Numerical Solution of Partial Differential Equations

Endre Süli

Mathematical Institute University of Oxford 2025

Lecture 5

$$-\Delta u + cu = f$$
, with $f \in L_2(\Omega)$

We use the same finite difference mesh as in the case when $f \in C(\overline{\Omega})$, but we shall modify the right-hand side in the finite difference scheme to cater for the fact that f need not be a continuous function on $\overline{\Omega}$.

The idea is to replace $f(x_i, y_j)$ by a 'cell-average' of f:

$$Tf_{i,j} := \frac{1}{h^2} \int_{\mathcal{K}_{i,j}} f(x,y) \,\mathrm{d}x \,\mathrm{d}y,$$

where

$$K_{i,j} = \left[x_i - \frac{h}{2}, x_i + \frac{h}{2}\right] \times \left[y_j - \frac{h}{2}, y_j + \frac{h}{2}\right].$$

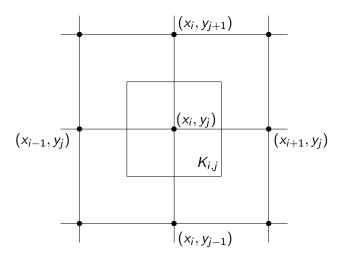


Figure: The cell $K_{i,j}$ surrounding the internal mesh point (x_i, y_j)

Existence and uniqueness of a solution

We define our finite difference approximation of the PDE by

$$-(D_{x}^{+}D_{x}^{-}U_{i,j} + D_{y}^{+}D_{y}^{-}U_{i,j}) + c(x_{i}, y_{j})U_{i,j} = Tf_{i,j}, \quad \text{for } (x_{i}, y_{j}) \in \Omega_{h},$$

$$U = 0, \quad \text{on } \Gamma_{h}.$$
(1)

As we have not changed the difference operator on the left-hand side, the argument from Lecture 4 concerning the existence and uniqueness of a solution still applies, and therefore (1) has a unique solution, U.

Stability of the finite difference scheme

Theorem

The scheme (1) is stable in the sense that

$$||U||_{1,h} \le \frac{1}{c_0} ||Tf||_h.$$
 (2)

Proof. As in the proof of stability in Lecture 4:

$$||c_0||U||_{1,h}^2 \le (AU, U)_h = (Tf, U)_h$$

 $\le ||Tf||_h ||U||_h$
 $\le ||Tf||_h ||U||_{1,h},$

where the second inequality follows from the Cauchy–Schwarz inequality, and the third inequality is the consequence of the definition of the discrete Sobolev norm $\|\cdot\|_{1,h}$. Hence (2). \square

Convergence

Having established the stability of the scheme (1), we consider the question of its accuracy. Let us define the global error, e, as before,

$$e_{i,j} = u(x_i, y_j) - U_{i,j}, \quad 0 \le i, j \le N.$$

Clearly,

$$Ae_{i,j} = Au(x_{i}, y_{j}) - AU_{i,j}$$

$$= Au(x_{i}, y_{j}) - Tf_{i,j}$$

$$= -(D_{x}^{+} D_{x}^{-} u(x_{i}, y_{j}) + D_{y}^{+} D_{y}^{-} u(x_{i}, y_{j})) + c(x_{i}, y_{j})u(x_{i}, y_{j})$$

$$+ \left(T\left(\frac{\partial^{2} u}{\partial x^{2}}\right)(x_{i}, y_{j}) + T\left(\frac{\partial^{2} u}{\partial y^{2}}\right)(x_{i}, y_{j}) - T(cu)(x_{i}, y_{j})\right). \quad (3)$$

By noting that

$$T\left(\frac{\partial^{2} u}{\partial x^{2}}\right)(x_{i}, y_{j}) = \frac{1}{h} \int_{y_{j}-h/2}^{y_{j}+h/2} \frac{\frac{\partial u}{\partial x}(x_{i}+h/2, y) - \frac{\partial u}{\partial x}(x_{i}-h/2, y)}{h} \, \mathrm{d}y$$

$$= \frac{1}{h} \int_{y_{j}-h/2}^{y_{j}+h/2} D_{x}^{+} \frac{\partial u}{\partial x}(x_{i}-h/2, y) \, \mathrm{d}y$$

