
B8.4 Information Theory

Sheet 2 — MT25

Section A

1. (a) Let (Xi) be a sequence of independent and identically distributed random variables

taking values in a discrete set X and with pmf p. Let q be another probability mass

function on X such that q(x1, . . . , xn) =
∏n

i=1 q(xi). Show that, in probability,

lim
n→∞

− 1

n
log q(X1, X2, . . . , Xn) = D(p||q) +H(X).

(b) Let (Yi) be a sequence of independent and identically distributed uniform random

variables on [0, 1]. Let Vn =
∏n

i=1 Yi be the volume of an n-dimensional box with

side lengths Yi. Let ln = V
1/n
n , the side length of the box with equal edges which

has the same volume. Find l = limn→∞ ln and compare it with limn→∞(EVn)
1/n.

Solution: (a)Using the form of q we have

− 1

n
log q(X1, X2, . . . , Xn) = − 1

n

n∑
i=1

log q(Xi).

Applying the WLLN we have convergence in probability

− 1

n

n∑
i=1

log q(Xi) → E (− log q(X))

= −
∑
x∈X

p(x) log q(x)

=
∑
x∈X

(
p(x) log

p(x)

q(x)
− p(x) log p(x)

)
= D(p||q) +H(X).

This convergence also holds almost surely by the SLLN.

(b) We just apply the WLLN to find l

V 1/n
n =

(
n∏

i=1

Yi

)1/n

= exp(
1

n

n∑
i=1

log Yi) → exp(E log(Y )) = exp(−1) = l.

Also EVn =
∏n

i=1 EYi by independence and so limn→∞(EVn)
1/n = 1/2. The typical box

volume is much smaller than that of the box with mean side lengths.
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2. For any q ∈ [0, 1] and n ∈ N such that nq is an integer, show that

2nH(q)

n+ 1
≤
(
n

nq

)
≤ 2nH(q).

Hint: Consider the i.i.d. Bernoulli sequence X1, X2, · · · , Xn with probabilities defined

by P(X = 1) = q, P(X = 0) = 1− q.

Solution: As in the hint, construct an i.i.d. sequence X1, X2, · · · , Xn with P(X = 1) =

q, P(X = 0) = 1− q. Let Sn =
∑n

i=1Xi, and Γ = {(x1, · · · , xn) : xi ∈ {0, 1},
∑n

i=1 xi =

nq}. Then the number of elements in Γ is

|Γ| =
(
n

nq

)
.

It is easy to see that

P(Sn = np) =
∑

(x1,··· ,xn)∈Γ

P{(X1, · · · , Xn) = (x1, · · · , xn)}

=
∑

(x1,··· ,xn)∈Γ

qnq(1− q)n(1−q)

= |Γ|2−nH(q).

On one hand, it is trivial that P(Sn = nq) < 1.

On the other hand, we know Sn follows the binomial distribution with parameter n and

q. If we let pk = P(Sn = k) =
(
n
nq

)
qk(1− q)n−k, then

pk+1

pk
=

n− k

k + 1

q

1− q
,

so

pk+1 ≤ pk ⇔ (n− k)q ≤ (k + 1)(1− q)

⇔ nq ≤ kq + (k + 1)(1− q) = k + (1− q)

⇔ k ≥ nq − (1− q).

When nq = k0 is an integer, we can see pk is increasing over k ≤ k0 and decreasing over

k > k0, which means nq achieves the maximal value of pk, and hence

P(Sn = nq) ≥ 1

n+ 1
.

Together with the equality P(Sn = nq) = |Γ|2−nH(q), we have

2nH(q) ≥
(
n

nq

)
≥ 2nH(q)

n+ 1
.
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3. Let X be a random variable taking values in a finite set X with pmf p. We write

X⃗ = (X1, · · · , Xn) for a random variable in X n. We label elements in X in non-

decreasing order according to p(x), so that pi = P(X = xi) is non-decreasing in i. Using

this we can rank the probability P(X⃗ = x⃗) for all x⃗ = (x1, · · · , xn) ∈ X n, and explicitly

construct the smallest subset Sε
n of X n, by greedily including the elements in X n with

highest probabilities one-by-one, such that P(X⃗ ∈ Sε
n) ≥ 1− ε.

