A9: Statistics

Neil Laws

Hilary Term 2026 (version of 06-01-2026)

I plan to use some slides in lectures and the slides will be available separately, they are
not part of this document.

Sections 1-3 of these notes are based on material in previous notes written by Dan Lunn
and Simon Myers.

Please send any comments or corrections to: neil.laws@stats.ox.ac.uk.

HT 2026 updates:

None so far. If you spot any errors please let me know.
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1 Estimation

1.1 Starting point

Assume the random variable X belongs to a family of distributions indexed by a scalar
or vector parameter 6, where 6 takes values in some parameter space O, i.e. we have a
parametric famaily.

E.g. X ~ Poisson()). Then § = X € © = (0, 00).
E.g. X ~ N(p,0%). Then 6 = (u,0?) € © =R x (0,00).

Suppose we have data x = (z1,...,%,) (numerical values). We regard these data as the
observed values of iid random variables (RVs) X1, ..., X,, with the same distribution as
X. So X = (Xy,...,X,) is a random sample.

Having observed X = x, what can we infer/say about 67 E.g. we might wish to
e make a point estimate t(x) of the true value of ¢
e construct an interval estimate (a(x),b(x)) for 6 (a confidence interval)
e test a hypothesis about 0, e.g. test H : 8 = 0, do the data provide evidence against H?

The first two thirds of the course (approx) will consider the frequentist approach to ques-
tions like these. The last third will look at the Bayesian approach.

Notation

If X is a discrete RV, let f(x;0) = P(X = x) be the probability mass function (pmf)
of X.

If X is a continuous RV, let f(x;0) be the probability density function (pdf) of X.
That is, since the distribution of X depends on 6 we are writing the pmf/pdf as f(z;6).

Write f(x;0) for the joint pmf/pdf of X = (Xi,...,X,). Since the X; are assumed

independent we have
n

Fx;0) =[] f(zi;0).

i=1
Occasionally in this course the X; may not be iid, in which case f(x;6) will still denote
the joint pmf/pdf but may not have such a simple form.

Example 1.1 (discrete RV). Let X; ~ Poisson(#). Then

e 99"

f(x;0) =

forz=0,1,...
x!

and so

" o—0pTi e~ 02 T

i=1 ’

Example 1.2 (continuous RV). Let X; be “exponential with parameter (or rate) 6”, i.e.
the pdf is

f(x:0) = 0e % for z > 0.



Then
fx;0) =[] 0e " = 67027,
i=1

Note: E(X;) = 1/6. Sometimes we let 4 = 1/6 and talk about X; being “exponential with
mean p”, so with pdf

1
flayp) = ;e_x/“ for x > 0.

Note: to change the parameter from 6 to u, all we have to do is replace the constant 6 by
the constant 1/u in the pdf.

Example 1.3 (expectation/variance of sums of RVs). Let ay,...,ay, be constants. Recall
that:

(i)
n n
i=1 i=1
is true whether or not the X; are independent.

(ii) If the X; are independent, then

n

n
var < Z aiXZ) = a? var(X;).
=1

=1

Exercise. Suppose Xi,..., X, are iid with E(X;) = p and var(X;) = o2, As usual, let
X = L Z?:l Xz Show that E(X) = and VaI'(X) — UZ/TL.

Estimators

An estimator of 6 is any function #(X) that we might use to estimate 6. Note: the
function ¢ is not allowed to depend on 6.

The corresponding estimate is t(x).

An estimator ¢(X), which we can think of as a rule for constructing an estimate, is a

RV.

An estimate ¢(x) is just a number, the numerical value of the estimator for a particular
set of data.

The estimator T' = ¢(X) is said to be unbiased for 0 if E(T) = 6 for all 6.

Example 1.4. Suppose the X; are iid, with F(X;) = p and var(X;) = o2
(i) We might consider 7} = 2 - | X; = X as an estimator of .
Then T is unbiased for p since E(T1) = p.
(i) We might consider 7, = 2 3" | (X; — X)? as an estimator of 2.
Then T is biased for 02 since E(Ty) = “1o? < o2
In order to have an unbiased estimator, we usually use 5? = 13" | (X; — X)? as
an estimator of o2 (since E(S?) = -5 E(Ty) = o).



Likelihood
The likelihood for 6, based on x, is
L(0;x) = f(x;0)

where L is regarded as a function of 6, for a fixed x. We regard information about 6 as
being contained in L. The idea is that L will be larger for values of 6 near the true value
of 6 which generated the data.

We often write L(#) for L(f;x). The log-likelihood is ¢(f) = log L(#). Or we might
sometimes use £(0;x) = log L(#;x) if we want to include the dependence on x. Here
log = log, = In.

When the X; are iid from f(z;6) we have

n

L(6;x) = [ [ f(xi;0)

i=1
and e.g. when X1,..., X, id Poisson(f) this becomes
e—n@ezi z;

Here S means “are independent and identically distributed as”.

L(0) =

Maximum likelihood

The value of § which maximises L (or equivalently ¢) is denoted by 8(x), or just 8, and is
called the maximum likelihood estimate of 6.

~

The maximum likelihood estimator (MLE) is 6(X).

For the Poisson example:

00) = —nb + Z x;logf — log(H x;!)

0(0) = —n + Z@x

Sol'(0) =0 «<— 0= % = Z. This is a maximum since ¢’(6) = —% < 0.

So the MLE of § is § = X.
Exercise. Suppose Xi,..., X, Y Geometric(p) so that P(X; = x) = (1 — p)*~1p for
x=1,2,.... Let 6 =1/p.
Find (i) the MLE of 0, (ii) the MLE of p. Show that (i) is unbiased but that (ii) is biased.

Example 1.5. Suppose X1,..., X, s N(u,0?). So here we have a parameter vector 6 =

(u, ).

- 1 (z; — p)?
2y —
Hme) = iy V2mo? P { 20
1 n
_ 2\—n/2 ) 2
(2m0?) / exp [ By E (x; — ) ]



and
0(p,0?) = —Elog (2mo?) 557 Z

Differentiating,

1.2 Delta method

Suppose X1,...,X, are iid (but not necessarily normally distributed) with E(X;) = u
and var(X;) = o2.

Recall (from Prelims, more in Part A Probability) that, by the Central Limit Theorem
(CLT),
X—up
—F— ~ N(0,1
N (0,1)
D
for large n, with this approximation becoming exact in the limit n — co. Here ~ means

“has approximately the same distribution as”.

We often need the asymptotic (i.e. large n) distribution of g(X), for some function g. E.g.
we may have 6=1 /X and we may want the large sample distribution of 0.

Taylor series expansion of g(X) about g(u) gives

9(X) = g(p) + (X — p)g' (). (1.1)

By the weak /strong law of large numbers we know that X approaches y as n — oo. Hence
we take the Taylor expansion of g(X) about g(u). The first term g(u) is a term of order 1,
it is just a constant independent of n. The next term is (X — u)g’(u): by the CLT the
X — p part is of order n='/2, and ¢/(u) is a constant, an order 1 term, so this whole term
is of order n='/2 — so is small compared to the initial g(u) term. Further terms in the
expansion will be smaller still and we omit them.

Taking the expectation, and the variance, of each side of (|L.1),

Elg(X)] ~ g(p) + ¢ (WE(X — p)] = g(n)

var[g(X)] & var[g (1) (X — p)] = ¢/ (1)* var(X) =

since F(X) = p and var(X) = o2/n.



Also using (1.1)), we see that g(X) is approximately normal (since it is a linear function

of X, and X is approximately normal), hence
D g/ I 252
o3) & (g0, ), (12)

We say that this is the asymptotic distribution of g(X), and we call g(u) the asymptotic
mean and ¢'(u)?0? /n the asymptotic variance.

The above process is known as the delta method.
Example 1.6. Suppose Xi,...,X,, are iid exponential with parameter A, so with pdf
f(z;A) = Xe ™% 2 > 0. Here p = E(X;) = 1/ and 0% = var(X;) = 1/\%.

Let g(X) = log(X). Then with g(u) = logu we have ¢’(u)? = 1/u? and the mean and
variance in (1.2]) are

1
9(n) =logp =log+ = —log A
2

N 1 o2 1 1

2|
=

Hence g(X) = log X 2 N(=1log(\),1/n).

The delta method is not restricted to functions of X. Suppose we have some estimator T,
and that we are interested in the estimator g(T). Let E(T) = pr and var(T) = 2. Then
Taylor series expansion of g(T") about g(ur) gives

9(T) = g(pr) + (T — pr)g (pr).-

So again taking expectations, and variances, we get E[g(T)] = g(pr) and var[g(T)] ~
¢ (ur)?c%, and if T is approximately normal then g(7) is also approximately normal.

An example where T is not X is where T is an order statistic — see the next section.

1.3 Order statistics

The order statistics of data x1,. .., x, are their values in increasing order, which we denote
W) ST S S T

The sample median is

T/ nt1 if n odd
(")
m =

: (ZL’(%) + x(g+1)) if n even

and % of the sample is less than the sample median.

Similarly the lower quartile has % of the sample is less than it, and the upper quartile
has % of the sample is less than it. The lower/upper quartiles can be defined in terms of

T(|n/a))> T(|n/4]+1); - - - » USIDG interpolation.

The inter-quartile range (IQR) is defined by

IQR = upper quartile — lower quartile.



SLIDES. Boxplot slides go here.

Definition. The rth order statistic of the random sample Xi,..., X, is the RV X,
where

is the ordered sample.

We now assume that the X; are from a continuous distribution so that X() < X <
-+ < X(p) with probability 1. So we have
Xy = min {X;}

X(2) = second smallest X;

X(n) = max {Xl}

1<i<n

The median (a RV) is
X( n+1) lf n Odd

% (X( ) + X(%+1)) if n even.

n
2

Distribution of X,

Now assume X1, ..., X, are iid continuous RVs, each having cdf F' and pdf f. How do we
find the distribution X,?

First we do the case r = n: the cdf of X, is

Fpy(7) = P(X(ny < 7)
=PX;<z,....,.X, <)
= P(X; <x)...P(X, <z) by independence
= F(z)" as each X; has cdf F.

Then, differentiating, the pdf of X, is
fay (@) = Flyy(x) = nF(2)"" f(x).
Next we do the case 7 = 1: the cdf of X(y) is

Foy(z) = P(X() < )
— 1 - P(X() > )
—1-P(Xy > ..., Xn > 1)
=1—-P(X;>2)...P(X, >x) by independence
=1-[1-F(2)]™

So the pdf of X(y) is

Joy (@) = Ffyy (@) = nl1 — F(2)]"" f(2).

The following theorem gives the general result.



Theorem 1.7. The pdf of X, is given by

n!

fo@) = Gy f @ L - F@) T ().

Proof. By induction. We have shown the result for » = 1 (and r = n) above, so assume
it is true at r.

For all r, the cdf F{,) of X(, is given by

F(T) (x) = P(X(T) < :L“) = Z <n>F(x)J[1 — F(x)]n*j

j=r J

i.e. the probability that at least r of the X; are < .

Hence
n T n—r
Fin(a) = Fesnf) = (1) oyt = o™
Differentiating,

foen(@) = for(@) = (1) oy 1= F@P 1 = nF (@)l (o)

= (n) F(z)"[1l — F(z)]" " Yn —r)f(z) using the inductive hypothesis
r

n!
— (r+1)—111 _ n—(r+1)
T o P T I F@) ()
so the result follows by induction. O

Heuristic method to find f,)
Divide (—o0,00) into 3 parts:
(—o0, ) the probability of X; being in this interval is F'(x)

[z, + 0x) the probability of X; being in this interval is approx f(z)dx
[x + dx, 00) the probability of X; being in this interval is approx 1 — F(x).

For X, to be in [z,z + dz) we need
r — 1 of the X; in (—o0, )

1 of the X; in [z, z + 0x)
n —r of the X in [z + dzx, 00).

Approx, this has probability

n!
(r—1!11(n—r)!

F(x)' ™ f(x)dz - [1 - F(a)]" "

Omitting the dx gives the density f(,y(z) (i.e. divide by dz and let éx — 0).



1.4 Q-Q plots

Q-Q plot is short for “quantile-quantile plot.” Q-Q plots are sometimes called probability
plots. A Q-Q plot can be used to examine if it is plausible, i.e. if it is reasonable to assume,
that a set of data comes from a certain distribution.

For a distribution with c¢df F' and pdf f, the pth quantile (where 0 < p < 1) is the value
xp such that

[ rwdu=y.

So z, = F~Y(p). The name “Q-Q plot” comes from the fact that the plot compares
quantile values.

