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0 Introduction

These notes accompany my lecture on Probability, Measure and Martingales (B8.1). However, I cannot claim
authorship of these notes since they are a essentially a modified version of two sets of notes given to me by Jan
Obłój and James Martin. I express my deep gratitude to Jan and James for providing me with such excellent
lecture notes. Their notes are, in turn, based on notes by Alison Etheridge, Oliver Riordan, and Zhongmin
Qian. Naturally, all errors are mine. While the lecturers (as well as the name) of this course have changed over
the years, the syllabus did not change significantly. However, there are a few differences in what each lecturer
emphasized. My goal is to provide a rigorous foundation in measure theory and probability that still leaves time
to develop intuition and see why the theory of stochastic processes is so fascinating; both mathematically and in
terms of applications.

The examinable material is summarised in the syllabus and covered in the lectures – nothing less or more is
examinable.

Please send your comments and corrections to oberhauser@maths.ox.ac.uk. Thank you!

0.1 Background

In the last fifty years probability theory has emerged both as a core mathematical discipline, sitting alongside
geometry, algebra and analysis, and as a fundamental way of thinking about the world. It provides the rigor-
ous mathematical framework necessary for modelling and understanding the inherent randomness in the world
around us. It has become an indispensable tool in many disciplines – from physics to neuroscience, from genet-
ics to communication networks, and, of course, in mathematical finance. Equally, probabilistic approaches have
gained importance in mathematics itself, from number theory to partial differential equations.

Our aim in this course is to introduce some of the key tools that allow us to unlock this mathematical
framework. We build on the measure theory that we learned in Part A Integration and develop the mathematical
foundations essential for more advanced courses in analysis and probability. We’ll then introduce the powerful
concept of martingales and explore just a few of their remarkable properties.
The nearest thing to a course text is

• David Williams, Probability with Martingales, CUP.

Also highly recommended are:

• R. Durrett, Probability: theory and examples, 5th Edition, CUP 2019 (online).
The new edition of this classic. Packed with insightful examples and problems.

• P.-A. Meyer, Probability and Potentials, Blaisdell Publishing Company, 1966.
This is more extensive than Williams, use for deep-dives.

• M. Capiński and P. E. Kopp, Measure, integral and probability, Springer, 1999.
A gentle guided intro to measure theory. Use if you feel lost on our way.
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• S.R.S. Varadhan, Probability Theory, Courant Lecture Notes Vol. 7.
A classic. Not for the faint-hearted.

• ... and more. Feel free to ask if you are missing a book, anything from a bedtime

read to a real challenge.

Page 2



Harald Oberhauser MT 2025, B8.1: Probability, Measure and Martingales

Contents

0 Introduction 1
0.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 Example 1: Simple Symmetric Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.3 Example 2: Mathematical Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.4 Example 3: The Galton–Watson Branching Process . . . . . . . . . . . . . . . . . . . . . . . . 6

1 Measure spaces 8

Page 3



Harald Oberhauser MT 2025, B8.1: Probability, Measure and Martingales

0.2 Example 1: Simple Symmetric Random Walk

Consider a sequence of independent random variables (Xn)n⩾1, all with the same distribution

P(Xn =−1) = P(Xn = 1) = 1
2 .

Note that E[Xn] = 0 and Var(Xn) = E[X2
n ] = 1. Let S0 = 0,

Sn =
n

∑
k=1

Xk, n ⩾ 1,

denote their cumulative sums. This process is known as the simple symmetric random walk. Using that the
increments have mean 0 we see that

E[Sn|Sn−1, . . . ,S0] = E[Sn|Sn−1] = Sn−1 +E[Xn] = Sn−1.

This property capture something essential about the stochastic process (Sn)n: the current value of the process is
the best prediction we can make about its future value given the whole history of the process. A process with
this property is called a martingale and we’ll give it a proper definition later on (a first step towards this it give
rigorous meaning to conditional expectations). For now, ignore the strange name martingale1 and just note that
from this perspective, it is not surprising that martingales show up in many applications. Indeed, martingales
form one of the major building blocks in the theory of stochastic processes.

There are many questions one could be interested in if we want to understand the behaviour of the process;
one of the first ones is its long-time behaviour. From the weak law of large numbers we know that

Sn

n
−→ 0

in probability. Later on, we will show that this convergence actually takes place almost surely. This is a
non-trivial extension: it took mathematicians over 200 years to prove it! You also have seen that the speed of
this convergence can be described using the Gaussian distribution, namely

Sn√
n

d−→ N (0,1).