$$= D_{x}^{+} \left[\frac{1}{h} \int_{y_{j}-h/2}^{y_{j}+h/2} \frac{\partial u}{\partial x}(x_{i}-h/2, y) \, \mathrm{d}y \right],$$

and similarly,

$$T\left(\frac{\partial^2 u}{\partial y^2}\right)(x_i,y_j) = D_y^+ \left[\frac{1}{h} \int_{x_i-h/2}^{x_i+h/2} \frac{\partial u}{\partial y}(x,y_j-h/2) dx\right],$$

the equality (3) can be rewritten as

$$Ae = D_x^+ \varphi_1 + D_y^+ \varphi_2 + \psi,$$

where φ_1 , φ_2 and ψ are defined on the next slide.

$$\varphi_{1}(x_{i}, y_{j}) := \frac{1}{h} \int_{y_{j}-h/2}^{y_{j}+h/2} \frac{\partial u}{\partial x}(x_{i} - h/2, y) \, dy - D_{x}^{-} u(x_{i}, y_{j}),$$

$$\varphi_{2}(x_{i}, y_{j}) := \frac{1}{h} \int_{x_{i}-h/2}^{x_{i}+h/2} \frac{\partial u}{\partial y}(x, y_{j} - h/2) \, dx - D_{y}^{-} u(x_{i}, y_{j}),$$

$$\psi(x_{i}, y_{j}) := (cu)(x_{i}, y_{j}) - T(cu)(x_{i}, y_{j}).$$

Thus,

$$Ae = D_x^+ \varphi_1 + D_y^+ \varphi_2 + \psi \qquad \text{in } \Omega_h,$$

$$e = 0 \qquad \text{on } \Gamma_h.$$
(4)

The stability inequality (1) would only imply the (crude) bound

$$\|e\|_{1,h} \leq \frac{1}{c_0} \|D_x^+ \varphi_1 + D_y^+ \varphi_2 + \psi\|_h,$$

which makes no use of the special form of the consistency error

$$\varphi := D_x^+ \varphi_1 + D_y^+ \varphi_2 + \psi.$$

We shall therefore proceed in a different way.

As in the proof of the stability inequality (1), we first note that

$$c_0 \|e\|_{1,h}^2 \le (Ae, e)_h = (\varphi, e)_h$$

= $(D_x^+ \varphi_1, e)_h + (D_y^+ \varphi_2, e)_h + (\psi, e)_h.$ (5)

But now, using summation by parts, we shall pass the difference operators D_x^+ and D_y^+ from φ_1 and φ_2 , respectively, onto e, using that e=0 on Γ_h .

Indeed, by recalling that e = 0 on Γ_h , we have that

$$(D_{x}^{+}\varphi_{1}, e)_{h} = \sum_{j=1}^{N-1} h \left(\sum_{i=1}^{N-1} h \frac{\varphi_{1}(x_{i+1}, y_{j}) - \varphi_{1}(x_{i}, y_{j})}{h} e_{i,j} \right)$$

$$= -\sum_{j=1}^{N-1} h \left(\sum_{i=1}^{N} h \varphi_{1}(x_{i}, y_{j}) \frac{e_{i,j} - e_{i-1,j}}{h} \right)$$

$$= -\sum_{j=1}^{N-1} h \left(\sum_{i=1}^{N} h \varphi_{1}(x_{i}, y_{j}) D_{x}^{-} e_{i,j} \right)$$

$$= -\sum_{i=1}^{N} \sum_{j=1}^{N-1} h^{2} \varphi_{1}(x_{i}, y_{j}) D_{x}^{-} e_{i,j}$$

$$\leq \left(\sum_{i=1}^{N} \sum_{j=1}^{N-1} h^{2} |\varphi_{1}(x_{i}, y_{j})|^{2} \right)^{1/2} \left(\sum_{i=1}^{N} \sum_{j=1}^{N-1} h^{2} |D_{x}^{-} e_{i,j}|^{2} \right)^{1/2}$$

$$= \|\varphi_{1}\|_{x} \|D_{x}^{-} e\|_{x}.$$

Thus,

$$(D_x^+ \varphi_1, e)_h \le ||\varphi_1||_x ||D_x^- e||_x.$$
(6)

