## Lie Groups

## Section C course Hilary 2022

kirwan@maths.ox.ac.uk

## Example sheet 2

## Section A (introductory questions, not for marking, solutions available)

1. The algebra of quaternions is defined as

$$
\mathbb{H}=\{a+b i+c j+d k: a, b, c, d \in \mathbb{R}\}
$$

where $i, j, k$ satisfy the relations

$$
i j=k=-j i \text { and } i^{2}=j^{2}=k^{2}=-1 .
$$

(i) Show that these relations imply $j k=i=-k j$ and $k i=j=-i k$.
(ii) Show that the algebra of quaternions may be identified with the algebra of matrices

$$
\left\{\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right): z, w \in \mathbb{C}\right\} .
$$

(iii) If $q=a+b i+c j+d k \in \mathbb{H}$, we define the quaternionic conjugate to be

$$
\bar{q}=a-b i-c j-d k
$$

and the norm of $q$ to be the nonnegative real number $|q|$ such that $|q|^{2}=q \bar{q}$. Show that $q \bar{q}$ is indeed real and nonnegative, so $|q|$ is well-defined. Deduce that $q \neq 0$ has a multiplicative inverse $q^{-1}=\frac{\bar{q}}{|q|^{2}}$. Show also that

$$
\left|q_{1} q_{2}\right|=\left|q_{1}\right| \cdot\left|q_{2}\right| \quad \text { and } \quad\left|q^{-1}\right|=|q|^{-1}
$$

Viewing $\mathbb{H}$ as a real 4-dimensional vector space, check that $|q|$ is the usual norm on $\mathbb{R}^{4}$.

## Solution

(i) We have $j k=-i^{2} j k=-i k^{2}=i=-k^{2} i=k j i^{2}=-k j$ and $k i=-k i j^{2}=-k^{2} j=j=-j k^{2}=-i k$.
(ii) Let

$$
A=\left\{\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right): z, w \in \mathbb{C}\right\} .
$$

An $\mathbb{R}$-algebra isomorphism $\theta: \mathbb{H} \rightarrow A$ is given by

$$
a+b i+c j+d k \mapsto\left(\begin{array}{cc}
a+i b & c+i d \\
-c+i d & a-i b
\end{array}\right) .
$$

By inspection $\theta$ is compatible with the relations defining $\mathbb{H}$ and is $\mathbb{R}$-linear, so is a genuine homomorphism of $\mathbb{R}$-algebras that is also clearly bijective.
(iii) If $q=a+b i+c j+d k$ then

$$
q \bar{q}=(a+b i+c j+d k)(a-b i-c j-d k)=a^{2}+b^{2}+c^{2}+d^{2} \in \mathbb{R}^{\geq 0} .
$$

With $q \neq 0$ and $|q|=\sqrt{q \bar{q}}$ we have $q \bar{q} /|q|^{2}=1$ so $q^{-1}=\bar{q} /|q|^{2}$. Also since we have (by a quick calculation) $\overline{q_{1} q_{2}}=\overline{q_{2}} \cdot \overline{q_{1}}$ and $q \bar{q}=\bar{q} q$ then

$$
\left|q_{1} q_{2}\right|^{2}=q_{1} \cdot q_{2} \cdot \overline{q_{2}} \cdot \overline{q_{1}}=q_{1}\left|q_{2}\right|^{2} \overline{q_{1}}=\left|q_{1}\right|^{2}\left|q_{2}\right|^{2}
$$

Taking square roots yields $\left|q_{1} q_{2}\right|=\left|q_{1}\right|\left|q_{2}\right|$. Taking $q_{1}=q$ and $q_{2}=q^{-1}$ gives $|q|\left|q^{-1}\right|=|1|=$ 1 , hence $\left|q^{-1}\right|=|q|^{-1}$.

Alternative argument: By direct calculation

$$
|q|^{2}=\operatorname{det} \theta(q)
$$

so the multiplicativity of the quaternionic norm follows from the multiplicativity of the determinant.
2. Calculate the Lie algebras of the following four examples of Lie groups:
(i) the isometric transformations of $\mathbb{R}^{2}$ of the form $x \mapsto A x+b$;
(ii) the non-zero quaternions $\mathbb{H}^{*}$;
(iii) the unit quaternions $\{q \in \mathbb{H}:|q|=1\}$;
(iv) the group of Möbius transformations of the form

$$
z \mapsto \frac{a z+b}{c z+d}
$$

where $a, b, c, d \in \mathbb{R}$ and $a d-b c>0$ (it may be helpful to consider a homomorphism from a subgroup of $G L(2, \mathbb{R})$ to this group).

