B8.4 Information Theory

Sheet 2 — MT25

Section A

1. (a) Let (X_i) be a sequence of independent and identically distributed random variables taking values in a discrete set \mathcal{X} and with pmf p. Let q be another probability mass function on \mathcal{X} such that $q(x_1, \ldots, x_n) = \prod_{i=1}^n q(x_i)$. Show that, in probability,

$$\lim_{n \to \infty} -\frac{1}{n} \log q(X_1, X_2, \dots, X_n) = D(p||q) + H(X).$$

(b) Let (Y_i) be a sequence of independent and identically distributed uniform random variables on [0,1]. Let $V_n = \prod_{i=1}^n Y_i$ be the volume of an n-dimensional box with side lengths Y_i . Let $l_n = V_n^{1/n}$, the side length of the box with equal edges which has the same volume. Find $l = \lim_{n \to \infty} l_n$ and compare it with $\lim_{n \to \infty} (\mathbb{E}V_n)^{1/n}$.

Solution: (a) Using the form of q we have

$$-\frac{1}{n}\log q(X_1, X_2, \dots, X_n) = -\frac{1}{n}\sum_{i=1}^n \log q(X_i).$$

Applying the WLLN we have convergence in probability

$$-\frac{1}{n}\sum_{i=1}^{n}\log q(X_i) \to \mathbb{E}\left(-\log q(X)\right)$$

$$= -\sum_{x \in \mathcal{X}} p(x)\log q(x)$$

$$= \sum_{x \in \mathcal{X}} \left(p(x)\log \frac{p(x)}{q(x)} - p(x)\log p(x)\right)$$

$$= D(p||q) + H(X).$$

This convergence also holds almost surely by the SLLN.

(b) We just apply the WLLN to find l

$$V_n^{1/n} = \left(\prod_{i=1}^n Y_i\right)^{1/n} = \exp(\frac{1}{n} \sum_{i=1}^n \log Y_i) \to \exp(\mathbb{E}\log(Y)) = \exp(-1) = l.$$

Also $\mathbb{E}V_n = \prod_{i=1}^n \mathbb{E}Y_i$ by independence and so $\lim_{n\to\infty} (\mathbb{E}V_n)^{1/n} = 1/2$. The typical box volume is much smaller than that of the box with mean side lengths.

2. For any $q \in [0,1]$ and $n \in \mathbb{N}$ such that nq is an integer, show that

$$\frac{2^{nH(q)}}{n+1} \leq \binom{n}{nq} \leq 2^{nH(q)}.$$

Hint: Consider the i.i.d. Bernoulli sequence X_1, X_2, \dots, X_n with probabilities defined by $\mathbb{P}(X=1) = q$, $\mathbb{P}(X=0) = 1 - q$.

Solution: As in the hint, construct an i.i.d. sequence X_1, X_2, \dots, X_n with $\mathbb{P}(X = 1) = q$, $\mathbb{P}(X = 0) = 1 - q$. Let $S_n = \sum_{i=1}^n X_i$, and $\Gamma = \{(x_1, \dots, x_n) : x_i \in \{0, 1\}, \sum_{i=1}^n x_i = nq\}$. Then the number of elements in Γ is

$$|\Gamma| = \binom{n}{nq}.$$

It is easy to see that

$$\mathbb{P}(S_n = np) = \sum_{(x_1, \dots, x_n) \in \Gamma} \mathbb{P}\{(X_1, \dots, X_n) = (x_1, \dots, x_n)\}
= \sum_{(x_1, \dots, x_n) \in \Gamma} q^{nq} (1 - q)^{n(1 - q)}
= |\Gamma| 2^{-nH(q)}.$$

On one hand, it is trivial that $\mathbb{P}(S_n = nq) < 1$.

On the other hand, we know S_n follows the binomial distribution with parameter n and q. If we let $p_k = \mathbb{P}(S_n = k) = \binom{n}{nq} q^k (1-q)^{n-k}$, then

$$\frac{p_{k+1}}{p_k} = \frac{n-k}{k+1} \frac{q}{1-q},$$

SO

$$p_{k+1} \le p_k \Leftrightarrow (n-k)q \le (k+1)(1-q)$$

$$\Leftrightarrow nq \le kq + (k+1)(1-q) = k + (1-q)$$

$$\Leftrightarrow k > nq - (1-q).$$

When $nq = k_0$ is an integer, we can see p_k is increasing over $k \le k_0$ and decreasing over $k > k_0$, which means nq achieves the maximal value of p_k , and hence