Lemma 1.8. Suppose X is a continuous RV taking values in (a,b), with strictly increasing
cdf F(z) for x € (a,b). Let Y = F(X). ThenY ~U(0,1).
[Proof: Prelims/a question on Sheet 1.]

The transformation F'(X), sometimes written Fx(X) to emphasise that F, is the cdf of
X, is called the probability integral transform of X.

Let U ~ U(0,1). We can write the result of the lemma as
F(X)~U. (1.3)

In (1.3), ~ means “has the same distribution as”. Applying F~! to both sides of (I.3),

we obtain

X ~ F7HU).
Lemma 1.9. If Upyy,..., Uy, are the order statistics of a random sample of size n from
a U(0,1) distribution, then
r
) E(Ugy) =
(i) E(Ugy) T
r r
/i Up)=———=1——).
(i) var(Ugr)) (n+1)(n+2) ( n -+ 1>
[Proof: a question on Sheet 1.]
Note that var(U,)) = %Hpr(l — pr) where p, = 15 € [0,1]. We know that p(1 —p) is
maximised over p € [0,1] at p = %, and hence var(U,) < %H . % . % So this variance is
of order n~! at most.
The question we are interested in is: is it reasonable to assume that data x1,...,T, are a

random sample from F ¢
. iid
By Lemma we can generate a random sample from F' by first taking Uy,...,U, ~
U(0,1), and then setting
X, =F YU, k=1,...,n.

The order statistics are then Xy = Ffl(U(k)), k=1,...,n.

10



If F' is indeed a reasonable distribution to assume for data x1, ..., z,, then we expect x )
to be fairly close to E(X)). Now
E(X) = E[F~ (U))]
~ F"Y(E[Ug,)]) by the delta method
=F'(k/(n+1)) by Lemma [L.9(i).

In using the delta method here we are using the fact, from Lemma (ii), that var(Uy,)
is small when n is large, so the delta method approximation is fairly good provided n is
fairly large.

So we expect k) to be fairly close to F~1(k/(n+1)).

In a Q-Q plot we plot the values of z(;) against F~Yk/(n+1)), for k =1,...,n. So,
roughly, a Q-Q plot is a plot of observed values of RVs (z()) against their expectations
(F~1(k/(n+1))).

If the plotted points are a good approximation to the line y = = then it is reasonable to
assume the data are a random sample from F'.

Note: usually (as above) the data z() are on the vertical axis; but occasionally the
F~Y(k/(n 4 1)) values are plotted on the vertical axis against x(; on the horizontal
axis.

SLIDES. Comparing N(0, 1) and ¢ distribution slides go here.

In practice F usually depends on an unknown parameter 6, so F' and F~! are unknown.
How do we handle this?

The starting point for all of the following Q-Q plots is the approximation we have obtained
above, written in the form

k
F ~
(x(k)) n+1
where we are assuming that Xy, ..., X, are iid from F.
Normal Q-Q plot
If data @1, ..., 2, are from a N(u,0?) distribution, for some unknown p and o2, then we
expect, roughly,
k
F N —— 1.4
(o) ~ —~ (14)

where F is the cdf of N(u,0?). Now if Y ~ N(u,0?) then

F(y)ZP(ng):p<Y—M<y—u>:(I)<y_u>

g g g

where @ is the cdf of N(0,1). So (1.4)) is
@(m(k) —,u) ~ b .
o n+1

k
~od ! .
HONN <n+1) T

So we can plot x(;) against @‘1(%), k = 1,...,n, and see if the points lie on an

approximate straight line (with gradient o, intercept u).

Hence

11



SLIDES. Normal Q-Q plot slides go here.

Exponential Q-Q plot

The exponential distrbution with mean p has cdf F(z) = 1 — e ®/# z > 0. If data
x1,..., 2y have this distribution (with g unknown) then we expect, roughly,

k

F(x(k)) ~ n+1

with F' as above. So

k
n+1

1 — e E®/H

hence

k
~—plog (1— ——).
Tk “Og< n+1>

So we can plot ;) against —log(1 — NLH) and see if the points lie on an approximate
straight line (with gradient u, intercept 0).

Pareto Q-Q plot
The Pareto distribution has cdf

0 if x <«
F(z) =
() {1 (%)9 ifz>a

with parameters a,0 > 0. If data z1,...,x, have this distribution (with «,f unknown)
then we expect, roughly,
k
F ~
(x(k)) n+1

with F' as above. So

hence

1 k
1 ~ 1 — =1 1-— .
ogx(k) og « 9 0g< n+1>
So we can plot log z(;) against — log(1 — niﬂ) and see if the points lie on an approximate
straight line (with gradient 1/, intercept log «).

SLIDES. Danish fire data slides go here.

1.5 Multivariate normal distribution

We don’t need to know much about the multiarite normal distribution — an intutive picture
as in the bivariate example below is enough to start with. See also Part A Probability.
The reason for including it here is that the asymptotic distribution of the MLE 6(X)
in Section is multivariate normal if 6 is a vector (and is univariate normal if 6 is a

scalar).

The univariate normal distribution has two parameters, 1 and 2. In the multivariate
case, v and o2 are replaced by a vector g and a matrix X.

12



First let Z = (Z1, ..., 2,) where Zi,...,Z, "5 N(0,1). Then the pdf of Z is

e —H e (- 5%)
— e (- 52)

In this case we will write Z ~ N (0, I) where it is understood that 0 is a p-vector of zeroes
and [ is the p x p identity matrix.

Now let p be a p-vector and ¥ a p x p symmetric, positive definite matrix, and let |X|
denote the determinant of ¥. We say that X = (X1,...,X,) has a multivariate normal
(MVN) distribution with mean vector p and covariance matriz 3, written X ~ N(u,Y),
if its pdf is

B S Ll Ty—liy

e P 5 (X =) (x—p)|.

Observe that this pdf reduces to the N(0,I) pdf above when we substitute = 0 and
=1

fx) =

If X ~ N(p,>), then
o B(Xj) = u
e var(X;) =3, and cov(X;, X;) = Eji
e if a is any non-random p-vector, then a’ X ~ N(a”pu,a’%a).
We simply state these properties without proof.
Taking a = (0,...,1,...,0), with the 1 being in the jth place, the third result gives us
that the marginal distribution of X is X; ~ N(u;,%;5).

Example 1.10 (Bivariate normal distribution). Suppose p = 2. Let —1 < p < 1 and

) = 0)

On substituting this g and ¥ into the MVN pdf above, we find that the pdf of (X7, X3) is

1 —1
flxy,x2) = exp <2(1 (a:% — 2px1T9 + x%)), r1,T9 € R.

211/1 — p2 —p?)

Here, the marginal distribution of X is N(0,1), and similarly X5 ~ N(0, 1). The quantity
p is the correlation between X; and Xo:

X1, X
corr(X1, Xo) = cov( Xy, Xo) =p
V/var(X7) var(Xa2)

Also, X; and X5 are independent if and only if p = 0.

SLIDES. Bivariate normal slide goes here.

13



1.6 Information

Definition. In a model with scalar parameter § and log-likelihood ¢(f), the observed
information J(0) is defined by

d?¢

¥R

When 6 = (61, ...,0,) the observed information matriz is a p x p matrix J(#) whose (j, k)
element is

J(6) = -

0%t

J(0)jk = ~ 90,0,

This matrix is symmetric.

Example 1.11. Suppose X1,..., X, g Poisson(f). Then we have
n o —Opx; —nbp>.. x;
- e "0 e g2
likelihood L(6) = H1 o= Lo
log-likelihood  4(6) = —nf + Z x;logf — log(H x;!)

L) Ym
agz 62

observed information J(6) =

Suppose we expand £(#) in a Taylor series about 0:

~ ~ ~

00) = £(0) + (0 —6){'(0) + %(9 —0)20" ().

~

Assuming ¢'(6) = 0 we have
1 PO
0(0) ~ £(0) = 5(0 - 0)%J(6). (1.5)

The larger J (5) is, the more concentrated ¢(6) is about 6 and the more information we

have about §. Note that J(6) is a function of # and in the quadratic approximation (1.5)),
J is evaluated at 6 = 0.

log—likelihood

theta

Figure 1.1. (Following Davison p102): the log-likelihood for an exponential with § = 7 = e~ !;
the curvature increases with n.

14



Before conducting an experiment we have no data so we cannot evaluate J(#). But we

can find its expected value.

Definition. In a model with scalar parameter 6, the expected or Fisher information is

defined by
d*e

When 6 = (01,...,0,) the expected or Fisher information matriz is a p x p matrix I(6)

whose (7, k) element is
0%0(0) )

[O)n = E( 00,00,

This matrix is symmetric.

Note:

(i) When calculating I(6) we treat ¢ as ¢(0;X) and take expectations over X (see the
example below), e.g. in the scalar case

10y~ 5[ - £10.0)

where the expectation is over X.

(i) If Xy,...,X,, are iid from f(x;0) then I(0) = n x i(f) where () is the expected

information in a sample of size 1. That is, in the scalar case,

06;X) =log | [[ £(X5:0) | =) log f(X;;6)
j=1 j=1
and so
—~ [ d’log f(X;;0)

1(0) :;E< d92> =n x i(0)

where
2 .
um:E(—dhﬁﬁf“m)

Example 1.12. Suppose X1,...,X, ig exponential with pdf f(z;0) = ée*x/a, x = 0.
Note E(X;) = 6.

We have
L(0) = [[ 2™/ = e~ T/t
0 on
(0) = —nlogh — E;i
d%e() no 2> x
T == =+ g

15



To find I(0) we treat J(0) as a function of X (rather than x), i.e. treat it as J(#;X), and
then take expectations. So

1(0):E<—02+ e )
n 2 &
:—§+9—SZE(X)
S 0 since B(X;) =0
= 92 en since i) =
n
T2

Example 1.13. Let X4,..., X, g N(u,0?). So we have a vector of parameters § =

(1, 02).

n

L(u,0) = (2m0%) "2 exp [— L3 - m?]
20%
O(p,0?) = ——log (2mo?) ~ 5.2 Z
Differentiating,
02( n
VO =-0g=2
02/
{J(0)}22 (02)2 = o6 Z
02/
{7(0)h2 = 6,ua 02 ot Z
So

2 n
(10 = B~ 520 ) = g+ 2 S Bl -

n 1 n 1 n
= 351 + Envar(Xi) = —— 2=

0= 2 - 5 ) = 53 B

and so
2

1.7 Properties of MLEs

MLEs are intuitively appealing and have good properties. For example, subject to certain

regularity conditions,

16



e we’ll see shortly that

g N0, 1)) (1.6)

where this is an asymptotic distribution, i.e. a good approx for large n

e the asymptotic distribution (|1.6]) is centered at 0, i.e. 0 is “asymptotically unbiased”

e 05 0asn— o0, i.e. we have convergence in probability to the true parameter value
6 (we won’t prove this)

e the asymptotic variance in (1.6]) is as small as possible (for an unbiased estimator,
see the SB2.1 course in Part B).

The above 8 5 0 as n — oo is the consistency property of MLEs. A sequence of estimators
T,, n > 1, of a scalar parameter 6 is called consistent if, for all 6 (i.e. whatever the true
value of 6), we have that T,, converges in probability to 6 as n — co. So estimators that
are not MLEs can also be consistent.

Invariance property of MLEs
MLESs also have an invariance property.
Example 1.14. Suppose Xq,...,X, i Poisson(f). We may want to estimate ¢ =

P(X; =0)
= ¢~ % What is the MLE of 1?

More generally suppose we would like to estimate 1) = g(f) where g is a 1-1 function.
What is the MLE of 4?7

In terms of 1 the likelihood L*(v)) is given by

L) = [ [ flass g™ (¥))

i=1

= L(g~(¥))-

So
sup L*() = sup L(g ™" ()
(4 (4
= sup L(6)

6

and the maximum of L*(¢) is attained at the ¢ such that g~'(¢) = 9, ie at v = g(f).
That is: ¢ = g(0).

This is known as the invariance property of MLEs. It holds for all g, not just for 1-1
functions.

Example 1.15 (answer). We previously found that 9 = 7. So the invariance property

tells us immediately that 1 = e=¢ = ¢~ 2,
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Iterative calculation of 5

Often, but not always, 0 satisfies the likelihood equation

%(5) = 0. (1.7)

We often have to solve (1.7)) numerically. One way is using Newton—Raphson.

Suppose 0 is an initial guess for 9. Then

dl ~ dl ~ d*¢
— 2500) ~ 2= (90 _ oo "= p(0)
Rearranging,
0
7m0 4 U(6)

where U(0) = % is called the score function.