Put differently, if I run 100 simulations of my SSRW then, for a large n, and I plot Sn/
√

n then I expect only 2
paths or so to breach the interval (−2.326,2.326).

So, can we say something more about those two paths? Those rare paths, how do they behave? This is
governed by the law of the iterated logarithm. It turns out that

limsup
n→∞

Sn√
n log logn

=
√

2 and liminf
n→∞

Sn√
n log logn

=−
√

2, a.s.

See Figure 1 for a visualization. Note that although the process evolves in a completely random fashion, we just
managed to gain structural insights about its behaviour and this is just the start of a rich theory.

0.3 Example 2: Mathematical Finance

Suppose (Sn)n⩾0 is sequence of random variables modelling the price process of some risky asset, i.e., Sn is the
share price at time n. A trader is buying and selling the stock. At time n, they have wealth Vn and decide to

1The name martingale comes from some weird historical reasons.
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SSRW paths Sn
n

Sn√
n on the (−2.326,2.326) interval Sn√

n log logn on the interval (−
√

2,
√

2)

Figure 1: Limiting behaviour of a SSRW

buy/sell Hn = Hn(S0,S1, . . . ,Sn) shares. At time n+ 1, they will have HnSn+1 in shares while their remaining
capital/debt grew at rate r:

Vn+1 = HnSn+1 +(Vn −HnSn)(1+ r) = Hn(Sn+1 − (1+ r)Sn)+Vn(1+ r).

If we introduce discounted quantities

Ṽn := (1+ r)−nVn, and S̃n := (1+ r)−nSn
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then the above is re-written as

Ṽn+1 = Hn(S̃n+1 − S̃n)+Ṽn = . . .=V0 +
n

∑
t=1

Ht(S̃t+1 − S̃t),

an object we will study under the name of discrete stochastic integral or a martingale transform; again, we’ll
study this in much more generality later.

Suppose at time t = 0 someone wants to purchase from the trader a financial product which, at time t = N,
will have payoff f (S0,S1, . . . ,SN). What price should the trader set for this product? If they can find a trading
strategy H such that f = VN above, then clearly V0 is the fair price as it allows the trader to reproduce (hedge)
the associated risk fully. But when is this possible and how to find V0? One example is given by the binomial
model.

Proposition 0.1 (Binomial Model pricing). Suppose there exist two constants u,d such that 0 < 1− d < 1 <
1+ r < 1+u and Sn+1 ∈ {(1+u)Sn,(1−d)Sn} a.s., for all n ⩾ 0. Then for any f , there exists V0,H such that
f = VN a.s. In addition, there exists a unique probability measure Q such that (S̃n)n⩾0 is a Q-martingale and
V0 = (1+ r)−NEQ[ f (S0, . . . ,SN)].

The take-away message is that although the original process (the stock price) may not be a martingale itself,
after a transformation it turns into a martingale. This is useful since it allows to use martingale theory to study
the original process. Indeed, this is not special to finance and in many applications there is a martingale lurking
somewhere. For our next example, we revisit an example from biology that you probably have encountered in
Part A Probability.

0.4 Example 3: The Galton–Watson Branching Process

In spite of earlier work by Bienaymé, the Galton–Watson branching process is attributed to the great polymath
Sir Francis Galton and the Revd Henry Watson. Like many Victorians, Galton was worried about the demise of
English family names. He posed a question in the Educational Times of 1873. He wrote

The decay of the families of men who have occupied conspicuous positions in past times has been
a subject of frequent remark, and has given rise to various conjectures. The instances are very
numerous in which surnames that were once common have become scarce or wholly disappeared.
The tendency is universal, and, in explanation of it, the conclusion has hastily been drawn that a
rise in physical comfort and intellectual capacity is necessarily accompanied by a diminution in
‘fertility’. . .

He went on to ask “What is the probability that a name dies out by the ‘ordinary law of chances’?”
Watson sent a solution which they published jointly the following year. The first step was to distill the

problem into a workable mathematical model; that model, formulated by Watson, is what we now call the
Galton–Watson branching process. Let’s state it formally:

Definition 0.2 (Galton–Watson branching process). Let (Xn,r)n,r⩾1 be an infinite array of independent identically
distributed random variables, each with the same distribution as X , where

P[X = k] = pk, k = 0,1,2, . . .

The sequence (Zn)n⩾0 of random variables defined by

1. Z0 = 1,

2. Zn = Xn,1 + · · ·+Xn,Zn−1 for n ⩾ 1
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is the Galton–Watson branching process (started from a single ancestor) with offspring distribution X .

