ∈ TpM , then there exists a curve α : (−ϵ, ϵ) → M such that α(0) = p and α′(0) = X. Note

that g(ν, ν) = 1 implies that

α′(g(ν, ν)) = 2g(∇Rn+1

α′ ν, ν) = 0

and hence ∇Rn+1

α′ ν = (∇Rn+1

α′ ν)T. We may therefore calculate

dνp(X) =
d

dt
(ν ◦ α(t))|t=0 = (∇Rn+1

α′ ν)|t=0 = (∇Rn+1

α′ ν)T|t=0 = −Sν(α
′)|t=0 = −Sν(p)(X)

using the fact that ν ◦ α : (−ϵ, ϵ) → Sn ⊆ Rn+1 and ∇Rn+1

is just the usual derivative on Rn+1.

Remark. Observe that KM (p) = det(−dνp) and HM (p) = − 1
n tr(dνp), which extends the formulae for

surfaces in R3.

We now want to think about the curvature of hypersurfaces. From the Gauss equation we have that,

if X,Y ∈ TpM are orthonormal,

KM (X,Y )−KN (X,Y ) = g(B(X,X), B(Y, Y ))− g(B(X,Y ), B(X,Y )).

By definition of the principal curvatures, Sν(Ei) = λiEi so

g(B(Ei, Ej), ν) = g(SνEi, Ej) = λiδij .

Therefore, we have that, for i ̸= j,

KM (Ei, Ej)−KN (Ei, Ej) = λiλj . (†)

In particular, if M is a surface in R3, then KM (E1, E2) = λ1λ2 = KM , which is the Gaussian

curvature of M . We deduce Gauss’s Theorem Egregium: the Gaussian curvature of a surface in R3 is

invariant under local isometries.

We also have the following neat result.
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Proposition 5.13. The sectional curvatures of the round metric on Sn are all 1.

Proof. For the standard orientation on Sn, the Gauss map ν(p) = p for p ∈ Sn, so ν = id. Lemma 5.12

implies that Sν = −id (as we saw explicitly for S3), so all its eigenvalues are −1. Hence, K = 1 on Sn

by (†) as Rn+1 has constant sectional curvature 0.

5.5 Totally geodesic and minimal submanifolds

We conclude this section by returning to the general situation of a Riemannian submanifold, but now we

focus on some special types of submanifold which occur.

To motivate the first class of submanifolds, consider a curve α : (−ϵ, ϵ) → (N, g) such that |α′| is
constant (which we can always assume by reparametrizing the curve). Then M = α(−ϵ, ϵ) is obviously a

Riemannian submanifold of (N, g). We then see that

0 =
d

dt
g(α′, α′) = 2g(∇N

α′α′, α′).

Since α′ spans the space of tangent vector fields along α, we deduce that

∇N
α′α′ = (∇N

α′α′)⊥ = B(α′, α′),

where B is the second fundamental form of M = α(−ϵ, ϵ). Therefore, α is a geodesic if and only if B = 0.

We can generalize this idea as follows.

Definition 5.14. We say that M is geodesic at p if B = 0 at p. We say that M is totally geodesic if

B = 0 everywhere.

Example. We saw that M = Rn ⊆ (Rn+m, g0) is totally geodesic.

The point of this definition is given by the following result.

Proposition 5.15. M is geodesic at p if and only if every geodesic in M starting from p is a geodesic

in N at p.

Proof. Let γ be a geodesic in M and let X = γ′. Then ∇M
XX = 0 implies that (∇N

XX)T = ∇M
XX = 0.

Therefore B(X,X) = (∇N
XX)⊥ = 0 at t = 0 if and only if ∇N

XX = 0 at t = 0. Therefore, since every

element in TpM can be realised as the tangent vector to some geodesic starting at p, the result follows.

This result gives us one of the nicest ways to think about sectional curvature, as follows. Let V be a

normal neighbourhood of p ∈ N and let V = expp(U). Let σ be a 2-plane in TpN . ThenM = expp(σ∩U)

is a 2-dimensional submanifold of N with p ∈ M . Proposition 5.15 implies that M is geodesic at p, so

B = 0 at p. By the Gauss equation we have that KM (σ) = KN (σ) and we know that the sectional

curvature KM (σ) is the same as the Gaussian curvature of M at p. We conclude that the sectional

curvature K(σ) of N at p is the Gaussian curvature of a small surface in N containing p.

Example. Suppose Π ⊆ Rn+1 is a (k + 1)-plane through 0. Then the k-sphere Sk ∼= Π ∩ Sn is totally

geodesic in the round n-sphere (Sn, g), since every geodesic in the k-sphere Π ∩ Sn is clearly a geodesic

in (Sn, g).

Remark. Being totally geodesic is obviously a strong condition. In particular, a result due to Cartan

states that if for every p ∈M and for every 2-plane σ ⊆ TpM there exists a totally geodesic submanifold

M ⊆ N such that p ∈M and TpM = σ then N must have constant sectional curvature.

Definition 5.16. We say that M is a minimal submanifold if for all p ∈M we have
∑n

i=1B(Ei, Ei) = 0

for an orthonormal frame {E1, . . . , En} of TpM . Equivalently, M is minimal if tr(Sξ) = 0 for all normal

vector fields ξ on M .
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Minimal submanifolds are stationary points for the area functional (like geodesics are stationary points

for the length functional) so can locally minimize area. However, since they are just stationary points

they could be local maxima as well, for example!

Example. A k-plane in Rn+1 is minimal since its second fundamental form is B = 0. We can see this

geometrically as any perturbation of any bounded portion of a 2-plane in R3 say clearly has larger area.

Example. Any totally geodesic submanifold is minimal.

Example. The sphere Sn in Rn+1 is not minimal since we can simply make the sphere slightly smaller

or larger and it will have smaller or larger area. Alternatively, we see that Sν = − id so its trace is clearly

non-zero.

Example. The catenoid and helicoid we saw earlier are minimal surfaces in R3.

Example. If f : C → C is holomorphic then Graph(f) = {(z, f(z)) : z ∈ C} is minimal in C2 = R4.

Minimal submanifolds form a significant part of modern research in Riemannian Geometry.
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6 Jacobi fields

In this section we define certain vector fields along geodesics which enable us to relate our fundamental

objects in this course; that is, geodesics and curvature. The tools we develop in this section will be

invaluable for later parts of the course.

As usual we assume that (M, g) is an n-dimensional Riemannian manifold.

We begin with a technical result which is, in some sense, an improved version of the Symmetry Lemma

(Lemma 3.11).

Proposition 6.1. Recall the notation of Lemma 3.11. In particular we have a smooth map f : A ⊆
R2 → M with coordinates (u, v) on A. We say that X is a vector field along f if X assigns a tangent

vector X(f(u, v)) ∈ Tf(u,v)M for all (u, v) ∈ A such that the map (u, v) 7→ X(f(u, v)) is smooth. Then(
∇ ∂f

∂u
∇ ∂f

∂v
−∇ ∂f

∂v
∇ ∂f

∂u

)
X = R(

∂f

∂u
,
∂f

∂v
)X.

Proof. In chart (U,φ) write X =
∑

i aiXi with {X1, . . . , Xn} coordinate frame field. Then

∇ ∂f
∂u

∇ ∂f
∂v
X =

∑
i

ai∇ ∂f
∂u

∇ ∂f
∂v
Xi +

∑
i

∂ai
∂v

∇ ∂f
∂u
Xi +

∑
i

∂ai
∂u

∇ ∂f
∂v
Xi +

∑
i

∂2ai
∂u∂v

Xi.

Thus, by the symmetry in the last three terms in the above equation in u, v we see that(
∇ ∂f

∂u
∇ ∂f

∂v
−∇ ∂f

∂v
∇ ∂f

∂u

)
X =

∑
i

ai

(
∇ ∂f

∂u
∇ ∂f

∂v
−∇ ∂f

∂v
∇ ∂f

∂u

)
Xi.

Writing f = (f1, . . . , fn) we have that

∇ ∂f
∂u

∇ ∂f
∂v
Xi =

∑
j

∂2fj
∂u∂v

∇XjXi +
∑
j,k

∂fj
∂u

∂fk
∂v

∇Xj∇Xk
Xi.

Again, by the symmetry in the first term in u, v in the above equation, we see that(
∇ ∂f

∂u
∇ ∂f

∂v
−∇ ∂f

∂v
∇ ∂f

∂u

)
Xi =

∑
j,k

∂fj
∂u

∂fk
∂v

(∇Xj
∇Xk

−∇Xk
∇Xj

)Xi

=
∑
j,k

∂fj
∂u

∂fk
∂v

R(Xj , Xk)Xi.

The result follows by the linearity properties of the Riemann curvature tensor.

6.1 The Jacobi equation

Recall that, for a vector field X along a curve α we write

X ′ = ∇α′X.

Since X ′ is again a vector field along α we can write

X ′′ = ∇α′X ′ = ∇α′∇α′X.

Definition 6.2. Given a geodesic γ : [0, L] → (M, g), the Jacobi equation for a vector field J along γ is

J ′′ +R(J, γ′)γ′ = 0.

A solution J to the Jacobi equation is called a Jacobi field (along γ).

Our goal is to try to understand the space of Jacobi fields. We start with some simple examples.

Example. Clearly γ′ is a Jacobi field along γ which is everywhere non-zero since R(γ′, γ′) = 0 and

(γ′)′′ = (γ′′)′ = 0.
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Example. Define a vector field J(s) = sγ′(s) along a geodesic γ. Then

J ′(s) = γ′(s) + sγ′′(s) = γ′(s) and J ′′ = γ′′ = 0.

Moreover, R(J, γ′) = 0 as J is proportional to γ′ at each point of γ. Hence J is also a Jacobi field along

γ whose covariant derivative J ′ = γ′ along γ is everywhere non-zero.

Remark. On the basis of the previous two examples, we often consider J perpendicular to γ′, and

sometimes also with J ′ perpendicular to γ′.