So we can start at (9 and iterate to find §using
o+ — 9™ 4 g0 U (™), n>o0. (1.8)

An alternative is to replace J(8(™) by I()) and this is known as “Fisher scoring”.

The above is for a scalar parameter 0. It extends straightforwardly when 6 is the vec-
tor 6 = (61,...,6p): the iterative formula is still (1.8), though in this case J(6) is
the Fisher information matriz defined earlier and U(€) is the score wvector defined by

UO) = (... o).

Asymptotic normality of )

~

First let 6 be a scalar and consider the MLE 6§ = 0(X), a RV. Subject to regularity
conditions,

{1(0)}%0 - 0) B N(0,1)

as sample size n — oo. Note that on the LHS, both I(6) and 6 depend on n. Here et
means “converges in distribution”.

So for large n we have
GR N(,1(0)7). (1.9)

The approximation (|1.9]) also holds when 6 is a vector, we just need to remember that we
have a MVN with mean vector  and covariance matrix I(#)~!.

In our sketch proof of asymptotic normality we use Slutsky’s theorem (we state this the-

orem without proof). The notation L denotes convergence in probability.

Theorem 1.16 (Slutsky’s theorem). Suppose X, B X and Y. Bocasn— oo, where ¢
is constant. Then (i) X, + Y, B x+ ¢, (1) XnYn et cX, (i) Xn/Yy =t X/cif ¢ #0.

Sketch proof of asymptotic normality (6 scalar). Assume 9 solves

e ~
=0 =o.
25(0) =0

18



Then

So

~ 1/2
(1O)}2(5 - 0) ~ (1(0)}"? g((g)) - U(?(/g{)%g(;}) . (1.10)

First consider the numerator in (1.10): U(#) = g—g and £(0) = >"1_, log f(X;;0), so

n

U(®) =3 Uy(0)

Jj=1

where U;(0) = 4 log f(X;;6) are iid for j = 1,...,n.

Now 1 = ffooo f(x;0)dx. This integral, and the ones below, are all over the interval
(—00,00). So differentiating once wrt 6, and then again,
df d
- | =2 - -1 1.11
0 /dedx /<d9 ogf>fdx (1.11)

d? d 2
0:/<d9210gf>fd$+/<delogf> fdx. (1.12)

From (L.11)), 0 = E(U;).
From (1.12)), 0 = —i(0) + E(UJQ)

Hence

E(U)=0
var(U) = Y _ var(Uy) = ni(6) = I(6).
j=1

So, applying the CLT to the sum U = 2?21 Uj,

(o S U
{1 (0()})1/2 - {Var(Z’flUj)}l/Q B N(0,1) asn oo, (1.13)

Next consider the denominator in (1.10): let Y; = % log f(X;;0) and py = E(Y;). Then

JO) X0 _ Y

I00) — npy  opy

By the weak law of large numbers (Prelims/Part A Probability), Y converges in probability
to py as m — oo, written Y A ty . Hence

J(0)

P
7(6) 1 asn— oo. (1.14)

Putting (1.10)), (1.13) and (1.14) together using Slutsky’s theorem (part (iii)), we have

{I(0)}2(6 - 6) B N(0,1) asn — . O
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The regularity conditions required for the proof include:
e the true value of # is in the interior of the parameter space ©
e the MLE is given by the solution of the likelihood equation
e we can differentiate sufficiently often wrt
e we can interchange differentiation wrt # and integration over .

This means that cases where the set {z : f(x;0) > 0} depends on 6 are excluded. E.g.
the result does not apply to the uniform U (0, #) distribution since the range 0 < z < 6 on
which f > 0 depends on 6.
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2 Confidence Intervals

Introduction
We start with a recap, some of it brief, from Prelims.

Any estimate, maybe a maximum likelihood estimate 0 = (/9\(x), is a point estimate, i.e.
just a number. We would like to assess how accurate/precise such an estimate is.

Definition. Let 0 < a < 1. The random interval (a(X),b(X)) is called a 100(1 — a)%
confidence interval (CI) for 0 if

P(a(X) <0 <b(X))=1-a.

Note: a(X) and b(X) are not allowed to depend on 6.
We also call (a(X),b(X)) a CI with confidence level 1 — a.

The random interval (a(X),b(X)) is an interval estimator. The corresponding interval
estimate is (a(x),b(x)), which is a numerical interval — it is just the numerical interval for
a particular set of data.

In words: the interval (a(X),b(X)) traps 6 with probability 1 — a.
Warning: the interval (a(X), b(X)) is random and 0 is fized.
Most commonly people use 95% confidence intervals, i.e. a = 0.05.

Interpretation: if we repeat an experiment many times, and construct a CI each time,
then (approx) 95% of our intervals will contain the true value 6 (i.e. we imagine “repeated
sampling”).

Notation: for a € (0,1) let z4 be such that P(N(0,1) > z,) = «, i.e. 1 — ®(z,) = o and
80 24 = @711 — ).

Example 2.1. Suppose Xq,...,X, i N(p,08), where p is unknown and o3 is known.

Then
~ 00 = g0
(X — za/2777 X + Za/z\/ﬁ>

isal— a CI for u. Write this interval as (Y + za/g%).
Why is this a 1 — o CI? First, recall that if X1, ..., X,, are independent, X; ~ N(u;,0?),
and aq,...,a, are constants, then

n

n n
Z%‘Xi ~ N(Z a; i, Za?a?). (2.1)
i=1 i=1

=1

P 2
In our example X; ~ N(u,03), and using (2.1)) we obtain X ~ N(u, 22). Standardising,

X —p
oo//n

~ N(0,1).

Hence

X —pu B
P<—za/2<W<za/2>—1—a
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and after rearranging the inequalities we get

00

_ — 00
P<X—Za/2\/ﬁ<M<X+Za/2\/ﬁ> =1-a.

Hence our Clis (X + zy %) This is a central (equal tail) CI for p.

One-sided confidence limits

With the setup of the example above, we have

P(ji/_\/%>—za>:1—a

P<u<X+za\(;%> =l—-a

and so ( — 00, X + za%) is a “one-sided” CI, and X + za% is called an upper 1 — «

SO

confidence limit for p.

Similarly

P<,u>X—za =1—-a«a
x/ﬁ)

and X — Za is a lower 1 — « confidence limit for p.

2.1 ClIs using CLT

There were plenty of examples of finding Cls using the CLT in Prelims, e.g. opinion
polls.

SLIDES. Opinion poll slides go here.

2.2 ClIs using asymptotic distribution of MLE

For large n, we have \/1(8)(6 — 6) 2 N(0,1). Hence

P(—za/2< \/I(H)(§—9)<za/2> ~1—a. (2.2)

P<§— a2 g g to >%1—a
1(0) 1(0)

In general 1(6) depends on 6, so 6 + 222 are not suitable for a(X) and b(X).

VI(0)

Following the procedure developed in Prelims, we estimate I(6) by I(6) [or by J(#)] and

so obtain an approximate CI of
§+ ol (2.3)
1(9)1 /2

Rearranging,

[or alternatively (5 + Z”‘J/( % )]

—~

22



-~

[Why does replacing I(0) by I(0) work?

. . ~ P . . I(é\) 1/2 P
First, we are assuming § — 6 and that () is continuous, hence (m) — 1. (Results of
this type, but maybe not this exact one, are part of Part A Probability.) So we have

N\ 1/2
I10)V2(6 - 0) = (ﬁg;) x 1(0)/2(0 — 6)

where in the product on the RHS the first term is converging to 1 in probability and the
second term is converging to N(0,1) in distribution. Hence by Slutsky’s Theorem part
(ii) the LHS converges in distribution to 1 x N(0,1), i.e.

1020 - 0) B N(o,1). (2.4)

Result (2.4) tells us that (2.2)) holds with I(6) replaced by I (@) Then the same rearrange-
ment as that following (2.2)) leads to the CI (2.3)).]

Example 2.2. Let Xi,..., X, i Bernoulli(f). Then 6 =X and 1(0) = 0(129) and the
interval (2.3)) is (é\:lz Za /2 9(1n9)>.

Suppose n = 30, > z; = 5. Then the above formula gives a 99% interval of (—0.008, 0.342),
i.e. the interval contains negative values even though we know 6 > 0!

We can avoid negative values by reparametrising the problem as follows. Let ¢ = g(0) =
log &, so 1 is the “log odds”. Since 6 € (0,1) we have 1) € (—00,00), so using a normal

~D _
approx can’t produce impossible 1 values. Now 6§ ~ N (9, 9(1n 0)> and the delta method

gives

(2.5)

We can use ([2.5)) to find an approx 1—a CI for ¢, say (11,12), i.e. P(1 < ¥ < )2) = 1—a.
v

Then, since 8 = Tiev

P ewl 9 e’d}Z P 1
<1+61m< <1+e¢2>— (1 < <) =1—ou

This CI for 6 definitely won’t contain negative values.

2.3 Distributions related to N(0,1)

Definition. Let Z3,...,Z, EY N(0,1). We say that Y = Z2+- ..+ Z2 has the chi-squared

distribution with v degrees of freedom. Write Y ~ x2.
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It is not hard to show that a x? is the same distribution as the Gamma(, %) distribution,

with pdf
1

~ 27 20(r/2)

We won’t need this pdf — what is important is that a chi-squared distribution is a sum of
squared iid N(0,1)’s.

If Y ~ x2, then E(Y) =r and var(Y) = 2r.

r/271€fy/2

f(y) . y>0.

Y

If Vi ~ x2 and Y2 ~ x? are independent, then Y; 4+ Y2 ~ x2, .

SLIDES. Plot of x?-pdfs goes here.

Example 2.3. Let X1, ..., X, % N(0,02). Then % ~ N(0,1) and
>y X7 o2
= Xn-

Hence

n 2
P<01<M<02>:1—a

o2

where ¢, ¢y are such that P(x2 < ¢1) = P(x2 > ¢2) = . So
p >y X7 <o < > X7 —1—a
Co C1

and we’ve found a 1 — a CI for 02 (an exact interval).

Definition. Let Z ~ N(0,1) and Y ~ x? be independent. We say that
Z
VY/r
has a (Student) t-distribution with r degrees of freedom. Write T' ~ t,.
If T~ t,, then the pdf of T is

1

T

As with the x? distribution, we won’t need this pdf — what is important is the definition
of ¢, in terms of x2 and N(0,1).

As r — oo, we have t, 3 N(0,1).

SLIDES. Plot of t-pdfs goes here.
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2.4 Independence of X and S? for normal samples

Suppose X1,..., X, nm(ziN(M, 2,

Consider X = %Zi:l X;, the sample mean, and S? = Ll S (Xi — X)?, the sample
variance.

Theorem 2.4. X and S? are independent and their marginal distributions are given by
Y 0.2
(i) X ~N(p, %)
L (n=1)82
(i) 3~

Proof. Let Z; = (X; — p)/o,i=1,...,n. Then Zi, ..., Z, "> N(0,1), so have joint pdf

n

1
) = H *Z2/2 = (2m) e X2 e R (2.6)
i V2
We now consider a transformation of variables from Z = (Z1,...,Z,)T to Y = (Y1,...,Y,)T
(Part A Probability).
Let z= (21,...,22)7, ¥y = (Y1,...,yn)T, and let y = Az where A is an orthogonal n x n
matrix whose first row is (ﬁ, ce %)

[A orthogonal: AT A = I, where I is the n x n identity matrix.]

Since z = ATy, we have 0z;/0y; = aj; and hence the Jacobian is J = J(y1,...,yn) =
det(AT), hence |J| = 1. [Since 0z;/dy; = aj;, the Jacobian matrix of partial derivatives is
AT and so the Jacobian that we need is the determinant of this, i.e. J = det(AT). Then,
since AT A = I, taking determinants gives det(A)? = 1, and hence |J| = 1.]

We have . .
Z v =yly=2"ATAz =272 = Z 22. (2.7)
— .

Hence the pdf of Y is

9(y) = f(z(y)) - ||
:< ) n/2 291/2 1 usulg and\J\—l

Hence Y1,...,Y, li(}]\7(0 1).
Now
I —
Y1 = (firstrowof A)xZ=—=Y Zi=+/nZ
Vi
and then

n n

N(2-22=Y22nZ" = Zn:Yf —Y2= Zn:Yf.
=2

i=1 =1 =1

So we have shown that
e Y1,...,Y, are independent

e 7 is a function of Y; only
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e Y (Zi — Z)? is a function of Y3,...,Y, only
and hence Z and Y% | (Z; — Z)? are independent.