Show that for any ε > 0, there exists n0, such that for any n ≥ n0, we have

(1− 2ε)2n(H(X)−ε) ≤ |Sε
n| ≤ 2n(H(X)+ε).

Use this to complete the proof of Proposition 2.15 in the lecture notes.

Hint: For any ε1 ∈ [0, 1), ε2 ∈ [0, 1) and events A,B with P(A) ≥ 1− ε1,P(B) ≥ 1− ε2,

show that P(A ∩B) ≥ 1− ε1 − ε2. Use this inequality to estimate P(Sε
n ∩ T ε

n ).

Solution: Firstly, if P(Ai) ≥ 1−εi for i = 1, 2, then P(A1∩A2) = P(A1)−P(A1∩Ac
2) ≥

1− ε1 − ε2.

Recall the set of typical sequences T ε
n . We know for any ε > 0, any n > 0, P(X⃗ = x⃗) ∈

(2−n(H(X)+ε), 2−n(H(X)−ε)], and there exists n0 > 0, such that for any n ≥ n0,

P(X⃗ ∈ T ε
n ) ≥ 1− ε, and |T ε

n | ∈ [(1− ε)2n(H(X)−ε), 2nH(X)+ε].

So for any n ≥ n0, we have

1− 2ε ≤ P(X⃗ ∈ Sε
n ∩ T ε

n )

=
∑

x⃗∈Sε
n∩T ε

n

P(X⃗ = x⃗)

≤
∑

x⃗∈Sε
n∩T ε

n

2−n(H(X)−ε)

≤
∑
x⃗∈Sε

n

2−n(H(X)−ε)

= |Sε
n|2−n(H(X)−ε), (1)

hence |Sε
n| ≥ (1− 2ε)2n(H(X)−ε).

On the other hand, Sε
n is the smallest set of probability 1 − ε, hence |Sε

n| ≤ |T ε
n | ≤

2n(H(X)+ε).

To complete the proof of Proposition 2.15 we know that by the minimality of |Sε
n| we

have
|Sε

n|
|T ε

n |
≤ 1.
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Using that |T ε
n | ≤ 2n(H(X)+ϵ) we have from (1) that

|Sε
n|

|T ε
n |

≥ (1− 2ϵ)2−2ϵn.

Thus taking logs we have for each n and ϵ > 0 that

log(1− 2ϵ)− 2ϵn ≤ log
|Sε

n|
|T ε

n |
≤ 0.

Hence dividing by n, taking n → ∞ gives

−2ϵ ≤ lim
n→∞

1

n
log

|Sε
n|

|T ε
n |

≤ 0.

Now take ϵ to 0 to get the result.
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Section B

4. Let (Xi) be a sequence of independent and identically distributed random variables

taking values in a discrete set X and with pmf p.

Let p̂n be the empirical measure obtained from the first n samples; that is for x ∈ X we

set

p̂n(x) =
1

n

n∑
i=1

I{Xi=x}.

(IA is the indicator of the event A).

(a) Show that for each x we have p̂n(x) → p(x) in probability as n → ∞.

(b) Show that

ED(p̂2n||p) ≤ ED(p̂n||p).

Hint: D is convex

(c) Show that the mean divergence from the true pmf decreases monotonically in the

sample size used to generate the empirical measure:

ED(p̂n||p) ≤ ED(p̂n−1||p).

Hint: Write the empirical measure from n samples as an average of empirical

measures with one sample deleted

5. We are given a fair coin, and want to generate a random variable X, by i.i.d. sampling

from tossing the coin, such that X follows the distribution

P(X = 1) = p, P(X = 0) = 1− p

for any given constant p ∈ (0, 1).

Suppose Z1, Z2, · · · are the results of independent tossing of the coin, i.e., {Zi} is an

i.i.d. sequence of random variables with the distribution P(Z = 0) = P(Z = 1) = 1
2
.

Let U =
∑+∞

i=1 Zi2
−i, and define

X =

{
1 if U < p

0 otherwise
.

(a) Show that U follows a uniform distribution over [0, 1), and hence show that P(X =

1) = p, P(X = 0) = 1− p.

(b) Let I be the minimal number n such that we can tell U < p based on Z1, · · ·Zn.