$$\mathbb{P}(S_n = nq) \ge \frac{1}{n+1}.$$

Together with the equality $\mathbb{P}(S_n = nq) = |\Gamma| 2^{-nH(q)}$, we have

$$2^{nH(q)} \ge \binom{n}{nq} \ge \frac{2^{nH(q)}}{n+1}.$$

3. Let X be a random variable taking values in a finite set \mathcal{X} with pmf p. We write $\vec{X} = (X_1, \dots, X_n)$ for a random variable in \mathcal{X}^n . We label elements in \mathcal{X} in non-decreasing order according to p(x), so that $p_i = \mathbb{P}(X = x_i)$ is non-decreasing in i. Using this we can rank the probability $\mathbb{P}(\vec{X} = \vec{x})$ for all $\vec{x} = (x_1, \dots, x_n) \in \mathcal{X}^n$, and explicitly construct the smallest subset $\mathcal{S}_n^{\varepsilon}$ of \mathcal{X}^n , by greedily including the elements in \mathcal{X}^n with highest probabilities one-by-one, such that $\mathbb{P}(\vec{X} \in \mathcal{S}_n^{\varepsilon}) \geq 1 - \varepsilon$.

Show that for any $\varepsilon > 0$, there exists n_0 , such that for any $n \geq n_0$, we have

$$(1-2\varepsilon)2^{n(H(X)-\varepsilon)} \le |\mathcal{S}_n^{\varepsilon}| \le 2^{n(H(X)+\varepsilon)}.$$

Use this to complete the proof of Proposition 2.15 in the lecture notes.

Hint: For any $\varepsilon_1 \in [0,1)$, $\varepsilon_2 \in [0,1)$ and events A, B with $\mathbb{P}(A) \geq 1 - \varepsilon_1$, $\mathbb{P}(B) \geq 1 - \varepsilon_2$, show that $\mathbb{P}(A \cap B) \geq 1 - \varepsilon_1 - \varepsilon_2$. Use this inequality to estimate $\mathbb{P}(S_n^{\varepsilon} \cap \mathcal{T}_n^{\varepsilon})$.

Solution: Firstly, if $\mathbb{P}(A_i) \geq 1 - \varepsilon_i$ for i = 1, 2, then $\mathbb{P}(A_1 \cap A_2) = \mathbb{P}(A_1) - \mathbb{P}(A_1 \cap A_2^c) \geq 1 - \varepsilon_1 - \varepsilon_2$.

Recall the set of typical sequences $\mathcal{T}_n^{\varepsilon}$. We know for any $\varepsilon > 0$, any n > 0, $\mathbb{P}(\vec{X} = \vec{x}) \in (2^{-n(H(X)+\varepsilon)}, 2^{-n(H(X)-\varepsilon)}]$, and there exists $n_0 > 0$, such that for any $n \ge n_0$,

$$\mathbb{P}(\vec{X} \in \mathcal{T}_n^{\varepsilon}) > 1 - \varepsilon$$
, and $|\mathcal{T}_n^{\varepsilon}| \in [(1 - \varepsilon)2^{n(H(X) - \varepsilon)}, 2^{nH(X) + \varepsilon}]$.

So for any $n \geq n_0$, we have

$$1 - 2\varepsilon \leq \mathbb{P}(\vec{X} \in \mathcal{S}_{n}^{\varepsilon} \cap \mathcal{T}_{n}^{\varepsilon})$$

$$= \sum_{\vec{x} \in \mathcal{S}_{n}^{\varepsilon} \cap \mathcal{T}_{n}^{\varepsilon}} \mathbb{P}(\vec{X} = \vec{x})$$

$$\leq \sum_{\vec{x} \in \mathcal{S}_{n}^{\varepsilon} \cap \mathcal{T}_{n}^{\varepsilon}} 2^{-n(H(X) - \varepsilon)}$$

$$\leq \sum_{\vec{x} \in \mathcal{S}_{n}^{\varepsilon}} 2^{-n(H(X) - \varepsilon)}$$

$$= |\mathcal{S}_{n}^{\varepsilon}| 2^{-n(H(X) - \varepsilon)}, \qquad (1)$$

hence $|\mathcal{S}_n^{\varepsilon}| \ge (1 - 2\varepsilon)2^{n(H(X) - \varepsilon)}$.

On the other hand, S_n^{ε} is the smallest set of probability $1 - \varepsilon$, hence $|S_n^{\varepsilon}| \leq |T_n^{\varepsilon}| \leq 2^{n(H(X)+\varepsilon)}$.