2

Therefore X and S? are independent since X =07 + p and S* = 2= 37" (Z; — Z)*.

Finally,
(i) [know this from Prelims] Y1 ~ N(0,1),s0 X =0Z + p = ﬁYl + p~ N(p, %2)
(i) B = (Zi - 2P = L Y~ O
So for Xi,...,X, i N(u,0?) we have, independently,
X —u (n —1)52 9
~ N(0,1 d ——~ . 2.
O'/\/ﬁ (O’ ) an 72 Xn—1 ( 8)

5'a _ 2
Using % as the N(0,1) and (n 012)5 as the x? in the definition of a t-distribution, we
obtain the important result that
X _

et

(since the unknown o in the numerator and denominator cancels).

(2.9)

Observe that estimating o by S takes us from the N (0, 1) distribution in (2.8)) to the ,_1
distribution in (2.9).

The quantity T defined by T = /\_f is called a pivotal quantity or pivot. In general, a
pivot is a function of X and the parameter 6 whose distribution does not depend on 6. In
the case of T, we have § = (11, 0%) and the distribution of T is t,,_1. In the example below
we use T to find a CI for x when o2 is unknown.

_ 2
We can get other exact Cls in similar ways. From part (ii) of the theorem, (n 012)5 is also
a pivot (with a x2_; distribution). We can use it to find CI for o2 (see Problem Sheet

2)

Example 2.5. Suppose Xi,...,X, i N(u,0?). Since % ~ tp_1 we have

P( tn1(2) < ‘W¢<ulﬂ®>:1—a

where t,_1(%) is the constant such that P(t,—1 > t,—1(%)) = .

Rearranging the inequalities,
— S — S
Pl X —t,1(5)— X+th1(§)— | =1-q.
(¥ -y << Tty ) =1
Hence (X + tn_l(%)%) isa 1l —a CI for p.
SLIDES. Sleep data slides go here.

26



3 Hypothesis Testing

3.1 Introductory example: t-test (Sleep data)

Consider the number of hours of sleep gained, given a low dose of the drug, by the 10
patients:
0.7, —-1.6, —0.2, —1.2, —-0.1, 3.4, 3.7, 0.8, 0.0, 2.0.

Do the data support the conclusion that (a low dose of) the drug makes people sleep more,
or not?

e We will start from the default position that the drug has no effect,

e and we will only reject this default position if the data contain “sufficient evidence”
for us to reject it.

So we would like to consider
(i) the “null hypothesis” that the drug has no effect, and
(ii) the “alternative hypothesis” that the drug makes people sleep more.
We will denote the “null hypothesis” by Hy, and the “alternative hypothesis” by H;.

Suppose Xi,..., X, x N(u,0?) with g and 0 unknown. (Recall from the sleep data

slides, end of Section that a normality assumption for the sleep data looked reason-
able).

We interpret Hy and H;p as follows:
e Hj says that “u = ug (and o2 is unknown)”

e M says that “u > uo (and o2 is unknown)”

where pg = 0 for the sleep data example, but g might be non-zero in other exam-
ples.
Let _
L — Ho
tobs = t(X) =

Cos/vn

The idea is that a small/moderate value of ¢, is consistent with Hy (here “small” includes
negative values of tqs). Whereas a very large value of 4,5 is not consistent with Hy and
points us towards H; — since x, and hence t,pg, will tend to be larger under Hy as p > po
under Hi.

For the sleep data, tops = 1.326. [T = 0.75, o = 0, s> = 3.2, n = 10.] Is this tgpe
large?
Let _
X — o
t(X) = .
X) = G
If Hy is true then ¢(X) ~ t,—1. So if Hy is true then the probability of observing a value
of t(X) of tops or more is

b= P(t(X) = tobs)
= P(ty > 1.326)
= 0.109.
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[The value of P(tg > 1.326) can be obtained using R by typing

1 - pt(1.326, 9)

ie. 1 — Fy(1.326), where Fy is the cdf of a tg distribution. Alternatively, from statistical
tables, P(tg < 1.383) = 0.9 and so P(tg > 1.326) is just a little more than 0.1. Knowing
that p is a bit more than 0.1 is accurate enough for us here.]

This value of p is called the p-value or significance level.

The value p = 0.109 is not particularly small. Assuming Hy is true, we’d observe a value of
t(X) of at least 1.326 over 10% of the time, which is not a particularly unlikely occurrence.
So we do not have much evidence to reject Hy, so we’ll retain Hy, our conclusion is that
the data are consistent with Hy being true.

We are really examining whether the data are consistent with Hy, or not. So usually we
speak in terms of “rejecting Hy” or “not rejecting Hy”, or of the data being “consistent with
Hy” or “not consistent with Hy” (rather than “accepting Hy” or “accepting H;”).

Wasserman (2005) puts it this way: “Hypothesis testing is like a legal trial. We assume
someone is innocent unless the evidence strongly suggests that [they are] guilty. Similarly,
we retain Hy unless there is strong evidence to reject Hy.”

The other half of the sleep data is the number of hours of sleep gained, by the same 10
patients, following a normal dose of the drug:

1.9, 0.8, 1.1, 0.1, —-0.1, 4.4, 5.5, 1.6, 4.6, 3.4.
Is there evidence that a normal dose of the drug makes people sleep more (than not taking
a drug at all), or not?
Consider the same assumptions about Xi,..., X, and the same Hy and H;.

This time we have B

tobs = % — 3.68.
[T =233, o =0, s =4.0, n = 10.]
If Hy is true, then the probability of observing a value of ¢(X) of 3.68 or more is

p = P(t(X) > 3.68)
= P(tg > 3.68)
= 0.0025.
This value of p is very small. Assuming Hj is true, we’d observe a value of ¢(X) of at least

3.68 only 0.25% of the time (i.e. a very rare event). We can conclude that there is strong
evidence to reject Hy in favour of the alternative hypothesis Hi.

How small is small for a p-value? We might say something like:

p < 0.01 very strong evidence against Hy
0.01 <p < 0.05 strong evidence against Hy

0.05 < p< 0.1 weak evidence against Hy
0.1<p litte or no evidence against Hy

[This table from Wasserman (2005).]
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One-sided and two-sided alternative hypotheses

The alternative hypothesis Hy : p > o is a one-sided alternative. The larger t.ps is, the
more evidence we have for rejecting Hp.

Consider testing Hg : u = po against Hy : p < pg. This alternative Hj is also one-sided,
and the p-value would be p = P(t,,—1 < tobs)-

A different type of alternative hypothesis is Hy : p # pg. This is a two-sided alternative.
If tops Was very large, i.e. very positive, then that would provide evidence to reject Hy.
Similarly if ¢, was very small, i.e. very negative, then that would also provide evidence
to reject Hy. Let

T — [o
s/\/n
The p-value for a test of Hy : 1 = po against the alternative Hy : p # po is the probability,
under Hy, that ¢(X) takes a value at least as extreme as tqps, i.€. the p-value is

tO - ‘tobs’ -

p = P([t(X)] = to)
= P(t(X) > to) + P(t(X) < —to)
= 2P(+(X) > to).

Note: this p-value, and the other p-values above, are all calculated under the assumption
that Hp is true. In future we will write things like p = P(t(X) > tons | Ho) or p =
P(|t(X)]| = to| Ho) to indicate this.

3.2 Tests for normally distributed samples

Example 3.1 (z-test). Suppose Xi,..., X, S N(u,0?), where p is unknown and where

o? = 08 is known.

Suppose we wish to test Hy : p = po against Hy : u > pp. Then we can use the test
statistic .
_ X —po

oo/vn

Z

If Hp is true then Z ~ N(0,1).

Let _
L — Ho

Zobs = ‘70/7\/77

A large value of z.ps casts doubt on the validity of Hy and indicates a departure from Hy
in the direction of H;. So the p-value for testing Hy against H; is

p = P(Z = zobs | Ho)
= P(N(0,1) > zobs)
=1— P(2ops)-

The z-test of Hy : u = po against Hi : u < o is similar but this time a small, i.e. very
negative, value of zps casts doubt on Hy (in the direction of Hi). So the p-value is

P = P(Z < zons | Ho)
P(N(Oa 1) < Zobs)
)

(Zobs)-
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Finally, consider testing Hy : i = uo against H{ : u # po. Let zo = |zobs|- A large value
of 2o indicates a departure from Hj (in the direction of H{'), so the p-value is

p" = P(|Z] = 2| Ho)
— P(N(0,1) > z0) + P(N(0,1) < —2)
= 2(1 — ®(20))-

Example 3.2 (t-test). This example is really a repeat of Section But it is included
to show the similarities with the previous example (z-test). The setup is as for the z-test
except that here o2 is unknown, the test statistic 7 below replaces Z, and the cdf of a
t,_1 distribution replaces ®.

Suppose X1, ..., X, id N (u,0?) and assume both p and o2 are unknown. Consider testing
Hy : 1 = po (and o2 unknown) against three possible alternatives:

(i) Hy:p> po (and o unknown)

(ii) H]:p < po (and o? unknown)

(iii) HY : p # po (and o unknown).

We can use the test statistic o
X —po

T="

If Hy is true then T ~ ¢,,_1.

Let tops = t(x) = f;\’/‘% and tg = |tobs|. Then, as in Section

(i) for the test of Hy against Hy, the p-value is P(t,—1 > tops)

(ii) for the test of Hy against Hj, the p-value is P(tp—1 < tops)
iii) for the test of Hy against H{, the p-value is 2P(t,_1 > tg).
1

SLIDES. Slides on normal tests go here.

3.3 Hypothesis testing and confidence intervals
SLIDES. Slide on hypothesis testing and confidence intervals goes here.

The maize data example suggests a connection between hypothesis testing and confidence
intervals: the connection appears to be that the p-value of a test of Hy : i = ug being less
than « is equivalent to the corresponding 100(1 — )% confidence interval not containing

Ho-

We will illustrate the connection with a proof of this in one particular case.

Example 3.3. Suppose X1i,..., X, is a random sample from N (u,c?), where both x and

o2 are unknown.

We have already seen that:
(i) a 100(1 — )% confidence interval for u is given by

<:c + \jﬁtnl(a/Q)) (3.1)
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(ii) for the t-test of u = uo against p # po, the p-value is p = P(|t,—1| > to), where
to = ]?;\’/‘%\

So

p<a <= tyg>th_1(a/2)

= i/_\/l%o > tp—1(/2) or g;/_\/%o < —tp—1(a/2)
= uo<f—i (a/2) or M0>T+i (a/2).

tn— ty—

That is, p < « if and only if the CI (3.1)) does not contain py.

3.4 Hypothesis testing general setup

Let X1,...,X, be a random sample from f(x;6) where 6 € O is a scalar or vector param-
eter.

Suppose we are interested in testing
e the null hypothesis Hy : 0 € O
e against the alternative hypothesis Hy : 0 € Oy
where ©g N ©1 = () and possibly but not necessarily ©¢g U ©1 = ©.

Suppose we can construct a test statistic t(X) such that large values of ¢(X) cast doubt
on the validity of Hy and indicate a departure from Hy in the direction of Hi. Let
tobs = t(x), the value of ¢(X) actually observed. Then the p-value or significance level is
p = P(t(X) 2 tons | Ho).

Note: p is calculated under the assumption that Hy is true. We write P(... | Hp) to
indicate this.

A small value of p corresponds to a value of t.s unlikely to arise under Hy and is an
indicator that Hy and the data x are inconsistent.

Warning: The p-value is NOT the probability that Hg is true. Rather: assuming Hj is
true, it is the probability of ¢(X) taking a value at least as extreme as the value ¢4, that
we actually observed.

A hypothesis which completely determines f is called simple, e.g. 8 = 6y. Otherwise a
hypothesis is called composite, e.g. 8 > 0y or 0 £ 6. Here “completely determines” means
a hypothesis corresponds to a single function f, not a family of such functions. So e.g.
saying that something is an “exponential distribution” does not completely determine f,
it only determines the family to which f belongs, there are infinitely many members of
that family, one for each parameter value 6 € (0, 00).

Example 3.4. Let X1,..., X, ig N(u,0?) with g and o2 both unknown, so 6 = (u, 0?).
Then Hy : pu = po is a composite hypothesis because it corresponds to ©g = {(u,0?) : p =
o, 02 > 0} and this set contains more than one value of 6.

In a case like this o2 is called a nuisance parameter.

Suppose we want to make a definite decision: i.e. either reject Hy, or don’t reject Hy.
Then we can define our test in terms of a critical region C C R™ such that:
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e if x € C then we reject Hy

e if x ¢ C then we don’t reject Hy.