Consider the map f(s, t) = expp(sX(t)) for a curve X(t) in TpM with X(0) = X, X ′(0) = Y and

s ∈ [0, 1] (and assume that X(t) is chosen such that f is well-defined). Then

d(expp)sX(sY ) =
∂f

∂t
(s, 0) = J(s)

is a vector field along the geodesic γ(s) = expp(sX) which measures how geodesics “spread” from γ.

Moreover, notice that J(0) = 0 and zeros of J for s > 0 correspond to critical points of expp, i.e. where

expp fails to be an immersion.

Example. If X,Y are orthonormal vectors in (Rn, g0) and p = 0, we can take X(t) = X cos t + Y sin t

and see that

γ(s) = expp(sX(t)) = sX cos t+ sY sin t

and

J(s) = −sX sin t+ sY cos t|t=0 = sY,

so J grows linearly with s.

We will see now that J is a Jacobi field along γ.

Lemma 6.3. Let p ∈ (M, g), let X(t) be a curve in TpM with X(0) = X, X ′(0) = Y and let J be the

vector field along γ(s) = expp(sX) given by

J(s) = d(expp)sX(sY ).

Then J is a Jacobi field along γ.

Proof. Since γt(s) = expp(sX(t)) is a geodesic we have, using the notation before the lemma,

∇ ∂f
∂s

∂f

∂s
= 0.

Therefore, by Lemma 3.11 and Proposition 6.1,

0 = ∇ ∂f
∂t

(
∇ ∂f

∂s

∂f

∂s

)
= ∇ ∂f

∂s

(
∇ ∂f

∂t

∂f

∂s

)
−R(

∂f

∂s
,
∂f

∂t
)
∂f

∂s

= ∇ ∂f
∂s

(
∇ ∂f

∂s

∂f

∂t

)
−R(

∂f

∂s
,
∂f

∂t
)
∂f

∂s

= ∇ ∂f
∂s
∇ ∂f

∂s
(
∂f

∂t
) +R(

∂f

∂t
,
∂f

∂s
)
∂f

∂s
.

Evaluating this at t = 0 gives us that J is a Jacobi field.

Lemma 6.4. A Jacobi field J along a geodesic γ : [0, L] → (M, g) is uniquely determined by J(0) and

J ′(0). Hence, on an n-dimensional (M, g), there are 2n linearly independent Jacobi fields along γ.
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Proof. Observe that J is determined by J(0) and J ′(0) as the Jacobi equation is a second order ODE.

In fact, if {E1, . . . , En} are parallel orthonormal vector fields along γ, then we can write

J =

n∑
j=1

ajEj and bjk = g(R(Ej , γ
′)γ′, Ek).

Then the Jacobi equation becomes

a′′k +

n∑
j=1

ajbjk = 0 for k = 1, . . . , n,

so there are 2n Jacobi fields defined by the aj(0) and a
′
j(0).

Example. Let M have constant sectional curvature K, let γ be a normalized geodesic and suppose

that J is Jacobi field along γ with |J | = 1 so that g(J, γ′) = 0. Then R(J, γ′)γ′ = KJ as {J, γ′} are

orthonormal vector fields. Therefore the Jacobi equation is

J ′′ +KJ = 0.

Let X be a unit parallel vector field along γ such that g(X, γ′) = 0. Then the Jacobi fields with J(0) = 0

and J ′(0) = X(0) are given by:

J(s) =


λ−1 sin(λs)X(s), K = λ2 > 0;

sX(s), K = 0;

λ−1 sinh(λs)X(s), K = −λ2 < 0.

In particular, we see that if K = 1 then J has a zero at s = π (think of the round 2-sphere for example),

and if K = −1 then J is nowhere vanishing for s > 0 and grows exponentially rather than linearly as in

the K = 0 case.

We now show that the earlier construction we gave for Jacobi fields is, in some sense, the only way to

construct Jacobi fields.

Proposition 6.5. Let γ : [0, 1] →M be a geodesic, let p = γ(0) and let J be a Jacobi field along γ with

J(0) = 0. Let X(t) be a curve in TpM with X(0) = γ′(0) and X ′(0) = J ′(0) ∈ TpM . If

f(s, t) = expp (sX(t)) and J̄(s) =
∂f

∂t
(s, 0)

then J = J̄ .

Proof. We first note that

f(s, 0) = expp (sX(0)) = expp(sγ
′(0)),

so the geodesic γ̄(s) = f(s, 0) satisfies γ̄(0) = p = γ(0) and γ̄′(0) = γ′(0), so γ̄ = γ. We also see that

J̄(s) = d(expp)sX(t) (sX
′(t)) |t=0 = d(expp)sγ′(0)(sJ

′(0)) = sd(expp)sγ′(0)

(
J ′(0)

)
.

Notice that J̄(0) = 0 and that

J̄ ′(s) = ∇γ′
(
sd(expp)sγ′(0)(J

′(0))
)

= d(expp)sγ′(0)(J
′(0)) + s∇γ′

(
d(expp)sγ′(0)(J

′(0))
)
.

Therefore,

J̄ ′(0) = d(expp)0(J
′(0)) = J ′(0) and J̄(0) = 0 = J(0),

so J = J̄ .

The real utility of this result is given by the following corollary, which is immediately obvious.
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Corollary 6.6. If J is a Jacobi field with J(0) = 0 along a geodesic γ : [0, L] → (M, g) with γ(0) = p

then

J(s) = d(expp)sγ′(0)(sJ
′(0)).

We now make an important observation concerning Jacobi fields which reveals the relation between

Jacobi fields and curvature.

Proposition 6.7. Let γ : [0, L] → (M, g) be a geodesic and let J be a Jacobi field along γ with J(0) = 0

and |J ′(0)| = 1. Then

|J(s)|2 = s2 − 1

3
R(γ′(0), J ′(0), J ′(0), γ′(0))s4 + o(s4)

for s near 0. Hence, if γ is a normalized geodesic and g(J ′(0), γ′(0)) = 0, then

|J(s)|2 = s2 − 1

3
K(γ′(0), J ′(0))s4 + o(s4)

for s near 0.

Proof. We are computing the first few terms of the Taylor expansion of the function

f(s) = |J(s)|2 = g(J(s), J(s)).

Since J(0) = 0, we see that f(0) = 0. We may then see that

f ′(0) = 2g(J(0), J ′(0)) = 0

as well. We may also see that

f ′′(0)

2
= g(J(0), J ′′(0)) + g(J ′(0), J ′(0)) = |J ′(0)|2 = 1

by assumption, which then gives us the s2 term in the expansion.

For the possible s3 term we have that

f ′′′(0)

3!
=

1

3
g(J(0), J ′′′(0)) + g(J ′(0), J ′′(0)) = g(J ′(0), J ′′(0)).

Now we can use the Jacobi equation J ′′ + R(J, γ′)γ′ = 0 to deduce that J ′′(0) = 0 as J(0) = 0. Hence,

there is no s3 term in the Taylor expansion.

We now turn to the s4 term. We see that this will be governed by

f ′′′′(0)

4!
=

1

12
g(J(0), J ′′′′(0)) +

1

3
g(J ′(0), J ′′′(0)) +

1

4
g(J ′′(0), J ′′(0)) =

1

3
g(J ′(0), J ′′′(0)).

By the Jacobi equation, we know that

J ′′′ = −∇γ′
(
R(J, γ′)γ′

)
.

To compute this we observe that, for any vector field X along γ, we have that

g(∇γ′
(
R(J, γ′)γ′

)
, X) = ∇γ′

(
g(R(J, γ′)γ′, X)

)
− g(R(J, γ′)γ′,∇γ′X)

= ∇γ′
(
g(R(X, γ′)γ′, J)

)
− g(R(J, γ′)γ′, X ′),

using the symmetries of the Riemann curvature tensor. Thus,

g(∇γ′
(
R(J, γ′)γ′

)
, X) = g

(
∇′

γ

(
R(X, γ′)γ′), J

)
+ g(R(X, γ′)γ′, J ′)− g(R(J, γ′)γ′, X ′).

Setting s = 0 gives J(0) = 0, so the first and last terms on the right-hand side in the equation vanish.

We deduce that, choosing X = J ′,

g(J ′′′(0), J ′(0)) = −g(∇γ′
(
R(J, γ′)γ′

)
, J ′)(0)

= −g(R(J ′, γ′)γ′, J ′)(0).

This gives the claimed Taylor expansion and the result after follows immediately from the definition of

sectional curvature.

As we shall see, this result gives a useful computational tool in some cases. In particular, when we

know the geodesics in (M, g), we can use the Taylor expansion to compute the curvature of (M, g).
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6.2 Conjugate points

We now continue our discussion of Jacobi fields by analysing so-called conjugate points. These will be

very important for many of the results in later parts of the course.

Definition 6.8. Let γ : [0, L] → (M, g) be a geodesic. We say that γ(T ) is conjugate to γ(0) (along γ)

if T ∈ (0, L] and there exists a Jacobi field J ̸= 0 such that J(0) = J(T ) = 0.

Given γ(T ) conjugate to γ(0), the maximum number mult(γ(T )) of linearly independent Jacobi fields

vanishing at 0 and T is called the multiplicity of γ(T ).

Remark. There at most n Jacobi fields along γ with J(0) = 0, defined by J ′(0). However, sγ′(s) is

nowhere vanishing except at 0, so mult(γ(T )) ≤ n− 1.

Example. On (Rn, g0) given any point p and any geodesic γ with γ(0) = p, there can never be any

conjugate points along γ. We can see this because the set of Jacobi fields vanishing at p along the straight

line γ are spanned by {s∂1, . . . , s∂n}, which are clearly all nowhere vanishing for s > 0.

Example. For Sn with the round metric g , let γ be a normalized geodesic with γ(0) = p. Recall

the formulae for the Jacobi fields on Sn in our earlier example, using the fact that (Sn, g) has constant

sectional curvature 1.

From these formulae we see that γ(π) = −p is conjugate to p and mult(−p) = n− 1. We also see that

p = γ(2π) is conjugate to p.

The examples suggest we should try to understand the set of conjugate points to γ(0) for geodesics

γ, and we should restrict ourselves to the first conjugate points.

Definition 6.9. The conjugate locus C(p) of p ∈ (M, g) is the set of first conjugate points for all geodesics

from p.