Calculate E[I] and show that E[I] ≤ 2.
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6. Let X1 be a random variable taking values in X1 = {1, 2, · · · ,m} and X2 be a random

variable taking values in X2 = {m + 1, · · · , n} for integers n > m. Let θ be a random

variable with P(θ = 1) = α, P(θ = 2) = 1−α for some α ∈ [0, 1]. Define a new random

variable

X = Xθ.

Furthermore, suppose θ,X1, X2 are independent of each other.

(a) Express H(X) in terms of H(X1), H(X2) and H(θ).

(b) Show that 2H(X) ≤ 2H(X1) + 2H(X2). Can the equality hold in this inequality?

7. (a) Let X be a random variable taking 6 values {A,B,C,D,E, F} with probabilities

0.5, 0.25, 0.1, 0.05, 0.05, 0.05 respectively.

(i) Construct a binary Huffman code for this random variable and compute its

expected length.

(ii) Construct a quaternary Huffman code for this random variable and compute

its expected length. You may find it helpful to use {a, b, c, d} for the symbols

in the quaternary code.

(iii) Construct a binary code for the random variable by converting the symbols

in the quaternary code to binary by setting a → 00, b → 01, c → 10, d → 11.

What is the expected length of this code?

(b) We now consider any random variable X

(i) Let LH be the expected length of the binary Huffman code for X and LQB be

the expected length of the binary code obtained by constructing the quaternary

code and then converting to binary. Show that

LH ≤ LQB < LH + 2.

Hint: You may want to compare with entropy

(ii) Give an example where the optimal quaternary code gives the optimal binary

code, so LH = LQB.

(iii) In fact the upper bound can be reduced to LQB ≤ LH + 1. Can you find an

example where this bound is tight?
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8. International Morse code is a ternary encoding of the Latin alphabet, traditionally

represented as dots and dashes. A version of the encoding (written in terms of digits

0,1) is given in the file IMC.csv. Here we represent a dot as ’10’, a dash as ’1110’ and

the pause between letters as ‘0000000’ (representing the typical length of the dot-dash-

pause).

(a) Explain why Morse code is a prefix code, but is not a uniquely decodable code if

the ending pauses are excluded.

(b) Using the single letter counts and the Huffman algorithm, determine a binary code

which encodes each single character as a single block.

(c) Using the single letter counts and the Huffman algorithm, determine a binary code

which encodes each pair of characters as a single block, assuming characters are

sampled independently.

(d) Using the double letter counts and the Huffman algorithm, determine a binary code

which encodes each pair of consecutive letters as a single block.

(e) Using the double letter counts, evaluate the average message lengths of each of the

codes above (including International Morse code), when used on pairs of consecutive

English characters.

Remark: You only need to submit solutions to (a,e).

Mathematical Institute, University of Oxford Page 7 of 10



B8.4 Information Theory: Sheet 2 — MT25

Section C

9. The differential entropy of a Rn-valued random variable X with density function f(·) is
defined as

h(X) := −
∫
Rn

f(x) log(f(x))dx

with the convention 0 log(0) = 0.

(a) Calculate h(X) for the following cases with n = 1.

(1) X is uniformly distributed on an interval [a, b] ⊂ R;

(2) X is a standard normal distribution;

(3) X is exponential distributed with parameter λ > 0.

(b) For general n-dimensional case, if E[X] = 0, and Var(X) = K, (K is the variance-

covariance matrix). Show that

h(X) ≤ n log(
√
2πe) + log(

√
|K|)

with the equality hold iff X is multivariable normal.

Hint: you can firstly prove the continuous version of Gibbs’ inequality: For any two

density functions f(·) and g(·),

−
∫

f(x) log(f(x))dx ≤ −
∫

f(x) log(g(x))dx.

Also, you can try to prove (or use it without proof) the following property of the

variance-covariance matrix: If X = (X1, · · · , Xn)
⊤ has expectation 0 and variance-

covariance matrix Var(X) = K, then

E[X⊤K−1X] = n.

Solution:

(a) h(X) = −E[log(f(X)] = E[log(1/f(X))].

(a.1) f(x) = 1
b−a

for any x ∈ [a, b], and f(x) = 0 otherwise. So h(X) = E[log(b −
a)] = log(b− a).

