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Finite difference approximation of elliptic BVP’s

In Lecture 3 we discussed the finite difference approximation of
a two-point boundary-value problem. Here we shall carry out a similar
analysis for the elliptic boundary-value problem

−∆u + c(x , y)u = f (x , y) in Ω,

u = 0 on ∂Ω,
(1)

where Ω = (0, 1)× (0, 1), c is a continuous function on Ω and
c(x , y) ≥ 0. We shall consider two separate cases:

First we shall assume that f ∈ C (Ω). In this case, the error analysis
proceeds similarly as in Lecture 3.

In Lecture 5 we shall consider the case when f is only in L2(Ω). In
that case the boundary-value problem (1) does not have a classical
solution – only a weak solution exists; a different technique is then
needed to prove the convergence of the scheme.
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The case when f ∈ C (Ω)

Definition of the mesh

Let N be an integer, N ≥ 2, and let h = 1/N; the mesh-points are (xi , yj),
i , j = 0, . . . ,N, where xi = ih, yj = jh. These mesh-points form the mesh

Ωh := {(xi , yj) : i , j = 0, . . . ,N}.

We consider the set of interior mesh-points

Ωh := {(xi , yj) : i , j = 1, ...,N − 1},

and the set of boundary mesh-points Γh := Ωh \ Ωh.
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Definition of the finite difference scheme

−(D+
x D−

x Ui ,j + D+
y D−

y Ui ,j) + c(xi , yj)Ui ,j = f (xi , yj) for (xi , yj) ∈ Ωh,

U = 0 on Γh.

(2)

4 / 21



In an expanded form, this can be written as follows:

−
{
Ui+1,j − 2Ui ,j + Ui−1,j

h2
+

Ui ,j+1 − 2Ui ,j + Ui ,j−1

h2

}
+ c(xi , yj)Ui ,j = f (xi , yj), (3)

for i , j = 1, . . . ,N − 1,

Ui ,j = 0 if i = 0, i = N or if j = 0, j = N. (4)
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A typical row of A has 5 non-zero entries, corresponding to the
5 values of U in the finite difference stencil shown in Figure. 1.
The sparsity structure of A is shown in Figure 2.
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Existence and uniqueness of solutions

Next we show that the finite difference scheme (2) has a unique solution.

For two functions, V and W , defined on Ωh, we introduce the inner
product

(V ,W )h =
N−1∑
i=1

N−1∑
j=1

h2Vi ,jWi ,j ,

which resembles the L2-inner product

(v ,w) =

∫
Ω
v(x , y)w(x , y)dx dy .
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Lemma

Suppose that V is a function defined on Ωh and that V = 0 on Γh; then,

(−D+
x D−

x V ,V )h + (−D+
y D−

y V ,V )h

=
N∑
i=1

N−1∑
j=1

h2|D−
x Vi ,j |2 +

N−1∑
i=1

N∑
j=1

h2|D−
y Vi ,j |2.

(5)

Proof. The identity (5) is a direct consequence of the corresponding
univariate summation-by-parts result for −D+

x D−
x shown in Lecture 3,

and the analogous identity for −D+
y D−

y . □
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Returning to the analysis of the finite difference scheme (2), we shall now
proceed in much the same way as in the univariate case in Lecture 3. As
c(x , y) ≥ 0 on Ω, by the summation-by-parts formula (5) we have that

(AV ,V )h = (−D+
x D−

x V − D+
y D−

y V + cV ,V )h

= (−D+
x D−

x V ,V )h + (−D+
y D−

y V ,V )h + (cV ,V )h

≥
N∑
i=1

N−1∑
j=1

h2|D−
x Vi ,j |2 +

N−1∑
i=1

N∑
j=1

h2|D−
y Vi ,j |2,

(6)

for any V defined on Ωh such that V = 0 on Γh.
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This implies, just as in the one-dimensional analysis presented in Section
3, that A is a non-singular matrix. Indeed if AV = 0, then (6) yields:

D−
x Vi ,j =

Vi ,j − Vi−1,j

h
= 0,

i = 1, . . . ,N,
j = 1, . . . ,N − 1;

D−
y Vi ,j =

Vi ,j − Vi ,j−1

h
= 0,

i = 1, . . . ,N − 1,
j = 1, . . . ,N.

As V = 0 on Γh, these imply that V ≡ 0. Thus AV = 0 if and only if
V = 0. Hence A is non-singular, and U = A−1F is the unique solution of
(2).Thus the unique solution of the finite difference scheme (2) may be
found by solving the system of linear algebraic equations AU = F .
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Stability and convergence of the finite difference scheme
In order to prove the stability of the finite difference scheme (2), we
introduce the mesh–dependent norms

∥U∥h := (U,U)
1/2
h ,

and

∥U∥1,h := (∥U∥2h + ∥D−
x U]|2x + ∥D−

y U]|2y )1/2,
where

∥D−
x U]|x :=

 N∑
i=1

N−1∑
j=1

h2|D−
x Ui ,j |2

1/2

and

∥D−
y U]|y :=

N−1∑
i=1

N∑
j=1

h2|D−
y Ui ,j |2

1/2

.

∥ · ∥1,h is the discrete version of the Sobolev norm ∥ · ∥H1(Ω).
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With this new notation, the inequality (6) can be rewritten in the following
compact form:

(AV ,V )h ≥ ∥D−
x V ]|2x + ∥D−

y V ]|2y . (7)

Using the discrete Poincaré–Friedrichs inequality stated in the next lemma,
we shall be able to deduce that

(AV ,V )h ≥ c0∥V ∥21,h,

where c0 is a positive constant.

