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Section A (introductory questions, not for marking, solutions available)

1. The algebra of quaternions is defined as

H = {a+ bi+ cj + dk : a, b, c, d ∈ R}

where i, j, k satisfy the relations

ij = k = −ji and i2 = j2 = k2 = −1.

(i) Show that these relations imply jk = i = −kj and ki = j = −ik.

(ii) Show that the algebra of quaternions may be identified with the algebra of matrices{(
z w
−w̄ z̄

)
: z, w ∈ C

}
.

(iii) If q = a+ bi+ cj + dk ∈ H, we define the quaternionic conjugate to be

q̄ = a− bi− cj − dk

and the norm of q to be the nonnegative real number |q| such that |q|2 = qq̄. Show that qq̄
is indeed real and nonnegative, so |q| is well-defined. Deduce that q 6= 0 has a multiplicative
inverse q−1 = q̄

|q|2 . Show also that

|q1q2| = |q1| · |q2| and |q−1| = |q|−1.

Viewing H as a real 4-dimensional vector space, check that |q| is the usual norm on R4.

Solution
(i) We have jk = −i2jk = −ik2 = i = −k2i = kji2 = −kj and

ki = −kij2 = −k2j = j = −jk2 = −ik.

(ii) Let

A =

{(
z w
−w z

)
: z, w ∈ C

}
.

An R-algebra isomorphism θ : H→ A is given by

a+ bi+ cj + dk 7→
(

a+ ib c+ id
−c+ id a− ib

)
.
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By inspection θ is compatible with the relations defining H and is R-linear, so is a genuine
homomorphism of R-algebras that is also clearly bijective.

(iii) If q = a+ bi+ cj + dk then

qq = (a+ bi+ cj + dk)(a− bi− cj − dk) = a2 + b2 + c2 + d2 ∈ R≥0.

With q 6= 0 and |q| =
√
qq we have qq/|q|2 = 1 so q−1 = q/|q|2. Also since we have (by a

quick calculation) q1q2 = q2 · q1 and qq = qq then

|q1q2|2 = q1 · q2 · q2 · q1 = q1|q2|2q1 = |q1|2|q2|2.

Taking square roots yields |q1q2| = |q1||q2|. Taking q1 = q and q2 = q−1 gives |q||q−1| = |1| =
1, hence |q−1| = |q|−1.

Alternative argument: By direct calculation

|q|2 = det θ(q),

so the multiplicativity of the quaternionic norm follows from the multiplicativity of the de-
terminant.

2. Calculate the Lie algebras of the following four examples of Lie groups:
(i) the isometric transformations of R2 of the form x 7→ Ax+ b;
(ii) the non-zero quaternions H∗;
(iii) the unit quaternions {q ∈ H : |q| = 1};
(iv) the group of Möbius transformations of the form

z 7→ az + b

cz + d

where a, b, c, d ∈ R and ad− bc > 0 (it may be helpful to consider a homomorphism from a
subgroup of GL(2,R) to this group).

Solution (i) The group G of isometric transformations of R2 of the form x 7→ Ax + b
can be identified with the subgroup of GL(3,R) consisting of matrices of the form A11 A12 a1

A21 A22 a2

0 0 1


where the matrix A is orthogonal. Thus the Lie algebra of G is a subalgebra of the Lie
algebra of GL(3,R) with Lie bracket given by commutator of matrices. O(2) has Lie algebra
the skew-symmetric 2× 2 matrices, so a basis for the Lie algebra of G is

X =

 0 0 1
0 0 0
0 0 0

 , Y =

 0 0 0
0 0 1
0 0 0

 , Z =

 0 1 0
−1 0 0
0 0 0

 ,
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and the Lie brackets are:

[X, Y ] = 0, [Y, Z] = −X, [Z,X] = −Y.

(ii) The nonzero quaternions form an open subset in R4 so the tangent space at the identity
is R4 = H. By left multiplication the nonzero quaternions form a subgroup of GL(4,R)
with the Lie bracket again the commutator. So the Lie algebra is spanned by 1, i, j, k and
[1, q] = 0 for all q ∈ H. The remaining Lie brackets are determined by

[i, j] = 2k, [j, k] = 2i, [k, i] = 2j.