Errors in hypothesis testing
There are two possible types of error:
e type I error: rejecting Hy when Hy is true

e type II error: not rejecting Hy when Hy is false.

don’t reject Hy  reject Hy

Hy true v type I error
Hj false  type II error v

Here, v means “correct decision made”.

First, consider testing the simple Hy : § = 6y against the simple H; : § = #; in the case
where © = {6y, 61}.

The type I error probability «, also called the size of the test, is defined by

a = P(reject Hy | Hy true)
= P(X eC ‘ (90).

The type II error probability B is defined by

B = P(don’t reject Hy | Hy false)
=P(X¢C|6)
and 1 — 8 = P(reject Hy| Hy false) is called the power of the test.

Note: power = 1 — = P(X € C'|6;) which is the probability of correctly detecting that
Hy is false.

Now more generally, i.e. © more general than © = {6y, 0, }:

If Hy is composite, Hy : 6 € ©g say, then we define the size of the test by

a=sup P(XeC|6).
UASISH)

If H; is composite then we have to define the power as a function of 8: the power func-
tion w(0) is defined by

w(f) = P(reject Hy| 0 is the true value)
=P(XeC|0).

Ideally, we’d like w(#) to be near 1 for Hi-values of 6 (i.e. for # € ©;) and to be near 0
for Hp-values of 6 (i.e. for 0 € Q).

Warning: A large p-value is not strong evidence in favour of Hy. A large p-value can occur
for two reasons: (i) Hy is true or (ii) Hy is false but the test has low power.
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3.5 The Neyman—Pearson lemma

Consider testing a simple null hypothesis against a simple alternative:
Hy:0=0p against Hp:0=06;. ()

Suppose we choose a small type I error probability « (e.g. & = 0.05). Then among tests of
this size we could aim to minimise the type II error probability 3, i.e. maximise the power
1 — 5. Note that if we do this, as in the Neyman—Pearson lemma below, then Hy and H;
are treated asymmetrically.

Theorem 3.5 (Neyman-Pearson lemma). Let L(0;x) be the likelihood. Define the critical
region C by
L(@o; X)
C = : <k
{X L(61:%) }

and suppose the constants k and o are such that P(X € C'| Hy) = «. Then among all
tests of (x) of size < a, the test with critical region C' has mazimum power.

Equivalently: the test with critical region C' minimises the probability of a type II er-
ror.

Proof. [Proof below for continuous RVs, for discrete RVs replace [ by Y]
Consider any test of size < «, with a critical region A say. Then we have

P(X € A| Hy) < av. (3.2)

The critical region C is one possible A. Define

Pa(x) =

0 otherwise

{1 ifxeAd

and let C and k be as in the statement of the theorem. Then

0 < {do(x) = da(x) }[L(01;x) — 1L(00;x)]
since {...} and [...] are both > 0 if x € C, and both < 0if x ¢ C.

<
[That is, if x € C, then ¢po(x) — pa(x) = 1 — ¢pa(x) = 0, and L(61;x) — +L(0p;x) > 0
from the definition of C. Similarly, if x € C, then ¢c(x) — pa(x) = —¢pa(x) < 0, and
L(01;x) — 1 L(60;x) < 0 from the definition of C']

So

/ {¢C )} [L<91§X) - %L(Qo;x)] dx
— P(X eC|H) - P(XeA|lH)
—E[P(X€C|Ho)—P(X€A|H0)]. (3.3)

Now P(X € C'| Hy) = o, 80 [...] in (3.3) is > 0 by (3.2)). Hence
0§P(X€C‘H1)—P(X€A‘Hl).

Thus P(X € C'|Hy) > P(X € A|H;), i.e. the power of the test is maximised by using
critical region C. O
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The test given by the NP lemma is the most powerful test of (x). Its critical region C is
called the most powerful critical region or best critical region.

Example 3.6. Suppose X1,..., X, is a random sample from N (u, J%) where 08 is known.
Find the most powerful test of size a of Hy : p = 0 against Hy : u = p1, where 3 > 0.

Note: H; is the hypothesis that u takes one particular value — the value uy. Also, we are
assuming that o2 = 08 is known. So H; is a simple hypothesis and the NP lemma applies.

For a general value of u, the likelihood is
1
L) = (2rof) ™ exp | = 5 (s~ ).
0

Step 1: by the NP lemma, the most powerful test is of the form

L(0;x)
00 <k
L{px) =

where k; is a constant (i.e. does not depend on x). Now

reject Hy <—

L(0;x) 2
——= <k i~ <k
L(n:x) 1 <= exp[ Z ]GXP[ Z(ﬂﬁ Nl)} 1
<— exp[ ( Z:p +Zx —QMIZ%‘F”M)] <Kk
1
= 5 2( 2unT + np?) < ko
— —uT < k3
<— T =>cC

where ki, ko, k3, c are constants that don’t depend on x — all that matters is that they
don’t depend on x, they can depend on n, ag ,-... S0 the form of the critical region is
{x:T > c}. [Note: if the alternative hypothesis was Hy : u = p1, where g < 0, then the
final line of our iff calculation would give a critical region of the form {x:Z < ¢}.]

Step 2: we now choose ¢ so that the test has size a:

a = P(reject Hy| Hy true)
= P(X > c| H).

If Hy is true then X ~ N(0,03/n). So

P( C|H0

=P

(Uo/\f

= P<N(0, 1) > O'Q/C\/'E)

and hence p~ f = Zy. So the required value of ¢ is ¢ = z,00/y/n and the most powerful

_ Z2a00
= 1T 2 .
¢ {" vZ R }
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E.g. the most powerful test of size 0.05 rejects Hy if and only if T > 1.640¢/+/n.

We now calculate the power function of this test:

w(p) = P(reject Hy |y is the true value)
)
)

_p( Xy
_P<00/\/ﬁ>a oo/Vn

Za00

NG

:P<X>

. . X—p
and if u is the true parameter value then T ™ N(0,1), so

w(p) = P(N(O, 1) > 20 — U()/M\/ﬁ>

:1—@(%—%7\%).

w(H)

Figure 3.1. The power function w(u) when a = 0.05, og = 1, n = 100.

3.6 Uniformly most powerful tests

Consider testing the simple Hy : 8 = 6y against the composite alternative H; : 6 €
0.

Let 0, € ©1.

When testing the simple null 8 = 6y against the simple alternative § = 61, the critical
region from the NP lemma may be the same for all §; € ©;. If this holds then C is said
to be uniformly most powerful (UMP) for testing Hy : 0 = 0y against H; : 6 € ©;.

We can often find UMP tests of simple null hypotheses against one-sided alternatives, but
not when testing against two-sided alternatives.

Example 3.7. In the example in Section 3.5 we have the same C' = {x : T > z,00/y/n}
for each p1 > 0. Hence this C' gives a UMP test of Hy : p = 0 against Hy : p > 0.
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SLIDES. Slides on insect traps example go here.

Example 3.8. In this example we will: (i) construct another UMP test, (ii) show that
not all sizes « are possible, (iii) do a sample size calculation.

(i)

(iii)

Suppose X1,..., X, i Poisson(A). Consider testing Hy : A = 1 against Hy : A = Ap,
where \; < 1.

The likelihood is
e~ A\Ti e AN T

L\ x) = H — = T

;!

From the NP lemma, we should

L(1;x)

L(Al; X)

—-n

reject Hy <— <Kk

_° <k

1
VDT
e ALY

1\ ="
— <> < ko

<— ZiEz <k since 1/A; > 1
where k, k1, ko are constants that don’t depend on x.
With critical region C' = {x: Y z; < k}, the size of the test is given by
a = P(reject Hy| Hy true)

:P(ZXing:l).

This critical region C does not depend on which value of A\; < 1 we are considering,
so it gives a UMP test of Hy : A = 1 against Hy : A < 1.

If Hy is true, then ) X; ~ Poisson(n). Wlog k can be an integer, and then we have

a=P(Y X <k[r=1)

= P(Poisson(n) < k)

k e "nd
- Z i
=0

Vi

So if n = 5 the possible values of o are o = 0.0067,0.04,0.12,0.26,..., if k =
0,1,2,3,.... That is, not all sizes o are possible — this occurs because our test
statistic > X is a discrete RV. This discreteness issue does not affect the p-value: if
we let tops = Y x;, then the p-value of data x is

tobs -n J

. e n
p =P (3 Xi < tors | Ho) = P(Poisson(n) < tors) = >
j=0 '

Suppose that, before collecting any data, we want to determine a suitable sample
size. Suppose we want o = 0.01 and that we also want to ensure a power of at least
0.95 at A = % How large should n be?
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As above, our test is of the form: reject Hy <= > x; < k. We want k such that

0.01 = P(reject Hy | Hy true)
=P (DX <k|Ho)

(5w )

and, by the CLT (i.e. for large n), if Hy is true then 25’{”
P(N ”)
()

QO

N(0,1), so

Now ®(—2.326) = 0.01, hence k_ﬁ ~ —2.326, so k ~ n — 2.3264/n.
The power requirement is w(%) > 0.95, so

0.95

N

w(3)
P(reject Hy|A = 1)
P

(ZX n—2326\f])\_—)

_P<ZXZ-—n/2 < n/
n/2 n/2

)

D[

and, by the CLT (i.e. for large n), Z\?;Tn/? ~ N(0,1) if A =1, so

0.5 < cI)<n/2 - 2.326\/ﬁ>.
n/2

Now ®(1.645) = 0.95, so we require

2—-232
/2 =232y o
n/2

which gives

N (2 326 + \6}25> <<I>—1(0.99) + @1\([02.95)>

ie. y/n > 6.98, so n > 48.7. So the recommended sample size would be n = 49.

3.7 Likelihood ratio tests
We now consider testing
e the null hypothesis Hy : 0 € O

e against the general alternative Hy : 0 € ©.
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So now Hj is a special case of Hy: we say that the statistical model under Hy is “nested
within” H; (i.e. ©9 C ©). We want to see (i.e. test) if simplifying to the Hp-model is
reasonable.

The likelihood ratio A(x) is defined by

L(0;
)\(X) _ Sup@e@OL (0 X) ] (34)
suppee L(0; x)
A (generalised) likelihood ratio test (LRT) of Hy against H; has critical region of the form
C = {x: A(x) < k}, where k is a constant.

For a test of size a we must choose k so that

sup P(AM(X) < k|0) = a.
ASSH)

So in principle we must look at the distribution of A\(X), or use an approximation, to
determine k. In practice this means either (i) we simplify the inequality A(X) < k to
an inequality in terms of a function of X whose distribution we know exactly (see the
next example), or (ii) we use the approximate x2-distribution of —2log A(X) (see further
below).

Example 3.9. Suppose X1,...,X, id N(u,0?), where 1 and o2 are unknown. Consider

testing
e Hy:p = po, with any 02 > 0
e against Hy : ju € (—00,00), with any o2 > 0.

Here the likelihood is

1

2y _ 2\—n/2 _
L(p,0%) = (2mo*) exp [ 5,7

(s - 2]

For the numerator of (3.4) we maximise L over o2 with p = pg fixed. The maximum is
at 02 =53 = L 3" (2 — po)?

For the denominator of (3.4]) we maximise L over y and o2. The maximum is at p = i = T,
0? =02 =15 (z; — )%

Subsituting these values into the likelihood we obtain

L(po, o2
) = L

(20 (s — po)?] e

(2 Y (s — 7)) e
:[zm—wvym

Sz

Now note that > (z; — po)? = Y (2; — )2 + n(T — po)?. (To see this write > (z; — po)? =
S{(x; — %) + (T — o) }?, expand the RHS and then simplify.) Then substituting into the
expression for \(x) gives

-]
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So the test is:

reject Hy <= A(x) <k
T — [o
s/\/n

This is the familiar ¢-test, so we know that we should take k1 = ¢,—1(a/2) for a test of
size a (i.e. we know the exact distribution of a function of A\(x)).

> k1.

Likelihood ratio statistic

The statistic A(X) defined by
A(X) = —2log A(X)

is called the likelihood ratio statistic. In terms of A, the critical region of the LRT becomes
{x: A(x) > ¢}, for some constant c.

If Hy is true then, under the regularity conditions discussed at the end of Section (and
which we assume from now on), as n — oo we have

AX) B2 (3.5)

where p = dim © — dim ©g. Here dim © is the dimension of the whole parameter space,
which we can think of as the number of independent parameters in ©. Similarly, dim ©q
is the dimension of ©y.