In the original setting, the random variable Zn models the number of male descendants of a single male
ancestor after n generations. However this model is applicable to a much wider set of scenarios. You could, for
example, see it as a very rudimentary model for spreading a virus, such as Covid-19. Here, each ‘generation’
lasts maybe 2 weeks and Zn is the current number of infected individuals. Each of them, independently of the
others and in the same manner, then infects further individuals.

In analyzing this process, key roles are played by the expectation m = E[X ] = ∑
∞
k=0 kpk, which we shall as-

sume to be finite, and by the probability generating function f = fX of X , defined by f (θ) =E[θ X ] = ∑
∞
k=0 pkθ k.

Claim 0.3. Let fn(θ) = E[θ Zn ]. Then fn is the n-fold composition of f with itself (where by convention a 0-fold
composition is the identity).

‘Proof’
We proceed by induction. First note that f0(θ) = θ , so f0 is the identity. Assume that n ⩾ 1 and fn−1 =

f ◦ · · · ◦ f is the (n−1)-fold composition of f with itself. To compute fn, first note that

E
[

θ
Zn
∣∣Zn−1 = k

]
= E

[
θ

Xn,1+···+Xn,k
]

= E
[
θ

Xn,1
]
· · ·E

[
θ

Xn,k
]

(independence)

= f (θ)k,

(since each Xn,i has the same distribution as X). Hence

E
[

θ
Zn
∣∣Zn−1

]
= f (θ)Zn−1 . (1)

This is our first example of a conditional expectation; we’ll give a rigorous defintion of conditional expectations
later. Notice that the right hand side of (1) is a random variable. Now

fn(θ) = E
[
θ

Zn
]

= E
[
E
[

θ
Zn
∣∣Zn−1

]]
(2)

= E
[

f (θ)Zn−1
]

= fn−1 ( f (θ)) ,

and the claim follows by induction. 2

In (2) we have used what is called the tower property of conditional expectations. In this example you can
make all this work with the Partition Theorem of Prelims (because the events {Zn = k} form a countable partition
of the sample space). In the general theory that follows, we’ll see how to replace the Partition Theorem when
the sample space is more complicated, for example when considering continuous random variables.

Watson wanted to establish the extinction probability of the branching process, i.e., the probability that
Zn = 0 for some n.

Claim 0.4. Let q = P[Zn = 0 for some n]. Then q is the smallest root in [0,1] of the equation θ = f (θ). In
particular, assuming p1 = P[X = 1]< 1,

• if m = E[X ]⩽ 1, then q = 1,

• if m = E[X ]> 1, then q < 1.

‘Proof’
Let qn = P[Zn = 0] = fn(0). Since {Zn = 0} ⊆ {Zn+1 = 0} we see that qn is an increasing function of n and,

intuitively,
q = lim

n→∞
qn = lim

n→∞
fn(0). (3)

Since fn+1(0) = f ( fn(0)) and f is continuous, (3) implies that q satisfies q = f (q).
Now observe that f is convex (i.e., f ′′ ⩾ 0) and f (1) = 1, so only two things can happen, depending upon

the value of m = f ′(1):
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1

f (θ)

θ00
µ ⩽ 1 1

θ θ

1
µ > 10

0

1

0

f (θ)

In the case m > 1, to see that q must be the smaller root θ0, note that f is increasing, and 0 = q0 ⩽ θ0. It follows
by induction that qn ⩽ θ0 for all n, so q ⩽ θ0. 2

It’s not hard to guess the result above for m > 1 and m < 1, but the case m = 1 is far from obvious.
The extinction probability is only one statistic that we might care about. For example, we might ask whether

we can say anything about the way in which the population grows or declines. Consider

E [Zn+1 | Zn = k] = E [Xn+1,1 + · · ·+Xn+1,k] = km (linearity of expectation). (4)

In other words E[Zn+1 | Zn] = mZn (another conditional expectation). Now write

Mn =
Zn

mn .

Then
E [Mn+1 | Mn] = Mn.

In fact, more is true:
E [Mn+1 | M0,M1, . . . ,Mn] = Mn.

Again we encounter a martingale!
It is natural to ask whether Mn has a limit as n → ∞ and, if so, can we say anything about that limit? We’re

going to develop the tools to answer these questions, but for now, notice that for m ⩽ 1 we have ‘proved’ that
M∞ = limn→∞ Mn = 0 with probability one, so

0 = E[M∞] ̸= lim
n→∞

E[Mn] = 1. (5)

We’re going to have to be careful in passing to limits, just as we discovered in Part A Integration. Indeed (5)
may remind you of Fatou’s Lemma from Part A.

