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The explicit scheme: stability

For M > 2, we define At := T /M, and for J > 2 the spatial step is taken
to be Ax :=(b—a)/J. We let xj := a+ jAx for j=0,1,...,J and
tm = mAt for m=0,1,... M.

On the space-time mesh {(xj, tm) : 0 <j < J, 0 < m < M} we consider
the finite difference scheme
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Once the values of U™ ! and Uj’", for j=0,...,J, have been computed
(or have been specified by the initial data, in the case of m = 1), the
subsequent values Uj"“, j=0,...,J,form=1,...,M—1, can be
computed explicitly from (1), without having to solve systems of linear
algebraic equations; hence the terminology explicit scheme.



Stability of the explicit scheme

It will transpire from the analysis that will follow that the explicit scheme
is, unlike the implicit scheme, which was shown to be unconditionally
stable, now only conditionally stable: we shall prove its stability in a
certain ‘energy norm’, whose precise definition will emerge during the
course of our analysis, — the stability condition for the explicit scheme
being that |c|At/Ax < 1 (Courant—Friedrichs—Lewy (CFL) condition).



We begin by noting that, for any j € {0,...,J} and me {1,...,.M — 1}:
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Hence, the left-hand side of equality (1); can be rewritten as
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forj=1,...,J—1.



Insertion of this into (1)1 then yields
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forj=1,....,J—1, m=1,...,M —1, where [ signifies the identity
operator, which maps any mesh function defined on the spatial mesh
{xi : j=1,...,J—1} into itself.
Next, note that
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We shall consider the inner products

J-1
(U, V)= AxUy; Vv,
j=1

J
(U, V]:=> AxU;V,
j=1

and the associated norms, respectively, || - || and ||-]|, defined by
|0l = (U, U2 and [[U]] = (U, U2

Take the (-, -) inner product of (2) with U™*! — U™~ making use of (3);

and (3)3 on the left-hand side, and (3)2 and (3)s on the right-hand side.



Thus we obtain the following equality:
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Next, we shall perform summations by parts in the first two terms on the
right-hand side, using that, for any mesh-function V' defined on
{xj : j=0,...,J} and such that V, = V;, =0, one has

(-DfD V., V)= (D;V,D; V] =|D; V]>.



Using this with V = Z(U™ + U™) and V = (U™ + U™"!) gives
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This implies, following a minor rearrangement of terms, that
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The second term on the left-hand side of (4) is nonnegative, as is the
second term on the right-hand side.

We would therefore like to ensure that first term on the left-hand side of
(4) and the first term on the right-hand side are also nonnegative.



To do so, we shall make a small diversion to investigate this. Letting
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and noting that V" = V" = 0, it follows that

j=0,...,J,
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The left-most expression will be nonnegative if and only if
V7P~ Z(ae2 D VTP > 0,
We will show that this can be guaranteed by requiring that |c|At/Ax < 1.
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For any real numbers a and 3, (o — 3)% < 2a? + 2/3%. Thus,
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Thus we deduce that

((/ + icQ(At)2DjDX_> v, vm> > (1 - C&i;gz) VT2 (5)
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We shall therefore assume that the following CFL condition holds:

|c| At
Ax

<1l (6)

We then have from (5) that
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Assuming that (6) holds, we define the nonnegative expression
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With this notation (4) becomes
NAU™) = N2U™Y) + (£ tm), UM = U™, (7)

In the special case when f is identically zero (7) guarantees the stability of
the explicit scheme under the CFL condition (6); indeed, (7) implies that

N2(U™ = N?(U9), foralm=1,...,M—1.
One can check that the mapping

U~ max [J\/'z(Um)]l/2
me{0,...,M—1}

is a norm on the linear space of all mesh functions U defined on the
space-time mesh {(xj,tm) : j=0,1,...,J, m=0,1,..., M} such that
Uy' = U7 =0forallm=0,1,..., M.

Thus we have shown that, if the CFL condition (6) holds and f = 0, then
the explicit scheme (1) is conditionally stable in this norm.
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