To complete the proof of Proposition 2.15 we know that by the minimality of $|\mathcal{S}_n^{\varepsilon}|$ we have

$$\frac{|\mathcal{S}_n^{\varepsilon}|}{|\mathcal{T}_n^{\varepsilon}|} \le 1.$$

Using that $|\mathcal{T}_n^{\varepsilon}| \leq 2^{n(H(X)+\epsilon)}$ we have from (1) that

$$\frac{\left|\mathcal{S}_{n}^{\varepsilon}\right|}{\left|\mathcal{T}_{n}^{\varepsilon}\right|} \ge (1 - 2\epsilon)2^{-2\epsilon n}.$$

Thus taking logs we have for each n and $\epsilon > 0$ that

$$\log(1 - 2\epsilon) - 2\epsilon n \le \log \frac{|\mathcal{S}_n^{\varepsilon}|}{|\mathcal{T}_n^{\varepsilon}|} \le 0.$$

Hence dividing by n, taking $n \to \infty$ gives

$$-2\epsilon \le \lim_{n \to \infty} \frac{1}{n} \log \frac{|\mathcal{S}_n^{\varepsilon}|}{|\mathcal{T}_n^{\varepsilon}|} \le 0.$$

Now take ϵ to 0 to get the result.

Section B

4. Let (X_i) be a sequence of independent and identically distributed random variables taking values in a discrete set \mathcal{X} and with pmf p.

Let \hat{p}_n be the empirical measure obtained from the first n samples; that is for $x \in \mathcal{X}$ we set

$$\hat{p}_n(x) = \frac{1}{n} \sum_{i=1}^n I_{\{X_i = x\}}.$$

 $(I_A \text{ is the indicator of the event } A).$

- (a) Show that for each x we have $\hat{p}_n(x) \to p(x)$ in probability as $n \to \infty$.
- (b) Show that

$$\mathbb{E}D(\hat{p}_{2n}||p) \le \mathbb{E}D(\hat{p}_n||p).$$

Hint: D is convex

(c) Show that the mean divergence from the true pmf decreases monotonically in the sample size used to generate the empirical measure:

$$\mathbb{E}D(\hat{p}_n||p) \le \mathbb{E}D(\hat{p}_{n-1}||p).$$

Hint: Write the empirical measure from n samples as an average of empirical measures with one sample deleted

5. We are given a fair coin, and want to generate a random variable X, by i.i.d. sampling from tossing the coin, such that X follows the distribution

$$\mathbb{P}(X=1) = p, \ \mathbb{P}(X=0) = 1 - p$$

for any given constant $p \in (0, 1)$.

Suppose Z_1, Z_2, \cdots are the results of independent tossing of the coin, i.e., $\{Z_i\}$ is an i.i.d. sequence of random variables with the distribution $\mathbb{P}(Z=0) = \mathbb{P}(Z=1) = \frac{1}{2}$. Let $U = \sum_{i=1}^{+\infty} Z_i 2^{-i}$, and define

$$X = \begin{cases} 1 & \text{if } U$$

- (a) Show that U follows a uniform distribution over [0,1), and hence show that $\mathbb{P}(X=1)=p,\ \mathbb{P}(X=0)=1-p.$
- (b) Let I be the minimal number n such that we can tell U < p based on $Z_1, \dots Z_n$. Calculate $\mathbb{E}[I]$ and show that $\mathbb{E}[I] \leq 2$.

6. Let X_1 be a random variable taking values in $\mathcal{X}_1 = \{1, 2, \dots, m\}$ and X_2 be a random variable taking values in $\mathcal{X}_2 = \{m+1, \dots, n\}$ for integers n > m. Let θ be a random variable with $\mathbb{P}(\theta = 1) = \alpha$, $\mathbb{P}(\theta = 2) = 1 - \alpha$ for some $\alpha \in [0, 1]$. Define a new random variable

$$X = X_{\theta}$$
.

Furthermore, suppose θ, X_1, X_2 are independent of each other.