Example. Clearly, for all points p in Euclidean space (Rn, g0), the conjugate locus C(p) = ∅.

Example. We see explicitly that for all p in the hyperbolic upper half-plane (H2, g), C(p) = ∅.

Example. If we take any point p in the round n-sphere (Sn, g), we see from our earlier example that

C(p) = {−p}.

The point of the conjugate locus will become apparent later, though it is clear that there is a link to

the curvature of the ambient manifold. For now, we make the following crucial observation.

Proposition 6.10. Let γ : [0, L] → (M, g) be a geodesic with γ(0) = p. The point γ(T ) is conjugate to

γ(0) = p if and only if Tγ′(0) is a critical point of expp. Moreover,

mult(γ(T )) = dimKer(d(expp)Tγ′(0)).

Proof. Suppose J is a Jacobi field along γ such that J ̸= 0 and J(0) = J(T ) = 0. By Corollary 6.6 we

have that

J(T ) = d(expp)Tγ′(0)(TJ
′(0)) = 0.

However, this equation is equivalent to saying that Tγ′(0) is a critical point of expp since γ′(0) ̸= 0.

Now suppose mult(γ(T )) = k, so we have linearly independent Jacobi fields J1, . . . , Jk along γ such

that Ji(0) = Ji(T ) = 0. The linear independence of the Ji is equivalent to the linear independence of the

J ′
i(0). Moreover, J ′

i(0) lies in Ker(d(expγ(0))Tγ′(0)) for all i. The result follows.

We now derive some further facts concerning Jacobi fields.
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Proposition 6.11. Let J be a Jacobi field along a geodesic γ in (M, g). Then

g(J, γ′)(s) = sg(J ′, γ′)(0) + g(J, γ′)(0).

Proof. First, from the Jacobi equation (and the fact that γ is a geodesic),

d

ds
g(J ′, γ′) = g(J ′′, γ′) = −g(R(J, γ′)γ′, γ′) = 0.

Therefore, g(J ′, γ′) = g(J ′, γ′)(0) and thus constant.

Since
d

ds
g(J, γ′) = g(J ′, γ′) = g(J ′, γ′)(0),

we deduce the formula as claimed by integrating.

We deduce the following corollaries quickly from this proposition.

Corollary 6.12. Let J be a Jacobi field along a geodesic γ : [0, L] → (M, g) such that J(0) = J(L) = 0.

Then g(J, γ′) = 0.

Proof. Since J(0) = 0, we have that g(J, γ′)(s) = sg(J ′, γ′)(0), but putting s = L the left-hand side is

zero, so g(J ′, γ′)(0) = 0.

Corollary 6.13. Let J be a Jacobi field along a geodesic γ : [0, L] → (M, g) such that J(0) = 0.

Then g(J ′, γ′)(0) = 0 if and only if g(J, γ′) = 0, so

dim{Jacobi fields J along γ : J(0) = 0, g(J, γ′) = 0} = n− 1.

Proof. Since the condition J(0) = 0 imposes n conditions on J and the condition g(J ′, γ′)(0) = 0 imposes

one further condition on J , the result follows.
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7 Completeness

We now move on to another important notion in Riemannian geometry where geodesics play an essential

role, namely completeness.

7.1 Definitions

We shall assume throughout that (M, g) is a connected Riemannian manifold.

Definition 7.1. (M, g) is (geodesically) complete if expp(X) is defined for all X ∈ TpM and for all

p ∈M .

Equivalently, normalised geodesics γ(p,X)(t) = expp(tX) are defined for all X ∈ TpM with |X| = 1,

for all t ∈ R and for all p ∈M .

Let us see some examples of Riemannian manifolds which are both complete and not complete (we

usually say incomplete).

Example. We see that (R2, g0) (and therefore Rn) is complete because straight lines

γ(t) = (x1 + ty1, x2 + ty2)

are defined for all t ∈ R and any y1, y2 ∈ R.
The same is obviously true for Tn ⊆ R2n, for example on T 2 ⊆ R4 geodesics are

γ(t) =
(
cos(θ1 + a1t), sin(θ1 + a1t), cos(θ2 + a2t), sin(θ2 + a2t)

)
which are clearly defined for all t ∈ R and all a1, a2 ∈ R.

Example. If we look at straight lines

γ(t) = (x1, x2 + t)

on H2 we see γ is only defined for t > −x2, and hence (H2, g0) is not complete.

The corresponding normalised geodesic on H2 with the hyperbolic metric is

γ(t) = (x1, x2e
t)

which is now defined for all t ∈ R. It actually follows from this and the isometries of the hyperbolic upper

half-plane that H2 with the hyperbolic metric is complete.

Example. On S2 (and therefore Sn) with the round metric g normalised geodesics are great circles, for

example

γ(t) = (sin(t+ θ0) cosϕ0, sin(t+ θ0) sinϕ0, cos(t+ θ0))

which is defined for all t ∈ R, and so are certainly defined for all points and tangent vectors, hence (S2, g)

is complete.

However, if we remove a point from S2 (or Sn), say the South pole, then the geodesics that passed

through that point are now no longer defined for all t ∈ R (for example, normalised geodesics γ(t) with

γ(0) = N are now only defined for |t| < π in the usual parameterization since γ(±π) = S).

In fact, we see that if we take any Riemannian manifold and remove a point then it cannot be complete

with the induced Riemannian metric.

Example. We see from the description of geodesics in RPn that it is complete.

You will have come across the concept of completeness before in the study of metric spaces, so you

may ask if the two concepts are related. The answer is yes, but first we need to understand how we

should view (M, g) as a metric space in a way which is compatible with g.
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Proposition 7.2. If p, q ∈ (M, g), define

d(p, q) = inf{L(α) : α is a curve from p to q}.

Then (M,d) is a metric space.

Proof. The metric balls Bd
ϵ (p) in (M,d) for ϵ sufficiently small are the geodesic balls Bϵ(p) in (M, g) by

Theorem 3.12. Any geodesic ball is an open set in (M, g) by definition. Moreover, given any open set

U in (M, g), then for all p ∈ U there exists ϵ(p) > 0 such that Bϵ(p)(p) ⊆ U by the existence of normal

neighbourhoods. Hence U can be written as the union of geodesic balls. Thus the metric d induces the

given topology on M .

Clearly d(p, p) = 0 for all p ∈M by taking α to be the constant curve α(t) = p for all t.

Let p, q ∈ M , then d(p, q) = d(q, p) since given any curve α : [0, L] → M from p to q the backwards

curve β : [0, L] → M given by β(t) = α(L − t) satisfies β′(t) = −α′(L − t) so |β′(t)| = |α′(L − t)| and
thus L(α) = L(β).

If p, q, r ∈M and α, β are any curves from p to q and q to r, then the curve γ given by joining α and

β is a curve from p to r with L(γ) = L(α) + L(β) so we have that d(p, r) ≤ L(α) + L(β). Since this is

true for all α, β we can take the infimum over all α, β and deduce that d(p, r) ≤ d(p, q) + d(q, r).

Now suppose p ̸= q. There exists an open set U ∋ p in M such that q /∈ U . Since expp is continuous,

there exists δ > 0 such that expp(Bδ(0)) is well-defined and contained in U . Hence, q /∈ expp(Bδ(0)).

Let α be a curve from p to q. Then the portion β of α contained in expp(Bδ(0)) must meet the geodesic

sphere Sδ(p). However, since geodesics are locally length minimizing by Theorem 3.12, we must have

that L(β) ≥ δ which then means that L(α) ≥ L(β) ≥ δ. Therefore d(p, q) ≥ δ > 0.

Hence, (M,d) is a metric space.

7.2 Hopf–Rinow

We now state and prove one of the main theorems in the course, the Hopf–Rinow Theorem, which says

that the notion of geodesic completeness agrees with our previous idea of metric space completeness.

However, the real key to this result (and its proof) is that if a Riemannian manifold is complete then any

two points can be joined by a minimizing geodesic.

Theorem 7.3 (Hopf–Rinow Theorem). Let (M, g) be a connected Riemannian manifold. The fol-

lowing are equivalent:

(a) (M, g) is (geodesically) complete;

(b) expp is defined on all of TpM for some p ∈M ;

(c) closed bounded subsets of M are compact;

(d) (M,d) is a complete metric space.

Moreover, if (M, g) is complete then for all p, q ∈ M there exists a geodesic γ from p to q such that

d(p, q) = L(γ).

Proof. (a) ⇒ (b) is trivial by definition.

(b) ⇒ (c). We first show that for any q ∈M there exists a geodesic γ : [0, L] →M such that γ(0) = p

and γ(L) = q.

Let q ∈ M and let d(p, q) = L. Let δ > 0 be such that Bδ(p) is a well-defined geodesic ball around

p and let Sδ(p) = ∂Bδ(p) be the usual geodesic sphere. The map x 7→ d(q, x) is continuous on Sδ(p) so

d(q, x0) is a minimum for some x0 ∈ Sδ(p). Since x0 ∈ Sδ(p), x0 = expp(δX) for some X ∈ TpM with

|X| = 1.

Let γ(s) = expp(sX) which is defined for all s ∈ R by assumption. The idea is to show that this is the

geodesic we want. It is pointing in the right direction (since it is minimizing the distance to q in Bδ(p))

so we just need to show that it extends all the way to q.
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Let A = {s ∈ [0, L] : d(γ(s), q) = L− s}. We see that A is non-empty because d(p, q) = d(γ(0), q) = L

so 0 ∈ A and A is closed because the metric d is continuous. We want to show that A is open because

then A is closed and open and non-empty in the connected interval [0, L] so it must equal [0, L]. This

means that in particular that L ∈ A so d(γ(L), q) = L − L = 0 so γ(L) = q and hence γ is a geodesic

from p to q and L(γ) = L|X| = L = d(p, q) as desired.

Suppose that s0 < L. We need to show that s0 + δ0 ∈ A for some δ0 > 0 to show that A is open.