For a test with approximate size «, we reject Hy if and only if A(x) > ¢ where ¢ is such
that P(X?2 > ¢) = a. [Using notation similar to what we’ve used before, we might write
c = Xf,(a).] The size is approximately a because the distribution is approximately XZ,
assuming that we have a large sample.

Why is (3.5 true? (Sketch)

Consider the simplest case: Hg : 8 = 0y against H; : § € O, where dim® = 1, e.g.
© = (0,00) or © = (—00,00). Note: in this case dim Oy = 0.

So p = dim© — dim ©( = 1, so we are looking for A(X) to converge to a x?-distribution.
We have
L
A(X) = —2log < (HAO)>
L(0)
= 2[¢(6) — £(60).

Assuming that  satisfies ¢/(8) = 0,

£(00) ~ 60) + - 000 @) + 5@ — 00" (D)
= £(0) — (0 — 60)>J (0).

Hence




If Hy is true then (5— 00)+v/1(6o) 2 N(0,1) and J(é\)/I(QO) ~ 1, so

AX) B[N0, 1))2 x 1 ~ X2,
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It’s convenient to use O for something to do with Hy below. So let’s rewrite our definition
of A so that it avoids using © at all. From now on we write A as

supp, L)

Y. (3.6)

A= —-2log)= —210g<

D
and, assuming n is large, when Hj is true we have A =~ X% where p = dim H;—dim Hy.

Goodness of fit tests
SLIDES. First Hardy—Weinberg equilibrium slide goes here.

Suppose we have n independent observations, where each observation falls into one of the
categories 1,..., k. Let n; be the number of observations in category 4, so ) . n; = n (this
sum, and other sums over i below, are over i = 1,... k).

Let m; be the probability that a single observation falls into category i, where ), m; = 1.
Let m = (my,...,mk).
The likelihood is given by

n!
L(n) =

n1 ng
77'['1 ...7Tk .
n1! < -nk!

This is a multinomial distribution. The log-likelihood is
m) = Z n; log m; + constant.

With no restrictions on 7 other than ), m; = 1, the dimension of this general model

is k — 1: i.e. there are k£ — 1 independent parameters that we can vary, and once say
m,...,Tk_1 are known, then 7 is determined by 7, =1 — Zf;ll ;.

Suppose we want to test the fit of the more restrictive model where category i has proba-
bility 7; = 7;(0), where § € ©. That is, we wish to test

e the null hypothesis Hy : m; = m;(0), where 6§ € ©
e against the general alternative H; : the m; are unrestricted except for ) . m; = 1.

Suppose that dim © = g (where ¢ < k—1). Then the parameter space for H; has dimension
dim H; = k—1, the restricted parameter space for Hy has dimension dim Hy = © = ¢, and
so when Hj is true the approximate distribution of the likelihood ratio statistic A is X;Q;
where p = (k—1)—¢q. [In the Hardy—Weinberg equilibrium example, we have ¢ = 1.

(i) For the numerator in (3.6) we can maximise the log-likelihood ) n;logm;(#) over
§ € © to obtain the MLE 6.

(ii) Let g(m) = > m — 1. For the denominator in (3.6) we need to maximise the log-
likelihood f(m) = > n;logm; subject to the constraint g(7) = 0.

Using a Lagrange multiplier A\, we want

of 99
Om 871‘1'

That is %’—/\:0, som =mn;/A\ fori=1,... k.
Now 1 =>"m => n;/A=n/)\ hence A = n, and so

=0 fori=1,...,k.

~ n; .
o =— fori=1,...,k.
n

41



So

L
A= 2log (HPH)
supy, L

s (H70))

~

= 2[0(7) — £(n(0))]
= 2[2 n; logm; — an 10%%‘(@]

=2 Yo nios (25

We compare A to a xg, where p = k — 1 — g, since this is the approximate distribution of
A under Hy.

SLIDES. Hardy—Weinberg equilibrium slides go here.

SLIDES. Slides on insect counts example go here.

Pearson’s chi-squared statistic

AzQZOilog <%)

where O; = n; is the observed count in category i, and F; = mrl(g) is the expected count
in category ¢ under Hy.

Write

For x near a, we have

Hence

Ax2Y [(Oi gy OB 2

2F;
PR
E;
since Y O; = Y E; = n. The statistic

(0i — Ey)?
P= —_—
>0
is called Pearson’s chi-squared statistic and this also has an approximate X]%—distribution
under Hy, where p=k—1—q.
Two-way contingency tables
SLIDES. First hair and eye colour slide goes here.

Suppose each of n independent individuals is classified according to two sets of categories.
Suppose the first set of categories corresponds to the rows of a table (e.g. hair colour), and
the second set of categories corresponds to the columns of a table (e.g. eye colour). Suppose
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there are r rows and ¢ columns. Then there are rc cells in the table and each individual
falls into precisely one cell (e.g. corresponding to their hair and eye colour).

column (eye colour)

row (hair colour) 1 2 -+ ¢ rowsum
1 niy M2 o MNie nyy
2 N2l M2z ot MNac na+
r Ner Myp2 o0 Npe Ny
column sum Nyl Ny -+ Nge n

Let n;y = ijl n;; be the number of individuals in the 7th row of the table. Let n,; =
> i_q ni;j be the number of individuals in the jth column of the table.

Let m;; denote the probability that an individual falls into cell (¢, ) of the table (i.e. that
the individual’s hair colour is 7 and eye colour is j). The likelihood is

n! "
— 11,112 n
L(m) = —— (M1 T2 et
N11:M12: * * * Nyt
=[] Wijl
i 5 Y

where the products are over all ¢ and all j. The log-likelihood is
lm) = Z Z n;j log m;; + constant
i
where the sums are over all ¢ and all j.

Suppose we would like to test the null hypothesis Hy that the row into which an individual
falls is independent of the column into which that same individual falls (i.e. test if hair
and eye colour are independent). That is, we would like to test

e the null hypothesis Hy : 7;; = a;3; for all 7,7, where Y oy =1and ) 5 =1
e against the general alternative H : the m;; are unrestricted except for 3, >, mi; = 1.
We can find A as follows.

(i) To find supy,: we need to maximise ), > n;;log(a;3;) subject to the two con-
straints ) «; =1 and ) 3; = 1. We can do this using two Lagrange multiplies [and
this is part of a question on Sheet 3]. We find

~ N4 3 _ Ny
;= .

(ii) We have found supy, already, in the goodness of fit section, with only slightly dif-
ferent notation. [Exercise: check this.] We have 7;; = n;;/n.
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So

L
A= —2log (HPH)
supy, L

= 2(8[1;})6—8]1{15)6)

— 2[2 Z nij log T — Z Z nij 10%(@'@')]
j J

i %

P 7.0,
Oij
i Y

where O;; = n;; is the observed number of individuals in cell (4, j), and E;; = n&igj is
the expected number of individuals in cell (7, 7) under Hy. As before, A ~ P where P is
Pearson’s chi-squared statistic

0ij — E;j)?
Py SR
i

To calculate the degrees of freedom for A, and P:
(i) dim Hy = rc— 1 (exactly as for the goodness of fit tests)

(ii) under Hy we have r — 1 degrees of freedom due to the paramaters «; (i.e. there are
r parameters «; and as before we lose one degree of freedom since Y a; = 1), and a
further c—1 degrees of freedom due to the paramaters f;, so dim Hy = (r—1)+(c—1).

Hence, under Hy, both A and P have an approximate Xf,—distribution, where p = dim Hy —
dim Hy = (r — 1)(c — 1).

SLIDES. Hair and eye colour slides go here.
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4 Bayesian Inference

So far we have followed the frequentist (or classical) approach to statistics. That is, we
have treated unknown parameters as a fixed constants, and we have imagined repeated
sampling from our model in order to evaluate properties of estimators, interpret confidence
intervals, calculate p-values, etc.

We now take a different approach: in Bayesian inference, unknown parameters are treated

as random variables.

SLIDES. Introductory slides go here.

4.1 Introduction

Suppose that, as usual, we have a probability model f(x|6) for data x. Previously we
wrote f(x;6). Now we write f(x|#) to emphasise that we have a model for data x given,
i.e. conditional on, the value of 6.

Suppose also that, before observing x, we summarise our beliefs about 8 in a prior density
m(0). [Or in a prior mass function w(6) if 6 is discrete.] This means that we are now
treating 6 as a RV.

Once we have observed data x, our updated beliefs about 6 are contained in the con-
ditional density of 6 given x, which is called the posterior density (of 6 given x), writ-
ten (6| x).

Theorem 4.1 (Bayes’ Theorem).

(i) If events By, Ba, ... partition the sample space, then for any event A we have

P(A|B;)P(B;)

(ii) For continuous RVs 'Y and Z, the conditional density fz|y(z|y) satisfies

_ Iyiz(y12)f2(2)
fr(y) '

fz1v(z|y)

Proof.
(i) Proved last year.

(ii) To make the notation simpler, we omit subscripts on pdfs. By definition of condi-
tional density,

~ fy,2)
and also . 2)

 fy,=z
From we have f(y,z) = f(y]z)f(z), and substituting this expression for f(y, z)
into gives the result. O
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To find the marginal density of Y, we integrate the joint pdf f(y, z) over all z, i.e.
fly) = / fly,2)dz
- [t (43)

So, in the case of continuous RVs, by Bayes’ Theorem (with x and 6 in place of Y and Z)

the posterior density is
_ f(x[0)7(0)
01 ="

where, as in (4.3]), the denominator f(x) can be written

(4.4)

f(x) = / £(x| 0)w(6) db

and where this integral is an integral over all 6.
We treat 7(6|x) as a function of #, with data x fixed. Since x is fixed, the denominator
f(x) in (4.4) is just a constant. Hence

(0] x) o< f(x1]0) x w(0) (4.5)

posterior o likelihood x prior.

Example 4.2. Conditionally on 6, suppose that Xy,..., X, id Bernoulli(f). That is,
P(X;=1)=0and P(X; =0)=1—6,ie. f(x|0) =601 —0)1"% for x =0,1. So

n

Fx10) =T o7 (1— o)

i=1
=0"(1-6)"""
where 7 = ) ;.
A natural prior here is a Beta(a, b) pdf:

1

— a—1/1 _ p\b—1
W(G)—B(a’b)ﬁ (1-9) for0<f <1

where B(a,b) is the beta function. Since the pdf 7(6) integrates to 1, the normalising
constant B(a,b) is given by

1
B(a,b):/ 071 (1 —6)""1do.
0

We will use (without proof) the following expression for B(a,b) in terms of the gamma
function:

_ D(a)T'(b)
Bla:) = T +o)
where I'(a) = [; u* 'e™™ du. Remember: T'(a+1) = aI'(a) for a > 0, and I'(n) = (n—1)!

when n is a positive integer. The values a and b satisfy a > 0 and b > 0 and are assumed
known — their values reflect our beliefs about 6 before observing any data.
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Using (4.5)),
m(0]x) o< 0"(1 — )" " x 27 1(1 — 9)’~!
= grta-l( —g)ynr+o-L (4.6)

In reaching , in addition to dropping f(x) which is not a function of 6, we have
also dropped the constant 1/B(a,b). The RHS of depends on # exactly as for a
Beta(r +a,n —r+b) density. That is, the constant normalising is B(r+a,n—1r+b)
and we have

1

0 =
m(@1x) B(r+a,n—r+b)

grret1—g)n Ll for0 < < 1.

So acquring data x has the effect of updating (a,b) to (r +a,n —r +b).

It is important to note that in the above Bernoulli-Beta example, as in most/all(?) other
examples we will meet, there is no need to do any integration to find =(0|x). We
find 7(0 | x) by comparing (4.6 with a Beta(r + a,n — r 4+ b) pdf.

Example 4.3. Conditional on 6, suppose that Xi,..., X, i Poisson(f). Suppose the
prior for § is a Gamma(a, 3) pdf:

m(0) = Fﬁ(a)Ga_le_ﬁe for 6 > 0
where a > 0 and 8 > 0 are assumed known.

Using posterior o likelihood x prior, we have

n

e 9" a—1,-56
(0| x) H I x 0% e

i=1
o grtele= (B0 g0 9> 0 (4.7)

where r = ) x;. The 5%/T'(«) term, and the the x;! terms, have all been omitted: we are
interested in 7(# | x) as a function of #, and these omitted terms are constant with respect
to 8, so omitting them simply adjusts the constant of proportionality.

The dependence on 6 in (4.7) is as for a Gamma pdf, so 7(0 | x) is the pdf of a Gamma(r +
a,n+ f).

Again: no need to do any integration to get the normalising constant in (4.7)).