Similarly,

$$(D_y^+ \varphi_2, e)_h \le ||\varphi_2||_y ||D_y^- e||_y \tag{7}$$

(see Lecture 3 for the definition of the mesh-dependent norms $\|\cdot\|_x$, $\|\cdot\|_y$). By the Cauchy–Schwarz inequality we also have that

$$(\psi, e)_h \le \|\psi\|_h \|e\|_h.$$
 (8)

Substitution of the inequalities (6)–(8) into the inequality (5) gives

$$c_{0}\|e\|_{1,h}^{2} \leq \|\varphi_{1}]|_{x}\|D_{x}^{-}e]|_{x} + \|\varphi_{2}]|_{y}\|D_{y}^{-}e]|_{y} + \|\psi\|_{h}\|e\|_{h}$$

$$\leq (\|\varphi_{1}]|_{x}^{2} + \|\varphi_{2}]|_{y}^{2} + \|\psi\|_{h}^{2})^{1/2} (\|D_{x}^{-}e]|_{x}^{2} + \|D_{y}^{-}e]|_{y}^{2} + \|e\|_{h}^{2})^{1/2}$$

$$= (\|\varphi_{1}]|_{x}^{2} + \|\varphi_{2}||_{y}^{2} + \|\psi\|_{h}^{2})^{1/2} \|e\|_{1,h}.$$

Dividing both sides by $||e||_{1,h}$ yields the following result.

Lemma

The global error, e, of the finite difference scheme (1) satisfies:

$$\|e\|_{1,h} \le \frac{1}{c_0} (\|\varphi_1\|_x^2 + \|\varphi_2\|_y^2 + \|\psi\|_h^2)^{1/2},$$

where φ_1 , φ_2 , and ψ are defined by

$$\varphi_1(x_i, y_j) := \frac{1}{h} \int_{y_i - h/2}^{y_j + h/2} \frac{\partial u}{\partial x} (x_i - h/2, y) \, \mathrm{d}y - D_x^- u(x_i, y_j),$$

for
$$i = 1, ..., N, j = 1, ..., N - 1;$$

$$\varphi_2(x_i,y_j) := \frac{1}{h} \int_{x_i-h/2}^{x_i+h/2} \frac{\partial u}{\partial y}(x,y_j-h/2) dx - D_y^- u(x_i,y_j),$$

for i = 1, ..., N - 1, j = 1, ..., N; and

$$\psi(x_i, y_j) := (cu)(x_i, y_j) - \frac{1}{h^2} \int_{x_i - h/2}^{x_i + h/2} \int_{y_i - h/2}^{y_j + h/2} (cu)(x, y) \, \mathrm{d}x \, \mathrm{d}y,$$

for
$$i, j = 1, ..., N - 1$$
.

$$_{\gamma}^{-}u(x_{i},y_{j}), \qquad (11)$$

(9)

(10)

(12)

1

To complete the error analysis, it remains to bound φ_1 , φ_2 and ψ . Using Taylor series expansions it is easily seen that

$$|\varphi_1(x_i, y_j)| \le \frac{h^2}{24} \left(\left\| \frac{\partial^3 u}{\partial x \partial y^2} \right\|_{C(\overline{\Omega})} + \left\| \frac{\partial^3 u}{\partial x^3} \right\|_{C(\overline{\Omega})} \right), \tag{13}$$

$$|\varphi_2(x_i, y_j)| \le \frac{h^2}{24} \left(\left\| \frac{\partial^3 u}{\partial x^2 \partial y} \right\|_{C(\overline{\Omega})} + \left\| \frac{\partial^3 u}{\partial y^3} \right\|_{C(\overline{\Omega})} \right), \tag{14}$$

$$|\psi(x_i, y_j)| \le \frac{h^2}{24} \left(\left\| \frac{\partial_2(cu)}{\partial x^2} \right\|_{C(\overline{\Omega})} + \left\| \frac{\partial^2(cu)}{\partial y^2} \right\|_{C(\overline{\Omega})} \right), \tag{15}$$

and by using these to bound $\|\varphi_1\|_{x}$, $\|\varphi_2\|_{y}$ and $\|\psi\|_{h}$ on the right-hand side of the ineq. (9) we arrive at the following theorem.