One of the main aims of this course is to provide the tools needed to make arguments such as that presented
above precise. Other key aims are to make sense of, and study, martingales in more general contexts. This
involves defining conditional expectation when conditioning on a continuous random variable.

1 Measure spaces

We begin by recalling some definitions that you encountered in Part A Integration (and, although they were
not emphasized there, in Prelims Probability). The idea is that we want to be able to assign a ‘mass’ or ‘size’
to subsets of a space in a consistent way. In particular, for us these subsets will be ‘events’ or ‘collections of
outcomes’ (subsets of a probability sample space Ω) and the ‘mass’ will be a probability (a measure of how
likely that event is to occur).

Recall that P(Ω) denotes the power set of Ω, i.e., the set of all subsets of Ω.
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Definition 1.1 (Algebras and σ -algebras). Let Ω be a set and let A ⊆ P(Ω) be a collection of subsets of Ω.

1. We say that A is an algebra (on Ω) if /0 ∈ A and for all A,B ∈ A , Ac = Ω\A ∈ A and A∪B ∈ A .

2. We say that A is a σ -algebra (on Ω) if /0 ∈ A , A ∈ A implies Ac ∈ A , and for all sequences (An)n⩾1 of
elements of A ,

⋃
∞
n=1 An ∈ A .

Since intersections can be built up from complements and unions, an algebra is closed under finite set
operations; a σ -algebra is closed under countable set operations. Often we don’t bother saying ‘on Ω’, but
note that Ac makes sense only if we know which set Ω we are talking about. We tend to write F for a σ -algebra
(also called a σ -field by some people).

Definition 1.2 (Set functions). Let A be any set of subsets of Ω containing the empty set /0. A set function on
A is a function µ : A → [0,∞] with µ( /0) = 0. We say that µ is

1. increasing if for all A,B ∈ A with A ⊆ B,

µ(A)⩽ µ(B),

2. additive if for all disjoint A,B ∈ A with A∪B ∈ A (note that we must specify this in general)

µ(A∪B) = µ(A)+µ(B),

3. countably additive, or σ -additive, if for all sequences (An) of disjoint sets in A with
⋃

∞
n=1 An ∈ A

µ

(
∞⋃

n=1

An

)
=

∞

∑
n=1

µ(An).

A measure space is then simply a set Ω equipped with a σ -algebra F and a countably additive set function
µ on F .

Definition 1.3 (Measure spaces). A measurable space is a pair (Ω,F ) where F is a σ -algebra on Ω.
A measure space is a triple (Ω,F ,µ) where Ω is a set, F is a σ -algebra on Ω and µ : F → [0,∞] is a countably
additive set function. We call µ is a measure on (Ω,F ) and say that µ is

1. finite if µ(Ω)< ∞,

2. σ -finite if there is a sequence (En)n⩾1 of sets from F with µ(En)< ∞ for all n and
⋃

∞
n=1 En = Ω,

3. a probability measure if µ(Ω) = 1.

Convention: if µ is a probability measure we call (Ω,F ,µ) a probability space and often use the notation
P instead of µ to emphasize this.

Any measure µ is also additive and increasing. Recall from Part A Integration that measures also respect
monotone limits.

Notation: For a sequence (Fn)n⩾1 of sets, Fn ↑ F means Fn ⊆ Fn+1 for all n and
⋃

∞
n=1 Fn = F . Similarly, Gn ↓ G

means Gn ⊇ Gn+1 for all n and
⋂

∞
n=1 Gn = G.

Lemma 1.4 (Monotone convergence properties). Let (Ω,F ,µ) be a measure space.

1. If (Fn)n⩾1 is a sequence of sets from F with Fn ↑ F, then µ(Fn) ↑ µ(F) as n → ∞,
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2. If (Gn)n⩾1 is a sequence of sets from F with Gn ↓ G, and µ(Gk)< ∞ for some k ∈ N, then µ(Gn) ↓ µ(G)
as n → ∞.

Proof. See Part A Integration (or Exercise).

Note that µ(Gk) < ∞ is essential in (ii): for example take Gn = (n,∞) ⊆ R and Lebesgue measure. The
following partial converse is sometimes useful.

Lemma 1.5. Let µ : A → [0,∞) be an additive set function on an algebra A taking only finite values. Then µ

is countably additive iff for every sequence (An) of sets in A with An ↓ /0 we have µ(An)→ 0.