Let δ0 > 0 be such that Bδ0(γ(s0)) is a well-defined geodesic ball. Let y0 ∈ Sδ0(γ(s0)) be a point where

y 7→ d(y, q) has a minimum (which exists as d is continuous). Then since s0 ∈ A,

L− s0 = d(γ(s0), q) = δ0 + min
y∈Sδ0

(q)
d(y, q) = δ0 + d(y0, q).

Hence

d(y0, q) = L− (s0 + δ0).

If we can show that y0 = γ(s0 + δ0) then

d(γ(s0 + δ0), q) = d(y0, q) = L− (s0 + δ0)

so s0 + δ0 ∈ A and thus A is open.

Now

d(p, y0) ≥ |d(p, q)− d(q, y0)| = |L− (L− (s0 + δ0))| = s0 + δ0.

However, the curve α given by following γ from p to γ(s0) and then the radial geodesic in Bδ0(γ(s0))

from γ(s0) to y0 has length L(α) = s0 + δ0. Since α is a curve from p to y0 we have that

d(p, y0) ≤ L(α) ≤ s0 + δ0

so we deduce that

d(p, y0) = s0 + δ0.

Furthermore, α is minimizing and |α′| is constant (as it is a union of geodesics) and thus is a geodesic by

Proposition 3.13. Therefore, by uniqueness of geodesics, α = γ and thus y0 = γ(s0 + δ0) as required.

We conclude that there is always a minimizing geodesic from p to q.

Now if C ⊆ M is closed and bounded then C ⊆ Bd
R(p) ⊆ expp(BR′(0)) for some R,R′ > 0 by what

we have just shown (i.e. we can connect p by a radial geodesic to any point q ∈ C so that d(p, q) is the

length of that geodesic). Since BR′(0) is compact and expp is continuous we see that expp(BR′(0)) is

compact and thus C is compact as desired.

(c) ⇒ (d). Let (pn) be a Cauchy sequence in M with respect to d. Then (pn) is bounded so

C = {pn : n ∈ N} is closed and bounded and thus C is compact by assumption. We deduce by metric

space theory that (pn) has a convergent subsequence and thus (M,d) is complete by definition.

(d) ⇒ (a). This time we argue by contradiction. Suppose M is not (geodesically) complete. That

means that there exists a normalized geodesic γ which is defined for s < s0 but not for s = s0.

Let (sn) be a strictly increasing sequence in [0, s0) converging to s0. Then (sn) is convergent so it is

Cauchy and thus
(
γ(sn)

)
is Cauchy as

d(γ(sn), γ(sm)) = |sn − sm| → 0 as n,m→ ∞.

We are assuming that (M,d) is complete so there exists p0 ∈M and a subsequence of (sn) which we still

call (sn) for simplicity such that

d(γ(sn), p0) → 0 as n→ ∞.

If W is a totally normal neighbourhood of p0, there exists δ > 0 such that expq : Bδ(0) → M is a

diffeomorphism onto an open set containingW for all q ∈W . Let N be sufficiently large that if n,m > N

then γ(sn) ∈ W for all n > N and d(γ(sn), γ(sm)) < δ for m,n > N . Then choose m,n > N . There

exists a unique geodesic α : [0, L] → W such that α(0) = γ(sn), α(L) = γ(sm). Necessarily α and γ
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coincide where they are both defined by uniqueness. Since expγ(sn) is a diffeomorphism on Bδ(0) and its

image contains W we see that α, which is radial geodesic from γ(sn), extends γ beyond s0 (as α passes

through p0 for example), giving our required contradiction.

The final conclusion is obvious given that (b) implies the existence of a minimizing geodesic from p

to any point q.

Remark. The minimizing geodesic is not necessarily unique: if we take the North and South poles

N,S ∈ S2, then there are infinitely many minimizing geodesics between them given by the lines of

longitude.

Moreover, we see that the upper half-space or the upper hemisphere has the property that there is a

minimizing geodesic between any two points, but these manifolds are not complete.

Example. Since any closed bounded subset of a compact metric space is compact, Theorem 7.3 implies

that any compact Riemannian manifold is complete. In particular, Tn, Sn, RPn and CPn are complete.

7.3 Cartan–Hadamard

We can now state one of the fundamental theorems in Riemannian Geometry which shows the interaction

between curvature and topology. Recall that we say that a manifold is simply connected if every loop in

M can be continuously deformed to a point.

Example. Rn is simply connected.

However, R2 \{0} is not simply connected: there is a “hole” at the origin, which means a loop around

0 cannot be deformed to a point. For n > 2, Rn \{0} is simply connected because you can now find room

to move your curve encircling the origin and shrink it to a point.

Example. Sn is simply connected for n ≥ 2.

However, S1 is not simply connected: the reason is the same as R2 \ {0}.

Example. Tn is never simply connected.

Example. RPn is not simply connected but CPn is simply connected.

Example. Many matrix Lie groups, like SL(n,R), O(n), SO(n) and U(n) are not simply connected but

SU(n) is simply connected.

When M is not simply connected it will be useful to have the following definition.

Definition 7.4. IfM is a connected n-dimensional manifold then there is a unique (up to diffeomorphism)

connected and simply connected n-dimensional manifold M̃ covering M called the universal cover of M .

Note that the fundamental group π1(M) of M acts freely and properly discontinuously on M̃ by

diffeomorphisms, since π1(M) is isomorphic to the covering (or deck) transformations on M̃ .

We will have the following useful lemma.

Lemma 7.5. Let (M, g) be connected, let M̃ be the universal cover of M and let π : M̃ → M be the

covering map. There exists a unique Riemannian metric g̃ on M̃ so that π is a local isometry. The

metric g̃ is called the covering metric on M̃ .

Moreover, the fundamental group π1(M) acts on (M̃, g̃) by isometries.

Remark. Since π : (M̃, g̃) → (M, g) is a local isometry, it maps geodesics to geodesics and (M̃, g̃) has

the same curvature as (M, g).

Theorem 7.6 (Cartan–Hadamard). Let (M, g) be a simply connected, connected and complete n-

dimensional Riemannian manifold with sectional curvature K ≤ 0. Then expp : TpM → M is a diffeo-

morphism, so M is diffeomorphic to Rn.
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Remark. If M is not simply connected but otherwise satisfies the hypotheses of the theorem, then there

M is diffeomorphic to Rn/π1(M).

To prove this result we need two lemmas.

Lemma 7.7. If (M, g) is complete and has sectional curvature K ≤ 0 then the conjugate locus C(p) = ∅
for all p ∈M . Therefore expp : TpM →M is a surjective local diffeomorphism for all p ∈M .

Proof. Let p ∈M and let γ : [0,∞) →M be a geodesic such that γ(0) = p. Let J be a Jacobi field along

γ such that J(0) = 0 but J ̸= 0 (so J ′(0) ̸= 0). Thus

g(J, J)′(0) = 2g(J, J ′)(0) = 0 and g(J, J)′′(0) = 2|J ′(0)|2 > 0,

so g(J, J)′(t) > 0 for all t > 0 sufficiently small. By the Jacobi equation,

g(J, J)′′ = 2g(J ′, J ′) + 2g(J ′′, J)

= 2|J ′|2 − 2g(R(J, γ′)γ′, J)

= 2|J ′|2 − 2K(J, γ′)(|J |2|γ′|2 − g(J, γ′)2) ≥ 0.

Thus, g(J, J)′ is increasing. Therefore g(J, J)′(t) > 0 for all t > 0 which means that g(J, J)(t) is strictly

increasing for t > 0. Since g(J, J)(0) = 0 we deduce that g(J, J)(t) > 0 for all t > 0. Therefore J(t) ̸= 0

for all t > 0, so γ(t) is not conjugate to γ(0) for all t > 0. Therefore C(p) = ∅. The conclusion follows

from Proposition 6.10 and Theorem 7.3.

Lemma 7.8. If (M, g) is complete, (N,h) is a Riemannian manifold and f : M → N is a surjective

local diffeomorphism such that |dfp(X)| ≥ |X| for all X ∈ TpM and for all p ∈ M , then f is a covering

map.

Proof. We recall from topology that f is a covering map if and only if f has the curve-lifting property

(i.e. given a curve α in N and p ∈ f−1(α(0)) there exists a curve β inM such that β(0) = p and f ◦β = α).

Let α : [0, 1] → N be a curve and p ∈ f−1(α(0)). Since f is a local diffeomorphism there exists ϵ > 0

and a curve β : [0, ϵ) →M such that β(0) = p and f ◦ β(t) = α(t) for t ∈ [0, ϵ).

Let

A = {T ∈ [0, 1] : there exists a curveβ : [0, T ] →M such thatβ(0) = p, f ◦ β(t) = α(t) for all t ∈ [0, T ]}.

We have shown that A ⊇ [0, ϵ). Since f is a local diffeomorphism, one sees that A is half-open on the

right. Suppose for a contradiction that A = [0, t0) for some t0 ≤ 1. Then there exists an increasing

sequence (tn) in A such that tn → t0 as n→ ∞.

Using the properties of the differential of f and the fact that f ◦ β = α,

d(β(tn), β(0)) ≤
∫ tn

0

|β′(t)|dt ≤
∫ tn

0

|dfβ(t)(β′(t))|dt

=

∫ tn

0

|α′(t)|dt = L(α|[0,tn]) ≤ L(α|[0,t0]).

Therefore (β(tn)) is a bounded sequence. Since M is complete, using the Hopf–Rinow Theorem, we

deduce that after passing to a subsequence we have that β(tn) → q ∈M as n→ ∞.

Let V be an open neighbourhood of q ∈ M such that f |V is a diffeomorphism onto its image. Then

f ◦ β(tn) = α(tn) → α(t0) and f ◦ β(tn) → f(q). Therefore α(t0) = f(q) ∈ f(V ). By the continuity of α

there exists δ > 0 such that α
(
(t0−δ, t0+δ)

)
⊆ f(V ). There certainly exists n such that tn ∈ (t0−δ, t0+δ)

so β
(
(t0 − δ, tn]

)
⊆ V .