4.2 Inference
SLIDES. Slides on MRSA example go here.
All information about the parameter 6 is contained in the posterior density, i.e. contained
in (0| x).
Posterior summaries
Sometimes summaries of 7(6 | x) are useful, e.g.:
e the posterior mode (the value of 6 at which 7(6 | x) is maximised)

e the posterior mean F(6|x) (this expectation is over 6, and x is fixed)
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e the posterior median (the value m such that [™ (0 |x)d6 = 3)
e the posterior variance var(f | x)
e other quantiles of 7(f|x) (i.e. in addition to the median).
Example 4.4. Conditional on 6, suppose X ~ Binomial(n, ). We can write this as
X |6 ~ Binomial(n, 6).
We read “X |0” as “X given #”. Suppose the prior for 6 is U(0, 1).

The likelihood
n —x
aloy= (7)era oy

is proportional to the Bernoulli likelihood in Section and the prior is a Beta(1,1).
Hence, by the first example in Section (0| z) is a Beta(z + 1,n — x + 1) pdf, i.e.

0|z ~ Beta(x +1,n —x +1).

We calculate the posterior mean:

1
E0|z) :/0 Om(0]z)do

1 1
= 6" (1—60)""" do
B(:r—l—l,n—x—l—l)/o ( )
1
Bxz+1,n—xz+1) (@+2Zn-z+1)
I'(n+2) MNz+2)I'(n—xz+1)
MNzx+1)T'(n—x+1) I'(n+3)
Mz +2)T(n+2)
Mxz+1)T(n+3)
1
—(r+1)——.
(@+ )n +2
So the posterior mean is E(6 | x) = ﬁ—i% So even when all trials are successes (i.e. when z =
n) this point estimate of 6 is Z—:[%, so is less than 1 (which seems sensible, especially if n

is small).

The posterior mode is x/n, the same as the MLE. For large n, i.e. when the likeli-
hood contribution dominates that from the prior, the posterior mean will be close to
the MLE /posterior mode.

Interval estimation

The Bayesian analogue of a confidence interval is a credible interval (or posterior inter-
val).

Definition. A 100(1 — )% credible set for 6 is a subset C' of © such that
/ m(0|x)d0 =1—a. (4.8)
C
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Note: [,7m(0|x)df = P(0 € C|x), so [@.8) says P(§ € C'|x) =1— v

A credible interval is when the set C' is an interval, say C' = (61,02). If P(0 < 6;|x) =
P(0 > 05| x) = /2, then the interval (01, 602) is called equal tailed.

0.6 - 0.6 -
2 2
£ =
c c
[} [}
'S 0.4 - ‘E 0.4 - L
kel il
o I3
3 8
a 02 - - a 02 - -
0.0 0.0
T T T T T T T T T T
0 1 2 3 4 0 1 2 3 4
theta theta

Figure 4.1. Two 95% credible intervals (the pdfs are Gamma(2,2)). Left: the credible interval is
(0.05, 2.44), the tail areas (shaded in blue) are 0.005 in lower tail, 0.045 in upper tail. Right: the
interval (0.12, 2.79) is an equal tailed credible interval, both lower and upper tail areas are 0.025.

In words, (4.8)) says:
the probability that € lies in C, given the observed data x, is 1 — a.

This straightforward probability statement is what we want to be able to say about an
interval estimate — this is a strength of the Bayesian approach.

The above statement is not true of a confidence interval. The interpretation of a frequentist
confidence interval C” is different, and more tricky — we say something like:

if we could recalculate C’ for a large number of datasets collected in the same
way as X, then about 100(1 — «)% of these sets would contain the true value
of 4.

Definition. We call C a highest posterior density (HPD) credible set if (0| x) > 7(6' | x)
forall @ € C and ¢’ ¢ C.

In words: for an HPD interval, the posterior density at any point 8 € C'is at least as high
as the posterior density at any point 6’ & C.
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Figure 4.2. A 90% HPD interval (the pdf is Gamma(2,2)). The HPD interval is (0.04, 2), the
shaded area is 0.9. The density at any 6 € (0.04,2) is higher than at any 6’ ¢ (0.04, 2).

An HPD interval has minimal width among all 100(1 — «)% credible intervals. On the
other hand, advantages of equal tailed intervals are that they have a direct interpretation
in terms of o/2 and 1— /2 quantiles, they are usually easier to calculate, and if we change
the parametrisation of a distribution from € to ¢ = ¢(6) then the interval transforms from
(01,02) to (¢(61),@(02)) (this does not hold for HPD intervals in general).

Multi-parameter models

The parameter # may be a vector. If so, everything above remains true provided that we
understand each integral over  to be a multiple integral over all components of . [Usually
we have continuous parameters, but if any parameter is discrete then, for that parameter,
integrals are replaced by summations.|

E.g. 8 = (1, A) say, in which case the prior is a bivariate density 7(¢, A), as is the posterior
(1, A x). All information about v is contained in the marginal posterior density

(¢ | x) :/7'('(1/},>\X)d)\.

That is, as usual, to find a marginal distribution we integrate over the other components
of the density (i.e. integrate over A here).

Prediction

Let X,,11 represent a future observation and let x = (z1,...,z,) denote the observed data.
Assume, conditional on 6, that X, has density f(zn+1|6) independent of X7, ..., X,,.

The density of X, 1 given x, called the posterior predictive density, is a conditional density.
We write it as f(zp4+1|x). Here x = (z1,...,2,) as usual. We have

Fonsr |%) = [ fanin,6]x)do
= /f(a:m_l |0, x)m(0]x)db.
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For the first equality above: the density for z is found by integrating that for (z,6) over
all #. For the second: P(ANB|C) = P(A|BNC)P(B|C), or in terms of conditional
densites f(u,v|w) = f(ulv,w)f(v|w).

Now f(zp+1]0,%x) = f(xn41|6) by the independence. Hence

Fonss |%) = [ Fania|0)7(6]x) db

So, given x, the predictive density is found by combining the density for x,1 under the
model (i.e. f(x,41]0)) with the posterior density.

If X,,41 is discrete, then of course f(z,+1|x) is a pmf (not a pdf).

For an example: see Sheet 4.

4.3 Prior information
How do we choose a prior 7(6)?

(i) We use a prior to represent our beliefs about 6 before collecting data: e.g. MRSA
example, we might ask a scientific expert who might anticipate 6 around 10, say with
6 € (5,17) with probability 0.95.

If we approach this by asking several different experts for their beliefs, each expert’s
opinion might lead to a different prior, so we would want to repeat our analysis with
each different prior.

(ii) We might have little prior knowledge, so we might want a prior that expresses “prior
ignorance”. E.g. if a probability is unknown, we might consider the prior 6 ~ U(0, 1).

(But even uniform priors, apparently expressing “ignorance”, can lead to problems
when there are a large number of parameters.)

(iii) In the Bernoulli/Beta and Poisson/Gamma examples (Section[d.1]), the posterior was
of the same form as the prior, i.e. Beta-Beta and Gamma-Gamma. This occurred
because the likelihood and prior had the same functional form — in such situations
the prior and likelihood are said to be conjugate. Conjugate priors are convenient
for doing calculations by hand.

There are also other possibilities, and note that (iii) can overlap with (i) and (ii). In some
complex situations it might be hard to write down a representative prior distrbution.
Example 4.5. Conditional on 6, suppose that X1,..., X, i N(6,0?) where 02 is known.
Suppose the prior is 6§ ~ N(pg, 08) where pg and o3 are known.

Then

m(0|x) o< f(x|0)m(0)
anp[_lz(“‘i;f)z] exp[_l(e_ém)z]

2 2 op

where as usual we have ignored constants that don’t depend on 6.
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Now complete the square:

(9 — N0)2 (a;Z — 9)2 of 1 n Lo = nT
A VA E RS A 499 E 4L =
(2) —+ 5 0 3 + 5 0 3 + 5 -+ constant

o5 o og
1
= — (0 — p11)* + constant
01
where
1 n —
zHo t+ 2T
o= (4.9)
A
1 1 n
= 4.10
o? o} o? (4.10)
Hence

mmexwp(—i%w—unﬁ

and so 7(0|x) is a N(uy,0?) pdf. That is, 6 |x ~ N(u,0?).

(4.9) says that the posterior mean pu; is a weighted average of the prior mean gy and the
sample mean T (with weights % and 7).
0

(4.10) says “posterior precision = prior precision + data precision” where the precision of
a RV is defined as being 1/variance.

This is another example of conjugacy: prior, likelihood and posterior are all normal.

Improper priors

If 02 — oo in the previous example, then (0 |x) is approx N(Z,o?/n), i.e. the likelihood
contribution dominates the prior contribution as o3 — co. This corresponds to a prior
7(0) x ¢, a constant, i.e. a “uniform prior”. But this 7(6) is not a probability distribution
since 6 € (—o0,00) and we can’t have [ cdf equalling 1.

Definition. A prior 7(6) is called proper if [m(6)df = 1, and is called improper if the
integral can’t be normalised to equal 1.

An improper prior can lead to a proper posterior which we can use for inference (e.g.
uniform prior in in the normal-normal example) . But we can’t use an improper posterior
for meaningful inference.

Prior ignorance

If no reliable information is available, we might want a prior which has minimal effect on
our inference. E.g. if © = {61,...,0,,} then 7(6;) = 1/m for i = 1,...,m does not favour
any one value of 8 over any other and in this sense is “non-informative” for 6.

Example 4.6. If © = (0, 1) we might think that 7(f) =1 for 0 < 0 < 1, i.e. § ~ U(0,1),
represents prior ignorance. However, if we are ignorant about 6, then we are also ignorant
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about ¢ = log (0/(1 - 9)) Here ¢ € R is called the log-odds. The pdf of ¢ is

p(6) = 7(6(6)) x jj)

d e?
=1X —( —-
dp \ 1+ e?

¢
e
:m fOr—OO<¢<OO

[Sketch p(¢).] The pdf p(¢) has a maximum at ¢ = 0 and further P(—3 < ¢ < 3) ~ 0.9.
This does not seem to correspond to ignorance about ¢, rather this prior is saying that
the most likely values of ¢ are close to 0. That is, the prior that was apparently expressing
“ignorance” about # actually expresses some knowledge about ¢.

Jeffreys priors
Suppose 6 is a scalar parameter.

The problem with the ¢ = log (6/(1 — #)) example above is that the representation of
“ignorance” changes if we change the parametrisation from 6 to ¢. A solution to this issue
is the Jeffreys prior defined by

7(0) < 1(9)/?

where as usual 1(#) is the expected (Fisher) information.

Recall that if X7,..., X, are all from f(x|6) then I(0) = ni(8) where i(0) is the expected
Fisher information in a sample of size 1,
, d?
i) = ~5( 02 (x110))
where the expectation is over X; with 0 held fixed. Then the Jeffreys prior is
7(0) o< i(0)'/?
(the n'/2 factor difference between I(A)'/? and i(6)*/? can be absorbed into the constant

of proportionality).

Sometimes Jeffreys rule leads to an improper prior.

Example 4.7. Consider a single Bernoulli trial with success probability . We have
f(z|0) =61 -6 forxz=0,1
0(0) =xlogf+ (1 — x)log(l —0)
0 11—z

T T e T 1ee

Hence

. X 1-X
0 =55+ ]
0 1-96 ,
= ﬁ+7(1—9)2 since E(X) =60
1
6(1—0)

So the Jeffreys prior is w(#) o< #~1/2(1 — §)~1/2 for 0 < 6 < 1. This is a Beta(3, 1).
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Jeffreys priors can be extended to a vector parameter 6 by taking
7(0) o [1(6)[*/? (4.11)

where the RHS means the square root of the determinant of the information matrix.
However a simpler and more common approach for vector 6 is to find the Jeffreys prior for
each component of # separately, and then to take the product of these (i.e. assume prior
independence) to get the whole prior. This can lead to a different prior to

Example 4.8. Suppose 0§ € R and f(z|0) = g(x — 0) for some function g, e.g. g could be
the pdf of a N(0,1), or the pdf of a ¢;. Then 6 is called a location parameter and Jeffreys
rule leads to 7(f) o< 1 for 6 € R.

Example 4.9. Suppose 0 > 0 and f(x|o) = %g(m/a) for some function g, e.g. o could be
the standard deviation of a normal, or (the reciprocal of) the § parameter of a Gamma.
Then o is called a scale parameter and Jeffreys rule leads to 7(o) o< 1/0 for o > 0.

Example 4.10. Combine the previous two examples: if f(z|0,0) = %g(%‘é)) then we
have a location-scale family of distributions. The approach of finding the Jeffreys prior for
each component parameter separately and assuming prior independence of § and o simply
uses the product of the above two priors:

1
m(f,0) x1x — forfeR, o>0.
o

(Using the square root of the determinant of I(6) leads to a different prior.)