Theorem

Let $f \in L_2(\Omega)$, $c \in C^2(\overline{\Omega})$ with $c(x,y) \ge 0$, $(x,y) \in \overline{\Omega}$, and suppose that the corresponding weak solution of the boundary-value problem belongs to $C^3(\overline{\Omega})$; then,

$$||u - U||_{1,h} \le \frac{5}{96} h^2 M_3,$$
 (16)

where

$$M_{3} = \left\{ \left(\left\| \frac{\partial^{3} u}{\partial x \partial y^{2}} \right\|_{C(\overline{\Omega})} + \left\| \frac{\partial^{3} u}{\partial x^{3}} \right\|_{C(\overline{\Omega})} \right)^{2} + \left(\left\| \frac{\partial^{3} u}{\partial x^{2} \partial y} \right\|_{C(\overline{\Omega})} + \left\| \frac{\partial^{3} u}{\partial y^{3}} \right\|_{C(\overline{\Omega})} \right)^{2} + \left(\left\| \frac{\partial^{2} (cu)}{\partial x^{2}} \right\|_{C(\overline{\Omega})} + \left\| \frac{\partial^{2} (cu)}{\partial y^{2}} \right\|_{C(\overline{\Omega})} \right)^{2} \right\}^{1/2}.$$

PROOF. By recalling that $1/c_0 = 5/4$ and substituting the bounds (13)–(15) into the right-hand side of the inequality (9), the inequality (16) immediately follows. \Box

Comparing (16) with the error bound from Lecture 3, we see that while the smoothness requirement on the solution has been relaxed from $u \in C^4(\overline{\Omega})$ to $u \in C^3(\overline{\Omega})$, second-order convergence has been retained.

Remark

The hypothesis $u \in C^3(\overline{\Omega})$ can be further relaxed by using integral representations of φ_1 , φ_2 and ψ instead of Taylor series expansions.

The key idea is to repeatedly use the Newton-Leibniz formula

$$w(b) - w(a) = \int_a^b w'(x) dx$$

in conjunction with repeated partial integration. The details of the calculation are contained in Section 4.1.2 of the Lecture Notes.

Thus,

$$\|\varphi_1\|_{x}^{2} \leq \frac{h^4}{32} \left(\left\| \frac{\partial^3 u}{\partial x^3} \right\|_{L_2(\Omega)}^{2} + \left\| \frac{\partial^3 u}{\partial x \partial y^2} \right\|_{L_2(\Omega)}^{2} \right). \tag{17}$$

Analogously,

$$\|\varphi_2\|_y^2 \le \frac{h^4}{32} \left(\left\| \frac{\partial^3 u}{\partial y^3} \right\|_{L_2(\Omega)}^2 + \left\| \frac{\partial^3 u}{\partial x^2 \partial y} \right\|_{L_2(\Omega)}^2 \right) \tag{18}$$

and

$$\|\psi\|_{h}^{2} \leq \frac{3h^{4}}{64} \left(\left\| \frac{\partial^{2} w}{\partial x^{2}} \right\|_{L_{2}(\Omega)}^{2} + \left\| \frac{\partial^{2} w}{\partial y^{2}} \right\|_{L_{2}(\Omega)}^{2} + 4 \left\| \frac{\partial^{2} w}{\partial x \partial y} \right\|_{L_{2}(\Omega)}^{2} \right). \tag{19}$$

By substituting the bounds (17)–(19) into the right-hand side of the inequality (9), noting that $1/c_0=4/5$ and recalling the definition of the Sobolev norm $\|\cdot\|_{H^3(\Omega)}$, we obtain the following result.

Theorem

Let $f \in L_2(\Omega)$, $c \in C^2(\overline{\Omega})$, with $c(x,y) \ge 0$, $(x,y) \in \overline{\Omega}$, and suppose that the corresponding weak solution of the boundary-value problem belongs to $H^3(\Omega)$; then,

$$||u - U||_{1,h} \le Ch^2 ||u||_{H^3(\Omega)},$$
 (20)

where C is a positive constant (computable from (17)–(19)).

It can be shown that the error estimate (20) is best possible in the sense that weakening of the assumption that $u \in H^3(\Omega)$ leads to loss of second-order convergence.

An error bound of this type, where the highest possible order of convergence has been attained with the weakest assumption on the smoothness of the solution u is called an *optimal error bound*.

Thus (20) is an optimal error bound for the difference scheme (1).