Since f |V is a diffeomorphism we have that there exists a curve β̄ : (t0 − δ, t0 + δ) → M such that

f ◦ β̄(t) = α(t) for t ∈ (t0− δ, t0+ δ). Moreover, f ◦β = f ◦ β̄ on (t0− δ, tn] so β = β̄ on (t0− δ, tn] as f |V
is a diffeomorphism. Thus, β̄ extends β to [0, t0+ δ) which implies that A ⊇ [0, t0+ δ), which contradicts

t0 ≤ 1. Therefore A = [0, 1] and f has the curve-lifting property and so is a covering map.

67



Jason D. Lotay C3.11 Riemannian Geometry

Proof of Theorem 7.6. Since M is complete, expp : TpM → M is surjective. Lemma 7.7 implies that

expp is a local diffeomorphism. Define a Riemannian metric h on TpM such that expp is a local isometry;

i.e. for X ∈ TpM ,

hX(Y,Z) = gexpp(X)(d(expp)X(Y ),d(expp)X(Z)).

Geodesics in TpM through 0 are straight lines so by Theorem 7.3, h is complete. By Lemma 7.8, expp is

a covering map. Since TpM and M are simply connected we conclude that expp is a diffeomorphism.

Remark. We actually proved that if there exists p ∈ (M, g) such that C(p) = ∅, when (M, g) is complete

and simply connected, then expp : TpM →M is a diffeomorphism and so M is diffeomorphic to Rn.

The Cartan–Hadamard Theorem has some simple corollaries.

Corollary 7.9. If (M, g) is complete and has sectional curvature K ≤ 0 then the universal cover M̃ is

diffeomorphic to Rn.

Proof. This is immediate because if (M, g) is complete then (M̃, g̃) is complete and if K ≤ 0 then

the sectional curvature of (M̃, g̃) is non-negative also. Applying Cartan–Hadamard to (M̃, g̃) gives the

result.

Corollary 7.10. If (M, g) is complete, simply connected and has sectional curvature K ≤ 0 then M is

non-compact.

Proof. The hypotheses mean that M is diffeomorphic to Rn by Cartan–Hadamard, so non-compact.

Example. A trivial example is a simply connected, connected and complete flat n-dimensional Rieman-

nian manifold (M, g) must be diffeomorphic to Rn.

A less trivial example is that if (M, g) is connected and complete and flat, then M must be diffeo-

morphic to Rn/G for some group G.

A special case is S1 which is trivially flat and, as we know, it is diffeomorphic to R/Z. The fundamental

group of S1 is Z. Similarly, Tn with its standard metric is flat and this is diffeomorphic to Rn/Zn so the

fundamental group of Tn is Zn. Notice that Tn is obviously not diffeomorphic to Rn which shows why

we need simply connected in the statement of Cartan–Hadamard.

Example. The hyperboloid model of hyperbolic space (H2, g) is simply connected, connected and has

constant curvature −1. We know that it is diffeomorphic to R2 since it is diffeomorphic to H2, the

upper-half plane, which is then diffeomorphic to R2.

Example. We know that Sn is connected and simply connected for n ≥ 2, so it cannot have a complete

metric with K ≤ 0 as it is not diffeomorphic to Rn. This is an extension of what you know is true for S2

by the Gauss–Bonnet theorem. We know that S2 can have a metric which has areas of negative curvature

(consider the dumbbell) but it must always have areas of positive curvature.

Similarly, CPn and SU(n) cannot have complete metrics with K ≤ 0.

We also see that RPn cannot have a complete metric with K ≤ 0 either for n ≥ 2 since its universal

cover is Sn.
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8 Constant curvature

We want to study complete manifolds with constant sectional curvature (that is, K(σ) = K for all

2-planes σ in any tangent space) and try to understand their geometry.

8.1 Basic formulae

The first thing we can do is describe the Riemann curvature tensor.

Proposition 8.1. A Riemannian manifold (M, g) has constant sectional curvature K if and only if for

all vector fields X,Y, Z,W on M

R(X,Y, Z,W ) = K
(
g(X,W )g(Y,Z)− g(X,Z)g(Y,W )

)
.

Proof. Suppose that (M, g) has constant sectional curvature K. Define

R̄(X,Y, Z,W ) = K
(
g(X,W )g(Y,Z)− g(X,Z)g(Y,W )

)
.

Then

R(X,Y, Y,X) = K(g(X,X)g(Y, Y )− g(X,Y )2) = R̄(X,Y, Y,X).

Since R̄ has the same symmetries as R (which is easy to check), Proposition 4.6 implies that R = R̄.

Suppose that R is as given. Then for all independent X,Y we have

K(X,Y ) =
R(X,Y, Y,X)

g(X,X)g(Y, Y )− g(X,Y )2
=
K(g(X,X)g(Y, Y )− g(X,Y )2)

g(X,X)g(Y, Y )− g(X,Y )2
= K

so we see that K(X,Y ) = K for all X,Y .

We can also describe the Ricci and scalar curvatures of Riemannian manifolds with constant sectional

curvature.

Proposition 8.2. If (M, g) has constant sectional curvature K then Ric = (n−1)Kg and S = n(n−1)K.

Proof. By Proposition 8.1 we see that if p ∈ M , {E1, . . . , En} is an orthonormal frame for TpM and

X,Y ∈ TpM , then

Ric(X,Y ) =

n∑
k=1

R(X,Ek, Ek, Y ) = K

n∑
k=1

(g(X,Y )g(Ek, Ek)− g(X,Ek)g(Y,Ek)) = K(n− 1)g(X,Y ).

Thus

S =

n∑
i,j=1

R(Ei, Ej , Ej , Ei) = K

n∑
i,j=1

(g(Ei, Ei)g(Ej , Ej)− g(Ei, Ej)
2) = K(n2 − n) = Kn(n− 1).

We have used the fact that g(Ei, Ej) = δij and g(X,Y ) =
∑n

i=1 g(X,Ei)g(Y,Ei).

So Riemannian manifolds with constant sectional curvature are Einstein manifolds and have constant

scalar curvature.

Example. (Rn, g0) has constant sectional curvature 0. The same is true of Rn/Zn ∼= Tn. So their Ricci

and scalar curvatures are also 0.

Example. We saw that S2 with the round metric has constant sectional curvature 1. The same is also

true of RP2. Their Ricci curvature tensors are Ric = g and scalar curvature S = 2.

Example. We saw that H2 with the hyperbolic metric has constant sectional curvature −1. Its Ricci

curvature tensor is Ric = −g and scalar curvature S = −2.

We now observe that the Fundamental Equations for Riemannian submanifolds of Riemannian man-

ifolds with constant sectional curvature are particularly simple and useful.
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Proposition 8.3. If (N, g) has constant sectional curvature K and (M, gM ) is a Riemannian submanifold

of (N, g) then

K(|X|2|Y |2 − g(X,Y )2) = KM (X,Y )(|X|2|Y |2 − g(X,Y )2) + |B(X,Y )|2 − g(B(X,X), B(Y, Y ));

(∇N
XB)(Y,Z) = (∇N

Y B)(X,Z);

g(R⊥(X,Y )ξ, ζ) = g([Sξ, Sζ ]X,Y ),

for tangent vector fields X,Y, Z and normal vector fields ξ, ζ on M .

Proof. The first equation is immediate from the Gauss equation and Proposition 8.1. The second and

third equations come from seeing that the left-hand side in the Codazzi and Ricci equations must be zero

by Proposition 8.1.

8.2 Model spaces

If (M, g) has constant sectional curvature K, we can always rescale the metric so that K ∈ {−1, 0, 1},
since if we multiply the metric by t then the sectional curvature changes by a factor of t−1. So, a 2-sphere

of radius r has constant sectional curvature 1
r2 . We have seen that Rn is complete with constant sectional

curvature 0 and O(n)⋉Rn give the isometries, but what about K = 1 and K = −1?

We begin with the easier and familiar case of K = 1.

Theorem 8.4. The unit n-sphere (Sn, g) in Rn+1,

Sn = {(x1, . . . , xn+1) ∈ Rn+1 :

n+1∑
i=1

x2i = 1},

with round metric g is

� complete,

� its geodesics are the great circles given by Π ∩ Sn for 2-planes Π in Rn+1 through the origin,

� it has constant sectional curvature 1

� and Isom(Sn, g) = O(n+ 1) = {A ∈Mn(R) : ATA = I}.

Proof. We already saw that Sn is complete by the Hopf–Rinow Theorem and that the geodesics are as

described. We know that O(n + 1) defines isometries of Rn+1. Moreover, it is also clear that O(n + 1)

defines the only linear maps of Rn+1 that preserve Sn, so these give the isometries of Sn.

We already saw that (Sn, g) had constant sectional curvature 1 using the fact that it was a hyper-

surface, but now we give an intrinsic proof. Let p ∈ Sn and σ a 2-plane in TpSn = Span{p}⊥. Since

O(n+ 1) gives isometries we can rotate so that p = e1 and σ = Span{X1 = e3, X2 = e2}. Define

f(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ, 0, . . . , 0)

for θ ∈ (0, π) and ϕ ∈ (0, 2π) so that f(θ, ϕ) = p if and only if θ = π
2 and ϕ = 0. Then f∗∂θ(p) = X1 and

f∗∂ϕ(p) = X2. Hence, by our previous calculations for S2 we see that K(σ) = 1.

This is related to our exponential map discussion because θ = π
2 and ϕ = 0 are geodesics in S2 and

Sn.

We now see that this extends in a natural way to the case of K = −1.

Theorem 8.5. The hyperbolic n-space (Hn, g) where

Hn = {(x1, . . . , xn+1) ∈ Rn+1 :

n∑
i=1

x2i − x2n+1 = −1, xn+1 > 0},
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and g is the restriction of
n∑

i=1

dx2i − dx2n+1,

is

� complete,

� the geodesics are given by Π∩Hn for 2-planes Π in Rn+1 through the origin which meet Hn (these

are called Lorentz planes),

� it has constant sectional curvature −1

� and Isom(Hn, g) = O+(n, 1) = {A ∈Mn+1(R) : ATGA = G, an+1,n+1 > 0}, where

G =

(
I 0

0 −1

)
.

Proof. The proof is very similar to the one for Sn.

Clearly, the isometries are as stated because O+(n, 1) is the group which preserves G on Rn+1 and

Hn.