(a.2) f(x) = 1√
2π
e−x2/2, so

h(X) = E[log(
√
2πeX

2/2)] = log(
√
2π) + E[

X2

2
log(e)]

= log(
√
2π) +

1

2
log(e) = log(

√
2πe).
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(a.3) f(x) = λe−λx for x ≥ 0 and f(x) = 0 for x < 0. So

h(X) = E[− log(λ) + λX log(e)] = − log(λ) + λ log(e)
1

λ
= log(e)− log(λ).

(b) Let X = (X1, · · · , Xn)
⊤ be a normal random vector with mean E[X] = 0 and

variance E[X⊤X] = K. Let g be its density function, i.e.

g(x) =
1√

(2π)n|K|
e−

1
2
x⊤K−1x ∀x ∈ Rn.

We first calculate h(g).

h(g) = −E[log(g(X))]

=
1

2
log((2π)n|K|) + 1

2
log(e)E[X⊤K−1X]

=
n

2
log(2π) +

1

2
log |K|+ 1

2
log(e)n

=
n

2
log(2πe) +

1

2
log |K|

= n log(
√
2πe) + log(

√
|K|).

Then we prove that h(f) ≤ h(g) for any f with mean 0 and variance-covariance

matrix K. For any random vector Y with the density f , we have

h(f) = −E[log(f(Y )]

= −E[log(g(Y ))] + E[log(g(Y )/f(Y ))].

For the first term

−E[log(g(Y ))] =
1

2
log((2π)n|K|) + 1

2
log(e)E[Y ⊤K−1Y ]

= −E[log(g(X))] = h(g).

For the second term, by Jensen’s inequality,

E[log(g(Y )/f(Y ))] ≤ log(E[g(Y )/f(Y )])

= log(1) = 0.

So we get h(f) ≤ h(g), and the equality hold iff g(Y ) ≡ f(Y ).
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10. Prove the following weaker version of the Kraft-McMillan theorem (called Kraft’s the-

orem) using rooted trees

(a) Let c : X 7→ {0, · · · , d−1}∗ be a prefix code. Consider its code-tree and argue that∑
x∈X d−|c(x)| ≤ 1. [Note that the assumption that c is a prefix code is crucial here,

otherwise the code-tree cannot be defined to begin with. In the Kraft-McMillan

theorem from the lecture we only require c to be uniquely decodable].

(b) Assume that
∑

x∈X d−lx ≤ 1 with lx ∈ N. Show that there exists a prefix code c

with codeword lengths |c(x)| = lx for x ∈ X by constructing a rooted tree.

Solution: A prefix code is equivalent to a rooted tree, where each codeword corresponds

to a path from a leave to the root.

(a) We call a d-ary tree semi-complete if every non-leaf vertex has d direct descendants.

In a semi-complete d-ary tree for any leaf x, denote h(x) as the height from the

root to the tree with h(root) = 0. It is easy to check that
∑

every leaf x d
−h(x) = 1.

For the code-tree of a prefix code, it can be expanded to a semi-complete tree by

adding some leaves to a non-leave vertex. Hence
∑

every leaf x d
−h(x) ≤ 1.

(b) We call a d-ary tree complete with height h if it is semi-complete, the distance from

each leaf to the root is h.

Given lx satisfies the condition, denote h = maxx lx, then we can construct a d-ary

complete tree with maximal height h.

Suppose l1 ≤ l2 ≤ · · · ≤ lm. We mark nodes and cut branches of a complete tree

as follows:

(1) Take i = 1.

(2) Find the first non-marked node on the left of the tree with height li, cut off

its descendant vertices, and mark all ancestral vertices (including itself) and

their edges down to the root.

(3) Set i = i+ 1 and repeat (2) until i = m+ 1.

For each x, we find a vertex with height lx, cut off its descendant vertices and mark

it the leaf of x, and mark all ancestral vertices and edges between the leaf x and

the root.

By the assumption
∑m

i=1 d
−li ≤ 1, we know we can run this construction for all

k ≤ m (otherwise, if we cannot find a node with height lk at some k ≤ m, then it

must happen that
∑k

i=1 d
−lx > 1).

The labels of all marked vertices and the ith leaf in the algorithm corresponds to

the codeword i.
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