13 / 21



Lemma (Discrete Poincaré–Friedrichs inequality)

Suppose that V is a function defined on Ωh and such that V = 0 on Γh;
then, there exists a constant c∗, independent of V and h, such that

∥V ∥2h ≤ c∗
(
∥D−

x V ]|2x + ∥D−
y V ]|2y

)
(8)

for all such V .
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Proof.
The inequality (8) is a straightforward consequence of its univariate
counterpart proved in Lecture 3; indeed, for each fixed j , 1 ≤ j ≤ N − 1,

N−1∑
i=1

h|Vi ,j |2 ≤
1

2

N∑
i=1

h|D−
x Vi ,j |2. (9)

Analogously, for each fixed i , 1 ≤ i ≤ N − 1,

N−1∑
j=1

h|Vi ,j |2 ≤
1

2

N∑
j=1

h|D−
y Vi ,j |2. (10)

We first multiply (9) by h and sum through j , 1 ≤ j ≤ N − 1, then
multiply (10) by h and sum through i , 1 ≤ i ≤ N − 1, and finally add
these two inequalities to obtain

2 ∥V ∥2h ≤ 1

2

(
∥D−

x V ]|2x + ∥D−
y V ]|2y

)
.

Hence we arrive at (8) with c∗ =
1
4 . □
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Now the inequalities (7) and (8) imply that

(AV ,V )h ≥ 1

c∗
∥V ∥2h.

Finally, combining this inequality with (7) and recalling the definition of
the norm ∥ · ∥1,h, we obtain

(AV ,V )h ≥ c0∥V ∥21,h, (11)

where c0 = (1 + c∗)
−1 = (1 + (1/4))−1 = 4

5 .

Using the inequality (11) we can now prove the stability of the finite
difference scheme (2).
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Theorem

The finite difference scheme (2) is stable in the sense that

∥U∥1,h ≤ 1

c0
∥f ∥h. (12)

Proof. The proof is identical to that of the analogous stability inequality
from Lecture 3 in the univariate case. From (11) and (2) we have that

c0∥U∥21,h ≤ (AU,U)h = (f ,U)h ≤
∣∣(f ,U)h

∣∣
≤ ∥f ∥h∥U∥h ≤ ∥f ∥h∥U∥1,h,

and hence we arrive at the desired inequality (12). □
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Convergence in the class of classical solutions

Next, we turn to the study of accuracy of the finite difference scheme (2).
We define the global error, e, by

ei ,j := u(xi , yj)− Ui ,j , 0 ≤ i , j ≤ N.

Assuming that u ∈ C 4(Ω), Taylor expansions with remainder terms in the
x and y directions give:

Aei ,j = Au(xi , yj)− AUi ,j = Au(xi .yj)− fi ,j

= ∆u(xi , yj)− (D+
x D−

x u(xi , yj) + D+
y D−

y u(xi , yj))

=

[
∂2u

∂x2
(xi , yj)− D+

x D−
x u(xi , yj)

]
+

[
∂2u

∂y2
(xi , yj)− D+

y D−
y u(xi , yj)

]

= −h2

12

∂4u

∂x4
(ξi , yj)−

h2

12

∂4u

∂y4
(xi , ηj), 1 ≤ i , j ≤ N − 1,

where ξi ∈ [xi−1, xi+1], ηj ∈ [yj−1, yj+1].
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We define the consistency error (or truncation error) of the finite difference
scheme (2) by

φi ,j := Au(xi , yj)− fi ,j .

Then, by the calculations above,

φi ,j = −h2

12

(
∂4u

∂x4
(ξi , yj) +

∂4u

∂y4
(xi , ηj)

)
, 1 ≤ i , j ≤ N − 1,

and

Aei ,j = φi ,j , 1 ≤ i , j ≤ N − 1,

e = 0 on Γh.
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Thanks to the stability result (12), we therefore have that

∥u − U∥1,h = ∥e∥1,h ≤ 1

c0
∥φ∥h. (13)

To arrive at a bound on the global error e = u − U in the norm ∥ · ∥1,h it
therefore remains to bound ∥φ∥h and insert the resulting bound in the
right-hand side of (13). Indeed, by noting that

|φi ,j | ≤
h2

12

∥∥∥∥∥∂4u

∂x4

∥∥∥∥∥
C(Ω)

+

∥∥∥∥∥∂4u

∂y4

∥∥∥∥∥
C(Ω)

 ,

we deduce that the consistency error, φ, satisfies

∥φ∥h ≤ h2

12

∥∥∥∥∥∂4u

∂x4

∥∥∥∥∥
C(Ω)

+

∥∥∥∥∥∂4u

∂y4

∥∥∥∥∥
C(Ω)

 . (14)

Finally (13) and (14) yield the following result.
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Theorem

Let f ∈ C (Ω), c ∈ C (Ω), with c(x , y) ≥ 0, (x , y) ∈ Ω, and suppose that
the corresponding weak solution of the boundary-value problem (1)
belongs to C 4(Ω); then

∥u − U∥1,h ≤ 5h2

48

∥∥∥∥∥∂4u

∂x4

∥∥∥∥∥
C(Ω)

+

∥∥∥∥∥∂4u

∂y4

∥∥∥∥∥
C(Ω)

 . (15)

Proof. Recall that c0 = (1 + c∗)
−1, c∗ =

1
4 , so that 1/c0 =

5
4 , and

combine (13) and (14). □

In other words,

stability+ consistency ⇒ convergence.
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