Given p = (0, . . . , 0, 1) ∈ Hn and X ∈ TpHn, let γ be the unique geodesic through p with tangent

vector X. If we define ρ ∈ O(n, 1) to be the reflection in the plane Π = Span{p,X}, since ρ is an isometry

we see that ρ ◦ γ is another geodesic with the same properties as γ. Thus, by uniqueness of geodesics,

ρ ◦ γ = γ, which means that γ = Π ∩Hn.

Concretely, since p = (0, . . . , 0, 1), if we take X = (0, 0, . . . , 1, 0) ∈ TpHn (we can always achieve by

using an isometry) then γ(t) = (0, . . . , 0, sinh t, cosh t). Clearly, these geodesics are defined for all t ∈ R
so Hn is complete and uniqueness implies that these are all the geodesics as claimed.

By a similar argument to the previous theorem, we can restrict to calculating the sectional curvature

of H2, which we know is −1, so the result follows.

The manifold (Hn, g) is called the hyperboloid model of hyperbolic n-space. We have other models for

the hyperbolic space, which we record here.

Example. We have an isometry f : (Hn, g) → (Bn, h) where

Bn = {(y1, . . . , yn) ∈ Rn :

n∑
i=1

y2i < 1}

is the unit ball in Rn and

h =

n∑
i=1

4dy2i
(1−

∑n
i=1 y

2
i )

2

given by

f(x1, . . . , xn+1) =
(x1, . . . , xn)

1 + xn+1
.

We call (Bn, h) the Poincaré disk model of hyperbolic n-space.

Example. We have an isometry f : (Hn, g) → (Hn, h) where

Hn = {(z1, . . . , zn) ∈ Rn : zn > 0}

is the upper half-space and

h =

n∑
i=1

dz2i
z2n

given by

f(x1, . . . , xn+1) =
(x1, . . . , xn−1, 1)

xn + xn+1
.

This is the upper-half space model of hyperbolic n-space.
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8.3 The curvature determines the metric

We start with the following result of Cartan which is often paraphrased as “the curvature determines the

metric”.

Theorem 8.6 (Cartan ). Let (M, gM ), (N, gN ) be Riemannian manifolds.

(i) Let p ∈ M , q ∈ N , let ι : TpM → TqN be an isometry and let expp and ẽxpq be the exponential

maps.

(ii) Let V be a normal neighbourhood of p such that ẽxpq is defined on U = ι ◦ exp−1
p (V ).

(iii) Let f = ẽxpq ◦ ι ◦ exp−1
p : V → ẽxpq(U).

(iv) For r ∈ V let γr : [0, L] → (M, gM ) be the (unique) normalised geodesic such that γr(0) = p and

γr(L) = r and let γ̃r : [0, L] → (N, gN ) be the (unique) normalised geodesic such that γ̃r(0) = q and

(γ̃r)′(0) = ι((γr)′(0)).

(v) For r ∈ V and s ∈ [0, L] let τ rs : TpM → Tγr(s)M be parallel transport along γr and let τ̃ rs : TqN →
Tγ̃r(s)N be parallel transport along γ̃r.

(vi) For r ∈ V and s ∈ [0, L], let ϕrs = τ̃ rs ◦ ι ◦ (τ rs )−1 : Tγr(s)M → Tγ̃r(s)N . Notice that ϕrL : TrM →
Tf(r)N .

If

RM (X,Y, Z,W ) = RN (ϕrL(X), ϕrL(Y ), ϕrL(Z), ϕ
r
L(W ))

for all X,Y, Z,W ∈ TrM and r ∈ V then f : V → f(V ) ⊆ N is a local isometry and dfp = ι.

Proof. Let r ∈ V , X ∈ TrM , and let J be the unique Jacobi field along γr such that J(0) = 0 and

J(L) = X. Let {E1, . . . , En} be an orthonormal basis of TpM with En = (γr)′(0) and let Ei(s) = τ rs (Ei).

Write J(s) =
∑

i yi(s)Ei(s), so the Jacobi equation is equivalent to

y′′i +
∑
j

RM (Ej , En, En, Ei)yj = 0.

Let J̃(s) = ϕrs(J(s)), which gives a vector field J̃ along γ̃r, and let Ẽi(s) = ϕrs(Ei(s)). Since J̃(s) =∑
i yi(s)Ẽi(s) and we have that

y′′i +
∑
j

RN (Ẽj , Ẽn, Ẽn, Ẽi)yj = 0

by hypothesis, we deduce that J̃ is a Jacobi field along γ̃r with J̃(0) = 0.

Since ϕrs is an isometry we have that |J̃(s)| = |J(s)|. We want to show that J̃(L) = dfr(X) =

dfr(J(L)), since then dfr is an isometry for all r ∈ V , and thus f is a local isometry on V as claimed.

Since the Ei and Ẽi are parallel vector fields along γr and γ̃r, we see that J̃ ′(s) = ϕrs(J
′(s)), so

J̃ ′(0) = ι(J ′(0)). Moreover, we know that

J(s) = d(expp)s(γr)′(0)(sJ
′(0)),

J̃(s) = d(ẽxpq)s(γ̃r)′(0)(sJ̃
′(0)).

Therefore

J̃(L) = d(ẽxpq)L(γ̃r)′(0)(Lι(J
′(0)) = d(ẽxpq)L(γ̃r)′(0) ◦ ι ◦ (d(expp)L(γr)′(0))

−1(J(L)) = dfr(J(L))

as required.

Cartan’s Theorem produces a local isometry between Riemannian manifolds with the same Riemann

curvature tensor, but a natural question is: is this local isometry unique? The answer is provided by the

following useful uniqueness result.
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Lemma 8.7. If M is connected and F,G : (M, gM ) → (N, gN ) are local isometries with F (p) = G(p)

and dFp = dGp for some p ∈M then F = G.

Proof. Let q ∈M . Then since M is connected there exists a curve α : [0, 1] →M such that α(0) = p and

α(1) = q. Let

A = {t ∈ [0, 1] : F (α(t)) = G(α(t)), dFα(t) = dGα(t)},

which is clearly closed.

Let U, V be normal neighbourhoods of p such that F |U and G|V are isometries and F (U) = G(V )

(this is possible because we can simply intersect the open sets F (U) and G(V ) if necessary). Then

f = G−1 ◦ F : U → V is an isometry such that f(p) = p and dfp = id. If r ∈ U then there exists a

unique X ∈ TpM such that expp(X) = r. The curve γ(s) = f(expp(sX)) for s ∈ [0, 1] is a geodesic (as

f is an isometry) with γ(0) = f(p) and γ′(0) = dfp(X), so it must be equal to the geodesic given by

s 7→ expf(p)(sdfp(X)) by uniqueness. Hence

f(r) = f(expp(X)) = expf(p)(dfp(X)) = expp(X) = r.

Therefore f(r) = r for all r ∈ U so U = V and F = G on U . Thus supA > 0 since there exist T ∈ (0, 1)

such that α(t) ∈ V for all t ∈ [0, T ].

If supA = T < 1 then, since T ∈ A as A is closed, we can repeat the argument above for the point

α(T ) and get a contradiction, so 1 ∈ A so F (q) = G(q) and thus F = G.

Corollary 8.8. If (M, gM ) and (N, gN ) have the same constant curvature, p ∈M , q ∈ N and ι : TpM →
TqN is an isometry then there exist normal neighbourhoods V ∋ p and W ∋ q and a unique isometry

f : V →W such that f(p) = q and dfp = ι.

Proof. Since M and N have the same constant curvature we can apply Cartan’s Theorem (Theorem 8.6)

and deduce the existence of V,W and f as claimed. Uniqueness then follows from the fact that V and

W are connected and Lemma 8.7.

8.4 Space forms

We now want to classify space forms: complete Riemannian manifolds (M, g) with constant curvature K.

As we noted, we can always rescale the metric simply by multiplying by a constant so that K ∈ {−1, 0, 1}.
We therefore restrict our attention to this situation.

Theorem 8.9. Let (M, g) be a complete and simply connected n-dimensional Riemannian manifold with

constant sectional curvature K ∈ {−1, 0, 1}. Then (M, g) is isometric to

� Sn with the round metric if K = 1,

� Rn with the Euclidean metric if K = 0, or

� Hn with the hyperbolic metric if K = −1.

Remark. For general constant K < 0 we write Hn(K) for hyperbolic n-space with constant curvature

K, and for K > 0 we write Sn(K) for the n-sphere with constant curvature K.

Proof. Suppose K = −1 or 0 and (N,h) is either Hn or Rn with its constant curvature metric. Let

p ∈M , q ∈ N and let ι : TpM → TqN be an isometry. Then f = expq ◦ι ◦ exp−1
p :M → N is well-defined

and surjective by the Cartan–Hadamard Theorem (Theorem 7.6). Cartan’s Theorem (Theorem 8.6) and

Corollary 8.8 imply that f is a local isometry. Lemma 7.8 implies that f is a covering map so f is a

diffeomorphism as M and N are simply connected. We conclude that f is an isometry.

Now suppose K = 1 and let p ∈ M , q ∈ Sn and let ι : TqSn → TpM be an isometry. Then

F = expp ◦ι ◦ exp−1
q : Sn \ {−q} → M is well-defined. Cartan’s Theorem and Corollary 8.8 imply that
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F is a local isometry. Take r ∈ Sn \ {q,−q}. Let s = F (r) and ȷ = dfr : TrSn → TsM . Define

G = exps ◦ȷ ◦ exp−1
r : Sn \ {−r} →M .

Now N = Sn \ {−q,−r} is connected (as n > 1), r ∈ N , F (r) = s = G(r) and dFr = ȷ = dGr.

Applying Lemma 8.7 we deduce that F = G on N . Let

H(t) =

{
F (t) if t ̸= −q
G(t) if t ̸= −r.

Then H is a local isometry from Sn with the round metric to (M, g) so as before we have that H is a

diffeomorphism and hence an isometry.

We now have our main result classifying the space forms, utilizing the following elementary result.