- (a) Express H(X) in terms of $H(X_1), H(X_2)$ and $H(\theta)$.
- (b) Show that $2^{H(X)} \leq 2^{H(X_1)} + 2^{H(X_2)}$. Can the equality hold in this inequality?
- 7. (a) Let X be a random variable taking 6 values $\{A, B, C, D, E, F\}$ with probabilities 0.5, 0.25, 0.1, 0.05, 0.05, 0.05 respectively.
 - (i) Construct a binary Huffman code for this random variable and compute its expected length.
 - (ii) Construct a quaternary Huffman code for this random variable and compute its expected length. You may find it helpful to use $\{a, b, c, d\}$ for the symbols in the quaternary code.
 - (iii) Construct a binary code for the random variable by converting the symbols in the quaternary code to binary by setting $a \to 00, b \to 01, c \to 10, d \to 11$. What is the expected length of this code?
 - (b) We now consider any random variable X
 - (i) Let L_H be the expected length of the binary Huffman code for X and L_{QB} be the expected length of the binary code obtained by constructing the quaternary code and then converting to binary. Show that

$$L_H \le L_{QB} < L_H + 2.$$

Hint: You may want to compare with entropy

- (ii) Give an example where the optimal quaternary code gives the optimal binary code, so $L_H = L_{QB}$.
- (iii) In fact the upper bound can be reduced to $L_{QB} \leq L_H + 1$. Can you find an example where this bound is tight?

- 8. International Morse code is a ternary encoding of the Latin alphabet, traditionally represented as dots and dashes. A version of the encoding (written in terms of digits 0,1) is given in the file IMC.csv. Here we represent a dot as '10', a dash as '1110' and the pause between letters as '0000000' (representing the typical length of the dot-dash-pause).
 - (a) Explain why Morse code is a prefix code, but is not a uniquely decodable code if the ending pauses are excluded.
 - (b) Using the single letter counts and the Huffman algorithm, determine a binary code which encodes each single character as a single block.
 - (c) Using the single letter counts and the Huffman algorithm, determine a binary code which encodes each pair of characters as a single block, assuming characters are sampled independently.
 - (d) Using the double letter counts and the Huffman algorithm, determine a binary code which encodes each pair of consecutive letters as a single block.
 - (e) Using the double letter counts, evaluate the average message lengths of each of the codes above (including International Morse code), when used on pairs of consecutive English characters.

Remark: You only need to submit solutions to (a,e).

Section C

9. The differential entropy of a \mathbb{R}^n -valued random variable X with density function $f(\cdot)$ is defined as

$$h(X) := -\int_{\mathbb{R}^n} f(x) \log(f(x)) dx$$

with the convention $0 \log(0) = 0$.

- (a) Calculate h(X) for the following cases with n = 1.
 - (1) X is uniformly distributed on an interval $[a, b] \subset \mathbb{R}$;
 - (2) X is a standard normal distribution;
 - (3) X is exponential distributed with parameter $\lambda > 0$.
- (b) For general *n*-dimensional case, if $\mathbb{E}[X] = 0$, and Var(X) = K, (K is the variance-covariance matrix). Show that

$$h(X) \le n \log(\sqrt{2\pi e}) + \log(\sqrt{|K|})$$

with the equality hold iff X is multivariable normal.

Hint: you can firstly prove the continuous version of Gibbs' inequality: For any two density functions $f(\cdot)$ and $g(\cdot)$,

$$-\int f(x)\log(f(x))dx \le -\int f(x)\log(g(x))dx.$$

Also, you can try to prove (or use it without proof) the following property of the variance-covariance matrix: If $X = (X_1, \dots, X_n)^{\top}$ has expectation 0 and variance-covariance matrix Var(X) = K, then

$$\mathbb{E}[X^{\top}K^{-1}X] = n.$$

Solution:

(a) $h(X) = -\mathbb{E}[\log(f(X))] = \mathbb{E}[\log(1/f(X))].$

(a.1)
$$f(x) = \frac{1}{b-a}$$
 for any $x \in [a, b]$, and $f(x) = 0$ otherwise. So $h(X) = \mathbb{E}[\log(b - a)] = \log(b - a)$.

(a.2)
$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$
, so

$$h(X) = \mathbb{E}[\log(\sqrt{2\pi}e^{X^2/2})] = \log(\sqrt{2\pi}) + \mathbb{E}[\frac{X^2}{2}\log(e)]$$
$$= \log(\sqrt{2\pi}) + \frac{1}{2}\log(e) = \log(\sqrt{2\pi}e).$$

(a.3)
$$f(x) = \lambda e^{-\lambda x}$$
 for $x \ge 0$ and $f(x) = 0$ for $x < 0$. So
$$h(X) = \mathbb{E}[-\log(\lambda) + \lambda X \log(e)] = -\log(\lambda) + \lambda \log(e) \frac{1}{\lambda} = \log(e) - \log(\lambda).$$

(b) Let $X = (X_1, \dots, X_n)^{\top}$ be a normal random vector with mean $\mathbb{E}[X] = 0$ and variance $\mathbb{E}[X^{\top}X] = K$. Let g be its density function, i.e.

