Lie Groups

Section C course Hilary 2022

kirwan@maths.ox.ac.uk

Example sheet 1

1. Let G be the group of Möbius transformations which map the upper half-plane $\{z=$ $x+i y \in \mathbb{C}: y>0\}$ to itself. These are of the form

$$
z \mapsto \frac{a z+b}{c z+d}
$$

where $a, b, c, d \in \mathbb{R}$ and $a d-b c>0$. Show that G is a 3 -dimensional non-compact connected Lie group.

Solution The coefficients in a Möbius transformation are only defined up to a scalar multiple, so we cover G with two charts. Since $a d-b c>0, a$ and b are not simultaneously zero, so define U as the subset on which $a \neq 0$ and take coordinates $x=c / a, y=b / a, z=d / a$ in the open subset of \mathbb{R}^{3} defined by $z-x y>0$, which is equivalent to $a d-b c>0$. This is one chart.

For another take V to be the open subset where $b \neq 0$ and set $\tilde{x}=c / b, \tilde{y}=a / b, \tilde{z}=d / b$ so that $\tilde{z}-\tilde{x} \tilde{y}>0$. Then on $U \cap V$, where $y=b / a \neq 0$, we have

$$
\tilde{x}=x / y, \tilde{y}=1 / y, \tilde{z}=z / y
$$

which is smooth and invertible.
This makes G into a 3 -dimensional manifold with a countable basis of open sets. Composition of Möbius transformations follows multiplication of the 2×2 matrices

$$
\left(\begin{array}{cc}
a & b \\
a^{\prime} & b^{\prime}
\end{array}\right)\left(\begin{array}{cc}
c & d \\
c^{\prime} & d^{\prime}
\end{array}\right)
$$

which is polynomial and hence smooth in the coordinates $\mathrm{x}, \mathrm{y}, \mathrm{z}$ etc. Inversion is

$$
z \mapsto \frac{d z-b}{-c z+a}
$$

which is smooth.
We need to prove that G is Hausdorff; it is sufficient to prove that any $g \in G$ and e, the identity, can be separated by open sets. The identity is given by $a=d$ and $b=c=0$, or $(x, y, z)=(0,0,1)$. Since the topology of an open set in \mathbb{R}^{3} is Hausdorff it is is separated from anything in U. So if $g \in V$ is not in U then $a=0$ so $\tilde{y}=0$. A neighbourhood of this point has \tilde{y} small and hence in $U \cap V$ where $\tilde{y}=1 / y$ we must have $|y|$ large. But then a neighbourhood of $y=0$ will not intersect this.

The subset U is homeomorphic to the open subset of \mathbb{R}^{3} defined by $z-x y>0$, which is connected (think of the half-planes $z>m x$ in the (x, z)-plane as m varies) - and likewise V. Since $U \cap V$ is non-empty, G is connected.

The group G is noncompact, for consider the well-defined function $a^{2} /(a d-b c)$. Restrict to $b=c=0, a=\lambda \in \mathbb{R}^{+}, d=1$ and it is the unbounded function λ.

Section B (questions to be handed in for marking)

2. Suppose G_{1}, G_{2} are Lie groups. Show that $G_{1} \times G_{2}$ is a Lie group in a natural way. Deduce that the n-dimensional compact torus $T^{n}=S^{1} \times \cdots \times S^{1}$ is a Lie group.

Find a map $\pi: \mathbb{R}^{n} \rightarrow T^{n}$ that allows you to identify T^{n} with the quotient group $\mathbb{R}^{n} / \mathbb{Z}^{n}$. Which vector fields on \mathbb{R}^{n} project under $d \pi$ to vector fields on T^{n} ? Do all vector fields on T^{n} arise in this way?

Which vector fields X on T^{n} are left-invariant, that is, satisfy

$$
\left(d L_{g}\right)_{h}\left(\left.X\right|_{h}\right)=X_{g h} ?
$$

3. Use the implicit function/submanifold theorem to prove that the orthogonal group $O(n)$ is a Lie group. Compute the dimension of $O(n)$ and find the tangent space $T_{I} O(n)$. Show also that $O(n)$ is compact.
4. Show that the tangent bundle $T G=\bigsqcup_{g \in G} T_{g} G$ of a Lie group G is canonically identifiable with $G \times T_{I} G$. [Hint: consider the left translation map $L_{g}: G \rightarrow G, L_{g}(h)=g h$.]

Deduce that any Lie group of dimension n has n non-vanishing vector fields which are linearly independent at each point of G.

Show that the 3 -dimensional sphere S^{3} is a Lie group by identifying it with

$$
S U(2)=\left\{2 \times 2 \text { complex matrices } A \text { with } A^{*} A=I, \operatorname{det} A=1\right\}
$$

where A^{*} denotes the conjugate transpose of A.
Show that the 2-dimensional sphere S^{2} cannot be a Lie group. [Hint: you may quote the "hairy ball theorem" from algebraic topology.]
5. Let $\varphi: M \rightarrow N$ be a diffeomorphism of manifolds (a smooth map with smooth inverse). For a vector field X on M define the push-forward vector field $Z=\varphi_{*} X$ on N by

$$
\left.Z\right|_{y}=d \varphi_{x}\left(\left.X\right|_{x}\right)
$$

where $x=\varphi^{-1}(y)$. Show that for any function $f: N \rightarrow \mathbb{R}$,

$$
\left(\varphi_{*} X\right) \cdot f=(X \cdot(f \circ \varphi)) \circ \varphi^{-1} .
$$

Deduce that $\left[\varphi_{*} X, \varphi_{*} Y\right] \cdot f=\varphi_{*}[X, Y] \cdot f$, and hence that

$$
\left[\varphi_{*} X, \varphi_{*} Y\right]=\varphi_{*}[X, Y] .
$$

Let G be a Lie group. Prove the following characterization of left-invariant vector fields X :

$$
\left(L_{g}\right)_{*} X=X \quad \text { for all } g \in G
$$

Let Lie G denote the set of left-invariant vector fields on G. Deduce that, if $X, Y \in \operatorname{Lie} G$, then also $[X, Y] \in \operatorname{Lie} G$.
6. Let G be a Lie group, and let G_{0} denote the connected path component of G containing the identity (we call G_{0} the identity component of G).

Show that G_{0} is a normal subgroup of G. If $G=O(n)$ what is G_{0} ? Is it true in this example that $G \cong G_{0} \times\left(G / G_{0}\right)$ as groups?

Section C (optional extension questions, not to be handed in for marking)
7. (i) By considering the action of a matrix of the form

$$
\left(\begin{array}{ccc}
A_{11} & A_{12} & a_{1} \\
A_{21} & A_{22} & a_{2} \\
0 & 0 & 1
\end{array}\right)
$$

on the plane $x_{3}=1$, find the condition on $A_{i j}$ for this to define an isometry of \mathbb{R}^{2}, and then show that the set of such matrices is a 3-dimensional Lie group G.
(ii) Is G connected?
(iii) Show that G is diffeomorphic to $\mathbb{R}^{2} \times O(2)$ as a manifold.
(iv) Show that G has a subgroup isomorphic as a group to the additive group \mathbb{R}^{2}, and another isomorphic to $O(2)$, but G is not a product of these two groups.