Proposition 8.10. Let (M, g) be complete with constant sectional curvature. There exists a discrete

subgroup G of Isom(M̃, g̃), acting freely and properly discontinuously on M̃ , such that (M, g) is isometric

to M̃/G with the quotient metric.

Proof. Let π : M̃ → M be the covering map and G = π1(M) be the group of covering transformations

(which acts freely and properly discontinuously by definition of universal cover). Then π(p) = π(q) if and

only if there exists some ϕ ∈ G such that q = ϕ(p), which is if and only if ξ(p) = ξ(q) where ξ : M̃ → M̃/G

is the projection map. Therefore there exists a bijection f :M → M̃/G such that f ◦ π = ξ. Since ξ and

π are local isometries we see that f is a local isometry, but since f is also a bijection we deduce that f

is an isometry.

From this result, we have our classification of space forms, which is one of the main results in Rie-

mannian geometry.

Theorem 8.11. Let (M, g) be a complete n-dimensional Riemannian manifold with constant sectional

curvature K ∈ {−1, 0, 1}. Then there exists a discrete group G acting freely and properly discontinuous

by isometries such that (M, g) is isometric to

� Sn/G if K = 1 ,

� Rn/G if K = 0 ,

� Hn/G if K = −1.

This result has many fascinating consequences which I encourage you to explore. One of these is the

following.

Proposition 8.12. Let (M, g) be a complete 2n-dimensional Riemannian manifold with constant sec-

tional curvature 1. Then (M, g) is isometric to S2n or RP2n with their standard Riemannian metrics.

Proof. We know that M is isometric to S2n/G where G acts freely and properly discontinuously by

isometries by Theorem 8.11. Hence G ⊆ O(2n + 1). Let x ∈ G and fx be the corresponding isometry.

Then det fx = ±1.

If det fx = 1 then fx has 1 as an eigenvalue because the eigenvalues (which may be complex) all

have modulus 1 as fx ∈ O(2n+ 1) and they cannot all be non-real because complex eigenvalues occur in

complex conjugate pairs and 2n + 1 is odd. Thus fx has a fixed point on S2n (corresponding to a unit

eigenvector p with eigenvalue 1, so fx(p) = p). But this contradicts the assumption that the action is

free unless fx = id, so this must be the case.

Suppose instead that det fx = −1. Then det(f2x) = 1 so f2x = id and hence fx = ± id.

Therefore either fx = id for all x ∈ G, so S2n/G = S2n, or there exists x ∈ G such that fx = − id

and all isometries are ± id, so S2n/G = RP2n.
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Example. Proposition 8.12 is definitely false in odd dimensions. For example, any cyclic subgroup Zk

for k ≥ 2 acts freely and properly discontinuous by isometries on S3 ⊆ R4 by setting

fx =


cos 2π

k − sin 2π
k 0 0

sin 2π
k cos 2π

k 0 0

0 0 cos 2π
k sin 2π

k

0 0 − sin 2π
k cos 2π

k


where x is a generator of Zk (so Zk = {e, x, x2, . . . , xk−1}). Then S3/Zk has a metric with constant

curvature 1 and is called a Lens space. There are also more complicated subgroups of O(4) that can

act on S3 in the appropriate way, such as the tetrahedral group (which is of order 24 and describes the

symmetries of a tetrahedron).

Example. If we look at compact orientable surfaces, then S2 has a metric with constant sectional

curvature 1 and T 2 ∼= R2/Z2 so has a flat metric (though this is not the induced metric on R3). Now it is

possible to realise every compact orientable surface of genus at least 2 as H2/G for some G acting freely

and properly discontinuously by isometries (by choosing an appropriate geodesic polygon in the Poincaré

disk for example and identifying sides), so every such surface has a hyperbolic metric (i.e. a metric with

constant sectional curvature −1).

The previous example hints at the fact there are very many groups G which can occur in the Hn/G

case. These hyperbolic manifolds are of significant interest and in the case of n = 3 are related to work

towards the resolution of the Poincaré Conjecture and Thurston’s Geometrization Conjecture.
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9 Second variation formula and applications

Recall that when we were discussing geodesics we derived the first variation formula for the energy of a

variation. We saw that geodesics corresponded to zeroes of the derivative of the energy (i.e. stationary

points) for proper variations. However, we know that geodesics are local minima, so the second derivative

at zero must be non-negative. This observation turns out to have very powerful consequence, resulting in

arguably the most satisfying and surprising theorems in the course. These results really show the power

of Riemannian Geometry as a way of imposing global topological conditions by specifying local curvature

constraints.

9.1 Second variation formula

We derive our key formula which has even wider applications than we have time to explore here.

Theorem 9.1 (Second Variation Formula). Let γ : [0, L] → (M, g) be a geodesic, let f : (−ϵ, ϵ)× [0, L] →
M be a variation of γ, let Vf be the variation field of f and let Ef be the energy of f . Then

1

2
E′′

f (0) = −
∫ L

0

g(V ′′
f +R(Vf , γ

′)γ′, Vf )dt

− g(∇ ∂f
∂s

∂f

∂s
(0, 0), γ′(0)) + g(∇ ∂f

∂s

∂f

∂s
(0, L), γ′(L))− g(Vf (0), V

′
f (0)) + g(Vf (L), V

′
f (L))

=

∫ L

0

g(V ′
f , V

′
f )−R(Vf , γ

′, γ′, Vf )dt− g(∇ ∂f
∂s

∂f

∂s
(0, 0), γ′(0)) + g(∇ ∂f

∂s

∂f

∂s
(0, L), γ′(L)).

Proof. Recall from the derivation of the First variation formula:

1

2
E′

f (s) = [g(
∂f

∂s
,
∂f

∂t
)]L0 −

∫ L

0

g(
∂f

∂s
,∇ ∂f

∂t

∂f

∂t
)dt.

Therefore

1

2
E′′

f (s) =[g(∇ ∂f
∂s

∂f

∂s
,
∂f

∂t
)]L0 + [g(

∂f

∂s
,∇ ∂f

∂s

∂f

∂t
)]L0

−
∫ L

0

g(∇ ∂f
∂s

∂f

∂s
,∇ ∂f

∂t

∂f

∂t
)dt−

∫ L

0

g(
∂f

∂s
,∇ ∂f

∂s
∇ ∂f

∂t

∂f

∂t
)dt. (‡)

At s = 0, ∂f
∂s = Vf ,

∂f
∂t = γ′ and ∇ ∂f

∂t

∂f
∂t = ∇γ′γ′ = 0. Thus the third term on the right-hand side of (‡)

is ∫ L

0

g(∇ ∂f
∂s

∂f

∂s
,∇ ∂f

∂t

∂f

∂t
)dt = 0.

For the fourth term in (‡), using Proposition 6.1, we calculate(
∇ ∂f

∂s
∇ ∂f

∂t
−∇ ∂f

∂t
∇ ∂f

∂s

) ∂f
∂t

= R(
∂f

∂s
,
∂f

∂t
)
∂f

∂t
.

Thus, at s = 0, we can use Lemma 3.11 to deduce that

∇ ∂f
∂s
∇ ∂f

∂t

∂f

∂t
= V ′′

f +R(Vf , γ
′)γ′.

For the first term in (‡) at s = 0 we see that:

[g(∇ ∂f
∂s

∂f

∂s
,
∂f

∂t
)]L0 = −g(∇ ∂f

∂s

∂f

∂s
(0, 0), γ′(0)) + g(∇ ∂f

∂s

∂f

∂s
(0, L), γ′(L)).

For the second term in (‡) at s = 0 we see that

[g(
∂f

∂s
,∇ ∂f

∂s

∂f

∂t
)]L0 = −g(Vf (0), V ′

f (0)) + g(Vf (L), V
′
f (L)).

Putting together all these observations yields the first line in the Second variation formula.

To deduce the second line we observe that

d

dt
g(V, V ′) = g(V, V ′′) + g(V ′, V ′).

Hence applying the Fundamental Theorem of Calculus gives the result.
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As for the First variation formula we are most interested in the case when f is a proper variation.

Corollary 9.2. Suppose that f is a proper variation in Theorem 9.1. Then

1

2
E′′

f (0) = −
∫ L

0

g(V ′′
f +R(Vf , γ

′)γ′, Vf )dt

=

∫ L

0

g(V ′
f , V

′
f )−R(Vf , γ

′, γ′, Vf )dt.

Proof. This is immediate from the definition of a proper variation (i.e. f(s, 0) = γ(0) and f(s, L) = γ(L)

for all s).

9.2 Bonnet–Myers Theorem

We now prove one of the nicest theorems in this Riemannian Geometry course.

Theorem 9.3 (Bonnet–Myers). Let (M, g) be complete and n-dimensional with Ric ≥ n−1
r2 > 0. Then

M is compact and diam(M) ≤ πr.

Remark. Here, we say that Ric ≥ δ if for all unit length tangent vectors X we have Ric(X,X) ≥ δ. We

denote the diameter of M as

diam(M) = sup{d(p, q) : p, q ∈M}

when this exists.

Proof. Let p, q ∈M . By Theorem 7.3, there exists a minimizing geodesic γ : [0, 1] →M from p to q.

It is enough to show that L(γ) ≤ πr (since then diam(M) ≤ πr which means that M is complete and

bounded so M is compact by Theorem 7.3). So, for a contradiction, suppose that L(γ) > πr.

There exist orthonormal parallel vector fields X1, . . . , Xn−1 along γ such that g(Xj , γ
′) = 0 for all j.

Define vector fields Vj along γ by Vj(t) = sin(πt)Xj(t). Then there exist proper variations fj of γ with

variation field Vj and energy Ej .

Let Xn = γ′/L(γ), which is a unit vector field orthogonal to X1, . . . , Xn−1. Corollary 9.2 and the fact

that Xj is parallel and unit length implies that

1

2
E′′

j (0) =

∫ L

0

−g(Vj , V ′′
j )−R(Vj , γ

′, γ′, Vj)dt

= −
∫ L

0

g(Xj(t) sin(πt),−π2Xj(t) sin(πt))− L(γ)2R(Xj , Xn, Xn, Xj) sin
2(πt)dt

=

∫ 1

0

sin2(πt)
(
π2 − L(γ)2K(Xn, Xj)

)
dt.