(iii) The unit quaternions form the unit sphere in R4 whose tangent space at 1 is the or-
thogonal complement of R ⊆ H, namely the imaginary quaternions. The Lie brackets are as
above. (iv) The composition of this group G of Möbius transformations is achieved by mul-
tiplying the corresponding 2× 2 matrices. This means there is a surjective homomorphism
from the subgroup of GL(2,R) consisting of matrices of strictly positive determinant to G
and a corresponding surjective map from the Lie algebra of GL(2,R) to the Lie algebra of G.
The Lie bracket for the matrix group is again commutator of matrices. The scalar matrices
in GL(2,R) give the trivial Möbius transformation, so the Lie algebra homomorphism maps
the 3-dimensional Lie algebra of SL(2,R), which consists of the trace zero 2×2 real matrices,
surjectively to the 3-dimensional Lie algebra of G. This is therefore an isomorphism of Lie
algebras.

Take a basis

X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
, Z =

(
1 0
0 −1

)
,

and the Lie brackets are [X, Y ] = Z, [Y, Z] = 2Y, [Z, X] = 2X.

Section B (questions to be handed in for marking)

3. We define the Lie group

Sp(n) = {A ∈ GL(n,H) : A∗A = Idn}

where A∗ denotes the quaternionic conjugate transpose of A (ie the ij entry of A∗ is the
quaternionic conjugate of the ji entry of A). Show that

Sp(1) = SU(2)

and hence that Sp(1) is topologically the 3-sphere.
For q ∈ H \ {0} define

Aq : H→ H, p 7→ qpq−1.

Show that Aq is an orthogonal map (viewing H as R4).
By considering the orthogonal complement of R = R · 1 ⊂ H, deduce that SU(2) ∼=

Sp(1) ⊂ H \ {0} acts on R3 by rotations. Explain briefly why this gives a homomorphism
Sp(1) ∼= SU(2)→ SO(3) with kernel {±1}.
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4. Check these properties of exp : Lie(G)→ G for a Lie group G:
(i) Image(exp) ⊆ G0 where G0 = connected component of 1 ∈ G;
(ii) exp((t+ s)v) = exp(tv)exp(sv) for all t, s ∈ R;
(iii) (exp v)−1 = exp(−v);
(iv) if g = exp(v) then it has an n-th root;
(v) the exponential map exp : sl(2,R)→ SL(2,R) is not surjective.

5. Prove directly that ad is a Lie algebra homomorphism by using the fact that
ad(X) · Z = [X,Z]. Show that

v1 =

 0 1 0
−1 0 0
0 0 0

 , v2 =

 0 0 −1
0 0 0
1 0 0

 , v3 =

 0 0 0
0 0 1
0 −1 0


is a basis for so(3) ⊂ Mat3×3(R).

By computing all brackets [vi, vj], show that

so(3) ∼= (R3, cross product), vi 7→ standard basis vector ei

is a Lie algebra isomorphism.
Via this isomorphism we identify End(so(3)) with 3× 3 matrices. Compute the matrices

ad(vi). By computing 〈vi, vj〉 show that the Killing form

〈v, w〉 = Trace(ad(v)ad(w)) ∈ R

is a negative definite scalar product on so(3).

Section C (optional extension questions, not to be handed in for marking)

6. Show that for a matrix group G, we have exp(gXg−1) = g exp(X)g−1 for all g ∈ G
and X ∈ g.

Consider the subgroup T of the unitary group U(n) consisting of diagonal matrices.
Show that T is a torus T n ∼= (S1)n and that T lies in the image of the exponential map
exp : u(n)→ U(n).

Deduce that exp : u(n)→ U(n) is surjective.

7. The three-dimensional Heisenberg group consists of matrices of the form 1 a b
0 1 c
0 0 1


with a, b, c ∈ R. Show that its Lie algebra consists of matrices 0 x y

0 0 z
0 0 0


and calculate the exponential map for this group. Is this exponential map surjective?
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8. If A ∈ GL(n,C) is diagonalizable, show that A = expB for a complex matrix B.
Let

A =


λ 1 0 . . . 0
0 λ 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 λ 1
0 0 0 0 λ


with λ 6= 0 ∈ C. Show, by writing this in the form λ(I + N), that in this case too there
exists B such that A = expB.

The Jordan normal form states that any complex n× n matrix is conjugate to a matrix
with blocks of the above form down the diagonal. Deduce that the exponential map for the
Lie group GL(n,C) is surjective.
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