$$g(x) = \frac{1}{\sqrt{(2\pi)^n |K|}} e^{-\frac{1}{2}x^\top K^{-1}x} \quad \forall x \in \mathbb{R}^n.$$

We first calculate h(g).

$$\begin{split} h(g) &= -\mathbb{E}[\log(g(X))] \\ &= \frac{1}{2}\log((2\pi)^n|K|) + \frac{1}{2}\log(e)\mathbb{E}[X^\top K^{-1}X] \\ &= \frac{n}{2}\log(2\pi) + \frac{1}{2}\log|K| + \frac{1}{2}\log(e)n \\ &= \frac{n}{2}\log(2\pi e) + \frac{1}{2}\log|K| \\ &= n\log(\sqrt{2\pi e}) + \log(\sqrt{|K|}). \end{split}$$

Then we prove that $h(f) \leq h(g)$ for any f with mean 0 and variance-covariance matrix K. For any random vector Y with the density f, we have

$$\begin{split} h(f) &= -\mathbb{E}[\log(f(Y)] \\ &= -\mathbb{E}[\log(g(Y))] + \mathbb{E}[\log(g(Y)/f(Y))]. \end{split}$$

For the first term

$$\begin{split} -\mathbb{E}[\log(g(Y))] &= \frac{1}{2}\log((2\pi)^n|K|) + \frac{1}{2}\log(e)\mathbb{E}[Y^{\top}K^{-1}Y] \\ &= -\mathbb{E}[\log(g(X))] = h(g). \end{split}$$

For the second term, by Jensen's inequality,

$$\begin{split} \mathbb{E}[\log(g(Y)/f(Y))] &\leq \log(\mathbb{E}[g(Y)/f(Y)]) \\ &= \log(1) = 0. \end{split}$$

So we get $h(f) \leq h(g)$, and the equality hold iff $g(Y) \equiv f(Y)$.

- 10. Prove the following weaker version of the Kraft-McMillan theorem (called Kraft's theorem) using rooted trees
 - (a) Let $c: \mathcal{X} \mapsto \{0, \dots, d-1\}^*$ be a prefix code. Consider its code-tree and argue that $\sum_{x \in \mathcal{X}} d^{-|c(x)|} \leq 1$. [Note that the assumption that c is a prefix code is crucial here, otherwise the code-tree cannot be defined to begin with. In the Kraft-McMillan theorem from the lecture we only require c to be uniquely decodable].
 - (b) Assume that $\sum_{x \in \mathcal{X}} d^{-l_x} \leq 1$ with $l_x \in \mathbb{N}$. Show that there exists a prefix code c with codeword lengths $|c(x)| = l_x$ for $x \in \mathcal{X}$ by constructing a rooted tree.

Solution: A prefix code is equivalent to a rooted tree, where each codeword corresponds to a path from a leave to the root.

- (a) We call a d-ary tree semi-complete if every non-leaf vertex has d direct descendants. In a semi-complete d-ary tree for any leaf x, denote h(x) as the height from the root to the tree with h(root) = 0. It is easy to check that $\sum_{\text{every leaf } x} d^{-h(x)} = 1$. For the code-tree of a prefix code, it can be expanded to a semi-complete tree by adding some leaves to a non-leave vertex. Hence $\sum_{\text{every leaf } x} d^{-h(x)} \leq 1$.
- (b) We call a d-ary tree complete with height h if it is semi-complete, the distance from each leaf to the root is h.

Given l_x satisfies the condition, denote $h = \max_x l_x$, then we can construct a d-ary complete tree with maximal height h.

Suppose $l_1 \leq l_2 \leq \cdots \leq l_m$. We mark nodes and cut branches of a complete tree as follows:

- (1) Take i = 1.
- (2) Find the first non-marked node on the left of the tree with height l_i , cut off its descendant vertices, and mark all ancestral vertices (including itself) and their edges down to the root.
- (3) Set i = i + 1 and repeat (2) until i = m + 1.

For each x, we find a vertex with height l_x , cut off its descendant vertices and mark it the leaf of x, and mark all ancestral vertices and edges between the leaf x and the root.

By the assumption $\sum_{i=1}^{m} d^{-l_i} \leq 1$, we know we can run this construction for all $k \leq m$ (otherwise, if we cannot find a node with height l_k at some $k \leq m$, then it must happen that $\sum_{i=1}^{k} d^{-l_x} > 1$).

The labels of all marked vertices and the i^{th} leaf in the algorithm corresponds to the codeword i.