Therefore
1

2

n−1∑
j=1

E′′
j (0) =

∫ 1

0

sin2(πt)
(
(n− 1)π2 − L(γ)2 Ric(Xn, Xn)

)
dt < 0

since Ric(Xn, Xn) ≥ n−1
r2 and L(γ) > πr, so

L(γ)2 Ric(Xn, Xn) > π2r2
n− 1

r2
= (n− 1)π2.

Thus E′′
j (0) < 0 for some j, so γ is not a local minimum for the energy Ej , but this contradicts Lemma

3.18.

Remark. The sphere satisfies the critical case of Myers Theorem. In fact, if (M, g) is complete and

n-dimensional with Ric ≥ n−1
r2 then diam(M) = πr if and only if (M, g) isometric to a n-sphere of the

appropriate curvature.

We now provide some simple applications of Myers Theorem.
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Corollary 9.4. If (M, g) is complete with Ric ≥ δ > 0 then the universal cover M̃ is compact and the

fundamental group π1(M) is finite.

Proof. Endow M̃ with the covering metric g̃. Then the covering map π is a local isometry so M̃ is

complete with Ric ≥ δ > 0. Applying the Bonnet–Myers Theorem (Theorem 9.3) we see that M̃

compact. Therefore π−1(p) is finite for all p ∈M so π1(M) is finite.

Remark. It is important to note that for compact Riemannian manifolds (M, g), the statements that

Ric > 0 and that there exists δ > 0 such that Ric ≥ δ > 0 are equivalent. This is because the bundle of

unit tangent vectors over M is compact. For similar reasons, the statements that K > 0 and there exists

δ > 0 such that K ≥ δ > 0 are equivalent for compact Riemannian manifolds.

Remark. Corollary 9.4 shows that compact manifolds which admit metrics with positive Ricci curvature

have greatly constrained topology. In particular the n-torus Tn cannot admit a metric with Ric > 0. This

generalizes the result from Gauss–Bonnet that T 2 cannot admit a metric with positive Gauss curvature.

However, in contrast, it is known that every compact manifold of dimension n ≥ 3 admits a metric

with negative Ricci curvature Ric < 0.

Remark. In fact, the n-torus cannot admit a metric with positive scalar curvature S > 0. This is a

much more challenging result, which is related to the study of minimal hypersurfaces, and to the study

of spin geometry.

The general problem of which manifolds admit metrics of positive sectional/Ricci/scalar curvature is

of fundamental importance in modern Riemannian geometry, as well as in topology and mathematical

physics.

We conclude with a consequence of Bonnet–Myers for manifolds with positive sectional curvature.

Corollary 9.5. If (M, g) is complete with sectional curvature K ≥ 1
r2 then M is compact, diam(M) ≤ πr

and π1(M) is finite.

Proof. If K ≥ 1
r2 then Ric ≥ n−1

r2 . Applying Theorem 9.3 and Corollary 9.4 gives the result.

Remark. The paraboloid

{(x1, x2, x3) ∈ R3 : x3 = x21 + x22}

with its induced metric has positive sectional curvature and is complete but non-compact. So we cannot

replace K ≥ δ > 0 with K > 0 in Corollary 9.5, even though these statements are equivalent for compact

Riemannian manifolds.

9.3 Synge Theorem

We conclude the course with the following surprising result.

Theorem 9.6 (Synge). Let (M, g) be compact and n-dimensional with sectional curvature K > 0.

(a) If n is even and M is orientable then M is simply connected.

(b) If n is odd then M is orientable.

Example. RP2 is not orientable and not simply connected (as it is non-trivial quotient of S2 which is

simply connected) but has a positive sectional curvature metric, so we need orientable in Theorem 9.6(a)

and we need n odd in (b).

Example. RP3 is orientable and has a positive sectional curvature metric but it is not simply connected,

so we need n even in Theorem 9.6(a).

To prove Synge’s Theorem we apply the following more powerful result.
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Theorem 9.7 (Synge–Weinstein). If (M, g) is compact, oriented, n-dimensional and has sectional

curvature K > 0 and f :M →M is an isometry such that

det(dfp) = (−1)n for all p ∈M

(i.e. f is orientation preserving/reversing for n even/odd), then f has a fixed point.

Example. Notice that if we take the round n-sphere (Sn, g) then it is compact, oriented with positive

sectional curvature K = 1. The antipodal map f = − id is an isometry on (Sn, g) with no fixed points,

but notice that

det(dfp) = (−1)n+1

We therefore see the importance of the sign in the Synge–Weinstein Theorem.

Proof of Theorem 9.6 given Theorem 9.7.

(a) Endow the universal cover M̃ with the covering metric g̃. Since M is compact, (M, g) is complete

and there exists δ > 0 such that K ≥ δ. Since the covering map is a local isometry, (M̃, g̃) is

complete and K ≥ δ. The Bonnet–Myers Theorem then implies that M̃ is compact.

Let f be a covering transformation on M̃ . We can apply the Synge–Weinstein Theorem since f

is an orientation preserving isometry, so f has a fixed point. Since the covering transformations

act freely we conclude that f = id, so M is diffeomorphic to its universal cover and so is simply

connected.

(b) For a contradiction, suppose M is non-orientable. Then M , the oriented double cover of M , with

the covering metric is compact and has K ≥ δ > 0.

Let f ̸= id be a covering transformation on M . Since f is an orientation reversing isometry we

deduce from the Synge–Weinstein Theorem that f has a fixed point. Again f = id as it is a covering

transformation, which gives us our required contradiction.

Example. Since S2 (S2n) is compact and orientable with constant curvature 1 it must be simply

connected (as we know).

Example. T 2 (T 2n) is compact and orientable but not simply connected, and so cannot have a metric

with sectional curvature K > 0.

Proof of Theorem 9.7. For a contradiction suppose there is no fixed point of f and let p minimise the

function q 7→ d
(
q, f(q)

)
for q ∈ M . Since (M, g) is complete, Theorem 7.3 implies that there exists a

normalised minimizing geodesic γ : [0, L] → (M, g) from p to f(p).

The idea is to build a variation h of γ and then use the second variation formula to obtain a contra-

diction to the fact that γ minimizes the energy. A complication arises because we cannot build a proper

variation, so our variation has to be carefully chosen so that, in particular, the boundary terms in the

second variation formula vanish. We see that it will be useful to find a geodesic β starting at p which is

initially orthogonal to γ. This will then give us the direction in which to vary γ.

We start by letting τ−1
γ : Tf(p)M → TpM be parallel transport back along γ and let A = τ−1

γ ◦ dfp :

TpM → TpM , which is an isometry by assumption. We want to show that γ′(0) is a fixed point of A.

We calculate

A(γ′(0)) = (τ−1
γ ◦ dfp)(γ′(0)) = τ−1

γ ((f ◦ γ)′(0))

so, applying τγ to both sides, we see that A(γ′(0)) = γ′(0) if and only if (f ◦ γ)′(0) = γ′(L).

To show that (f ◦ γ)′(0) = γ′(L) we show that γ ∪ (f ◦ γ) is a geodesic so we must have that the final

velocity of γ and initial velocity of f ◦ γ agree. To do this, we let q = γ(t) for some t ∈ (0, L) and show
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that d(q, f(p) + d(f(p), f(q)) = d(q, f(q)), which shows that γ ∪ (f ◦ γ) is inded a geodesic. Using the

triangle inequality, the fact that f is an isometry, γ is a geodesic and the definition of p, we see that

d(q, f(q)) ≤ d(q, f(p)) + d(f(p), f(q)) = d(q, f(p)) + d(p, q) = d(p, f(p)) ≤ d(q, f(q)).

Therefore d(q, f(p)) + d(f(p), f(q)) = d(q, f(q)), so γ ∪ (f ◦ γ) is a geodesic as we wanted. We deduce

that γ′(L) = (f ◦ γ)′(0). Hence, γ′(0) is a fixed point of A.

Let B = A : ⟨γ′(0)⟩⊥ → ⟨γ′(0)⟩⊥. Then B is an orthogonal transformation and

detB = detA = det dfp = (−1)n.

We deduce that B has 1 as an eigenvalue (consider even and odd dimensions separately and the fact that

eigenvalues occur in complex conjugate pairs and real eigenvalues are ±1). Therefore, there exists a unit

parallel vector field X(t) along γ such that A(X(0) = B(X(0)) = X(0) and g(X(t), γ′(t)) = 0 for all t.

Notice that this means that dfp(X(0)) = X(L) since A = τ−1
γ ◦ dfp and X is parallel along γ.

There exists a unique geodesic β : (−ϵ, ϵ) → M such that β(0) = p and β′(0) = X(0). This is the

geodesic we want to use to build our variation. Moreover, observe that f ◦ β is a geodesic (since f is an

isometry) such that (f ◦ β)(0) = f(p) and (f ◦ β)′(0) = X(L). We therefore define a smooth variation of

γ by

h(s, t) = expγ(t)
(
sX(t)

)
.

Then h(s, 0) = β(s), h(s, L) = (f ◦ β)(s) and the variation field Vh(t) =
∂h
∂s (0, t) = X(t) so V ′

h = V ′′
h = 0.

Applying the general Second variation formula we see that all of the boundary terms vanish (as β and

f ◦ β are geodesics and V ′
h = 0) and the term involving V ′′

h vanishes, so the energy Eh satisfies

1

2
E′′

h(0) = −
∫ L

0

K(X(t), γ′(t))dt < 0.

Therefore E′
h(s) is decreasing near 0 so there exists a curve α in the variation such that E(α) < E(γ).

Therefore

L(α)2 ≤ LE(α) < LE(γ) = L(γ)2

(using Lemma 3.17). Now α(0) = q and α(L) = f(q) so d(q, f(q)) < d(p, f(p)), but this contradicts the

choice of p.

This concludes the course on Riemannian Geometry. There are many more beautiful results in the

subject, particularly involving the interaction of curvature and topology, such as the Sphere Theorem

mentioned at the beginning of the course, which we have not been able to cover here in the time. I

encourage you to read and learn more about this fantastic topic which is very much at the forefront of

current research.
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