We finish this section by showing that Jeffreys prior does not depend on the parametrisa-
tion used — we do the case of a scalar parameter 8. So consider a one-to-one transformation
of the parameter, from @ to ¢: let ¢ = h(f), with inverse § = g(¢) (i.e. ¢ = h™'). By
transformation of variables, if # has pdf 7(0) then ¢ has pdf

p(¢) =7 (g(¢)) g (8)- (4.12)

We want to show that (i) and (ii) give the same prior for ¢, where:

(i) we determine 7(6) using Jeffreys rule for 0, then transform it to give a prior p(¢) for

¢
(ii) we determine p(¢) using Jeffreys rule for ¢ directly.

For (i): we have 7(8)  [i(#)]/2, and transforming this to ¢ using gives
p(@) o [i(9(6))]""*19'(6)] = [i(6)] |g' (). (1.13)

For (ii): we need to find the relationship between i(¢) and i(#). Let £(0) = log f(X1 |6)
and recall that in Section [L.7 we saw that

um:4%<%)j. (4.14)

de _ dtdy
dp — dodo’

We have
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So squaring both sides of this equation, taking expectations, and using (4.14]) gives

as % = ¢'(¢). Hence Jeffreys rule for ¢ gives

m(¢) o [i(¢)]"? = [i(0)]"/* |g'(9)]
in agreement with , as required.

4.4 Hypothesis testing and Bayes factors

Suppose we want to compare two hypotheses Hy and H1, exactly one of which is true. The
Bayesian approach attaches prior probabilities P(Hy), P(H1) to Hy, Hy, where P(Hy) +
P(H;) = 1. The prior odds of Hy relative to H; is

P(Hy) _ P(Ho)
P(Hy) 1-—P(Hy)

prior odds =

[The odds of any event A is P(A)/(1 — P(A)).]

We can compute the posterior probabilities P(H; |x) for i = 0,1 and compare them. By

Bayes’ Theorem,

P(x|H;)P(H;)
P(x)

P(H;|x) = fori=0,1 (4.15)

where
P(X) = P(X ‘ Ho)P(H()) + P(X ’ Hl)P(Hl).

Note: here P(H;|x) is the probability of H; conditioned on the data, whereas p-values in
Section 3 can’t be interpreted in this way.

The posterior odds of Hy relative to Hy is

P(Ho |x)

posterior odds = ————.
P(H, |x)

Using (4.15)),

P(Hy|x) _ P(x|Ho) _P(H)
P(H, %) ~ P(x|H) " P(H)

posterior odds = Bayes factor x prior odds

where the Bayes factor Bgy of Hy relative to Hi is given by

P(x| Ho)
By = ———=. 4.16
o' P(x|Hy) (4.16)
So the change from the prior odds to the posterior odds depends on the data only through
the Bayes factor By;. The Bayes factor tells us how the data shifts the strength of belief
in Hy relative to Hy. If our prior model has P(Hy) = P(H;) then, given the data, we have
that Hy is By times more likely than H;.
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General setup
We are assuming we have:
(i) prior probabilities P(H;), i = 0,1, where P(Hp) + P(H;) =1

(ii) a prior for #; under H; which we write as 7(0; | H;) for 6; € ©;, i = 0,1, where O,
denotes the parameter space under H;

(iii) a model for data x under H; which we write as f(x|6;, H;).

The two priors w(6; | H;), i = 0,1, could be of different forms, as could the two mod-
els f(x|0;,H;), i = 0,1. E.g. the prior under Hy could be an exponential distribution
(one parameter), the prior under H; could a lognormal distribution (which has two pa-
rameters).

Sometimes, as in examples below, (i) and (ii) might be combined: the prior density might
be 7(0) for 6 € © where

e OpUBO; =B and N O =0
e the prior probabilities are P(H;) = [o 7(6) df

e 7(0; | H;) is the conditional density of 8 given H;, i.e.

m(0)
7(0; | H;) = )
f(;e@iﬂ(ﬁ) df
This simplification does not hold for simple hypotheses: for if H; : 6 = 6,

ie. ©; = {0;}, then P(H;) would be an integral over the set ©;, which is just a single
point, and so P(H;) would be zero (which is not what we want).

We can write the numerator and denominator in (4.16) as follows. Conditioning on 6; (i.e.
using the partition theorem/law of total probability), we have

The quantity P(x | H;) is called the marginal likelihood for H;: it is the likelihood f(x | 6;, H;)
averaged over ©;, weighted according to the prior 7(6; | H;). So we see that the Bayes fac-
tor is somewhat similar to the likelihood ratio of Section 3, but not the same:
similar because it is a ratio of (marginal) likelihoods; but not the same because here we
are averaging over 6 in , whereas in Section 3 we maximised over Hy and H; to find
the likelihood ratio statistic.

1. Here we are treating Hy and H; in the same way. There is not the asymmetry that
there was in Section 3 where we treated the null hypothesis Hy in a different way to
the alternative hypothesis H.

2. The Bayes factor Byg of H; relative to Hy is just Big = (Bm)_l, since the ratios above
are simply inverted.

3. Bayes factors can only be used with proper priors: from (4.16|) and (4.17)) we see that By;
depends on two constants of propotionality, one for each the of priors 7 (6; | H;), i = 0,1,
so both of these constants must be known.
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From now on suppose our model is f(x |6) under both Hy and H;.
If Hy: 0 =60y and Hy : § = 0 are both simple then

_ f(x]60)
" )

since the prior 7(0; | H;) corresponds to 6§ = 6; with probability 1. So By; is just the
likelihood ratio in favour of Hy.

If H;:0€0,,i=0,1, are both composite then

Joo, F(x10)m (0] Ho) do
Jo, Fx0)m(0] Hy) do

By =

If Hy: 0 =60 is simple and H;y : 0 € ©1 is composite, then

f(x16o)

B
T o, Fx10)m(0] Hy)do

By analogy with the likelihood ratio statistic, the quantity 2log By is often used to sum-
marise the evidence for Hy compared to Hp, with rough interpretation as below (table
from Davison, 2003).

Byt 2log Bypy Evidence for Hy

<1 <0 Negative (i.e. evidence supports Hj)
1-3 0-2 Hardly worth a mention
3-20 2-6 Positive

20-150 6-10 Strong
> 150 > 10 Very strong

Example 4.11. [“IQ test”] Suppose X ~ N(6,02%) where 02 = 100. So f(z|0) =

1 z— 9)
V2007
Let Hp : 0 = 100 (“average”) and H; : 6 = 130.

e 200(

Suppose we observe x = 120. Then

f(z]0) _ f(120]100)
fz]61)  f(120]130)

So Big = 1/0.223 = 4.48, so positive evidence for H;.

By = = 0.223.

Suppose the prior probabilities are P(Hy) = 0.95, P(H;) = 0.05. Using posterior odds =
Bayes factor x prior odds,

P _ Boy % 0.95
1— po 0.05
where pg = P(Hy | x). Solving,
19801
= ——— =0.81.
PO = 1198y

This posterior probability of Hy is substantially decreased from its prior value (corre-
sponding to Bg; = 0.223 being small) but is still high.
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Example 4.12. [“Weight”] Let X1,...,X,, ~ N(0,0?%) where 0% = 9.

Let Hy: 0 < 175 (“true weight < 175 pounds”) and H; : 6 > 175.

Assume prior § ~ N (pg,03) where pg = 170, 03 = 52.

Prior probability P(Hg) = P(N(po,03) < 175) = ® (12:170) = &(1) = 0.84. So the prior

. P(H, o(1
odds is PEH(B = 17(%()1) =5.3.

Suppose we observe 1, ..., T, where n = 10, T = 176. Then from the normal example in
Section the posterior is N(u1,0%) where

b+ 1 n\ !
=2 =1758, o= (2 + 2) = 0.869.

Posterior probability P(Hy|x) = P(N(u1,03) < 175) = @ <%> = 0.198. So the
PUo 1) - — 0.24.

posterior odds is T=P(H; [%)

So Bayes factor By, = bostodds ) 0465 and By = (Bo1)~! =21.5.

~ prior odds

So the data provide strong evidence in favour of Hy, we conclude that § < 175 is unlikely.

Example 4.13. [From Carlin and Louis (2008).] Suppose we have two products: Py, an
old standard product; and P;, newer and more expensive. Let 6 be the probability that a
customer prefers P;. Let the prior 7(6) be Beta(a,b).

Assume that the number of customers X (out of n) that prefer P; is X ~ Binomial(n, 6).
Then from Section 4.1 we know that the posterior 7(6 | x) is Beta(z + a,n — x + b).

Let’s say 6 > 0.6 means that P is a substantial improvement over Py, so take Hy : 6 > 0.6
and Hy : 0 < 0.6.

Suppose a = b =1, i.e. prior § ~ U(0,1). Then

P(Hy) = /0167r(9) d) =04 and P(H;) = /00'67r(0) do = 0.6.

Suppose we have z = 13 “successes” from n = 16 customers. Then
! ! 1 13 3
P(H xz/w@md@z/ —0(1—6)°df = 0.964
(Ho | ) . (0] ) s B4 (1-0)
1

0.6 0.6
P(H,|z) = 7r0:cd9:/ ——0"3(1 - 0)%do = 0.046.
o) = [ w0layan = [ g0t -0)

So
prior odds = 0.4/0.6 = 0.67

posterior odds = 0.964,/0.046 = 20.96

posterior odds

Bayes factor By = = 31.1.

prior odds

Conclusion: we interpret Bg; = 31.1 as a strong evidence for Hy.
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We can also calculate the Bayes factor using marginal likelihoods (see (4.16)) and (4.17)).
The quantity 7 (6 | H;) is the prior for 6, conditional on H; being true. So

it0<6<0.6

0
7'('(9 | HO) = {W(Q)/P(HO) if06<h<1

o if0<0<06
"~ | 1/P(Hy) if06<0<1

and similarly
1/P(H;) if0<60<0.6
w(o| ) = | /PUR) EO <0
0 if0.6<0<1.

So

1
P(x|Ho) = [ f(xz|0)m(0]|Ho)do
0

:/06( )913 R

P(xyH)—/O'G 1Y g3 _ gy L g
Vo s P(H))
and then the Bayes factor is Byy = P(x | Hy)/P(z | Hy).

and similarly

4.5 Asymptotic normality of posterior distribution

From (5] we have (6 | x) o< L(6)7(6), where L(8) is the likelihood. Let £(6) = log (6 | x)
be the log posterior density,

{(0) = constant + log w(0) + £(0)
= constant + log 7(0) + Z log f(zi|6)
i=1

and there are n terms in the sum, so expect the likelihood contribution to dominate 2(9)
for large n.

Let 6 be the posterior mode, assume 1% (5) = 0, and assume 6 lies in the interior of the
parameter space ©. Then

e ——~ 1 IS
0(0) ~ £(0) + (0 —0)0'(0) + 50— 60)2¢" ()

— constant — %(e — 0279 (4.18)

where J(0) = —¢"(6). Note: in ([L.18) £(6) is just a constant since it does not depend
on 0.
So
(0] x) = exp((0))
(6 —6)°7(9))

N[

x exp(—



is our approximation which, as it’s a function of 6, is of the form of a normal pdf with

mean 6 and variance J(0)~!. That is, we have

0|x~ N, JO) ) (4.19)

In large samples, the likelihood contribution to m(#|x) is much larger than the prior

contribution, resulting in 0 and J (0) being essentially the same as the MLE 9 and observed
information J(#). Hence we also have

0|x~ N(@,J(0)"). (4.20)

[We can also obtain (4.20]) via a Taylor expansion about 5]

The corresponding frequentist result looks similar: in Section we saw
O~ N@O,I0)") and 6~ N(6,JO)Y). (4.21)

However, note that in (4.19) and (4.20) the parameter 6 is a RV, and 6 = 6(x) and b= é\(x)
are constants. In contrast, in (4.21)) the quantity § = 6(X) is a RV, and 0 is treated as a
constant.

Using the asymptotic results:

(i) the frequentist approximation g~ N (0, J(0)71) leads to a 95% confidence interval
of (6 £1.967(6)~1/?)

(ii) the Bayesian approximation 0 |x ~ N (5, J (5)_1) leads to a 95% credible interval of
(0 £1.96J(6)~1/2).

The set of values of # in (i) and (ii) are the same, but their interpretations — as frequentist

in (i), and Bayesian in (ii) — are different.

SLIDES. Normal approximation slides go here.
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