Proof. One implication follows (essentially) from Lemma 1.4; the other is an exercise.

There are lots of measure spaces out there, several of which you are already familiar with.

Example 1.6 (Discrete measure theory). Let Ω be a countable set. A mass function on Ω is any function
µ̄ : Ω → [0,∞]. Given such a µ̄ we can define a measure on (Ω,P(Ω)) by setting µ(A) = ∑x∈A µ̄(x).

Equally, given a measure µ on (Ω,P(Ω)) we can define a corresponding mass function by µ̄(x) = µ({x}).
For countable Ω there is a one-to-one correspondence between measures on (Ω,P(Ω)) and mass functions.

These discrete measure spaces provide a ‘toy’ version of the general theory, but in general they are not enough.
Discrete measure theory is essentially the only context in which one can define the measure explicitly. This is
because σ -algebras are not in general amenable to an explicit presentation, and it is not in general the case that
for an arbitrary set Ω all subsets of Ω can be assigned a measure – recall from Part A Integration the construction
of a non-Lebesgue measurable subset of R. Instead one shows the existence of a measure defined on a ‘large
enough’ collection of sets, with the properties we want. To do this, we follow a variant of the approach you saw
in Part A; the idea is to specify the values to be taken by the measure on a smaller class of subsets of Ω that
‘generate’ the σ -algebra (as the singletons did in Example 1.6). This leads to two problems. First we need to
know that it is possible to extend the measure that we specify to the whole σ -algebra. This construction problem
is often handled with Carathéodory’s Extension Theorem (Theorem 1.12 below). The second problem is to know
that there is only one measure on the σ -algebra that is consistent with our specification. This uniqueness problem
can often be resolved through a corollary of Dynkin’s π-system Lemma that we state below. First we need some
more definitions.

Definition 1.7 (Generated σ -algebras). Let A be a collection of subsets of Ω. Define

σ(A ) = {A ⊆ Ω : A ∈ F for all σ -algebras F on Ω containing A } .

Then σ(A ) is a σ -algebra (exercise) which is called the σ -algebra generated by A . It is the smallest σ -algebra
containing A : if F ⊇ A is a σ -algebra then F ⊇ σ(A ).

Definition 1.8 (Borel σ -algebra, Borel measure). Let Ω be a topological space with topology (i.e., set of open
sets) T . Then the Borel σ -algebra on Ω is the σ -algebra generated by the open sets:

B(Ω) = σ(T ).

A measure µ on (Ω,B(Ω)) is called a Borel measure on Ω.

Note that B(Ω) depends not just on the set Ω, but also on the topology on Ω. Usually, this is understood: in
particular, when Ω = R, we mean the usual Euclidean topology on R.

Definition 1.9 (π-system). Let I be a collection of subsets of Ω. We say that I is a π-system if A,B ∈ I
implies A∩B ∈ I .
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Notice that an algebra is automatically a π-system.

Example 1.10. The collection
π(R) = {(−∞,x] : x ∈ R}

forms a π-system and σ(π(R)), the σ -algebra generated by π(R), is B(R), the σ -algebra consisting of all Borel
subsets of R (exercise).

Here’s why we care about π-systems.

Theorem 1.11 (Uniqueness of extension). Let µ1 and µ2 be measures on the same measurable space (Ω,F ),
and let I ⊆ F be a π-system. If µ1(Ω) = µ2(Ω)< ∞ and µ1 = µ2 on I , then µ1 = µ2 on σ(I ).

We will often apply the theorem to a π-system I with σ(I ) = F , so the conclusion is that µ1 and µ2
agree. A very important special case is that if two probability measures on Ω agree on a π-system, then they
agree on the σ -algebra generated by that π-system.

For a proof of Theorem 1.11 see (e.g.) Williams, Appendix A.1.
That deals with uniqueness, but what about existence?

Theorem 1.12 (Carathéodory Extension Theorem). Let Ω be a set and A an algebra on Ω, and let F = σ(A ).
Let µ0 : A → [0,∞] be a countably additive set function. Then there exists a measure µ on (Ω,F ) such that
µ = µ0 on A .

Remark. If µ0(Ω)< ∞, then Theorem 1.11 tells us that µ is unique, since an algebra is certainly a π-system.

The Carathéodory Extension Theorem doesn’t solve the problem of constructing measures on σ -algebras.
However, it reduces it to constructing countably additive set functions on algebras which is a big step toward
this goal; we shall see several examples. In particular, we are going to use it to give an essentially complete and
practically useful answer on how to characterize probability measures on (R,B(R)).
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