Solution (i) The group $G$ of isometric transformations of $\mathbb{R}^{2}$ of the form $x \mapsto A x+b$ can be identified with the subgroup of $G L(3, \mathbb{R})$ consisting of matrices of the form

$$
\left(\begin{array}{ccc}
A_{11} & A_{12} & a_{1} \\
A_{21} & A_{22} & a_{2} \\
0 & 0 & 1
\end{array}\right)
$$

where the matrix $A$ is orthogonal. Thus the Lie algebra of $G$ is a subalgebra of the Lie algebra of $G L(3, \mathbb{R})$ with Lie bracket given by commutator of matrices. $O(2)$ has Lie algebra the skew-symmetric $2 \times 2$ matrices, so a basis for the Lie algebra of $G$ is

$$
X=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), Y=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), Z=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and the Lie brackets are:

$$
[X, Y]=0,[Y, Z]=-X,[Z, X]=-Y
$$

(ii) The nonzero quaternions form an open subset in $\mathbb{R}^{4}$ so the tangent space at the identity is $\mathbb{R}^{4}=\mathbb{H}$. By left multiplication the nonzero quaternions form a subgroup of $G L(4, \mathbb{R})$ with the Lie bracket again the commutator. So the Lie algebra is spanned by $1, i, j, k$ and $[1, q]=0$ for all $q \in \mathbb{H}$. The remaining Lie brackets are determined by

$$
[i, j]=2 k,[j, k]=2 i,[k, i]=2 j .
$$

(iii) The unit quaternions form the unit sphere in $\mathbb{R}^{4}$ whose tangent space at 1 is the orthogonal complement of $\mathbb{R} \subseteq \mathbb{H}$, namely the imaginary quaternions. The Lie brackets are as above. (iv) The composition of this group $G$ of Möbius transformations is achieved by multiplying the corresponding $2 \times 2$ matrices. This means there is a surjective homomorphism from the subgroup of $G L(2, \mathbb{R})$ consisting of matrices of strictly positive determinant to $G$ and a corresponding surjective map from the Lie algebra of $G L(2, \mathbb{R})$ to the Lie algebra of $G$. The Lie bracket for the matrix group is again commutator of matrices. The scalar matrices in $G L(2, \mathbb{R})$ give the trivial Möbius transformation, so the Lie algebra homomorphism maps the 3 -dimensional Lie algebra of $S L(2, \mathbb{R})$, which consists of the trace zero $2 \times 2$ real matrices, surjectively to the 3 -dimensional Lie algebra of $G$. This is therefore an isomorphism of Lie algebras.

Take a basis

$$
X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

and the Lie brackets are $[\mathrm{X}, \mathrm{Y}]=\mathrm{Z}, \quad[\mathrm{Y}, \mathrm{Z}]=2 \mathrm{Y}, \quad[\mathrm{Z}, \mathrm{X}]=2 \mathrm{X}$.

## Section B (questions to be handed in for marking)

3. We define the Lie group

$$
\operatorname{Sp}(n)=\left\{A \in G L(n, \mathbb{H}): A^{*} A=I d_{n}\right\}
$$

where $A^{*}$ denotes the quaternionic conjugate transpose of $A$ (ie the $i j$ entry of $A^{*}$ is the quaternionic conjugate of the $j i$ entry of $A$ ). Show that

$$
\operatorname{Sp}(1)=\operatorname{SU}(2)
$$

and hence that $\operatorname{Sp}(1)$ is topologically the 3 -sphere.
For $q \in \mathbb{H} \backslash\{0\}$ define

$$
\mathcal{A}_{q}: \mathbb{H} \rightarrow \mathbb{H}, \quad p \mapsto q p q^{-1} .
$$

Show that $\mathcal{A}_{q}$ is an orthogonal map (viewing $\mathbb{H}$ as $\mathbb{R}^{4}$ ).
By considering the orthogonal complement of $\mathbb{R}=\mathbb{R} \cdot 1 \subset \mathbb{H}$, deduce that $\mathrm{SU}(2) \cong$ $\operatorname{Sp}(1) \subset \mathbb{H} \backslash\{0\}$ acts on $\mathbb{R}^{3}$ by rotations. Explain briefly why this gives a homomorphism $\mathrm{Sp}(1) \cong \mathrm{SU}(2) \rightarrow \mathrm{SO}(3)$ with kernel $\{ \pm 1\}$.
4. Check these properties of $\exp : \operatorname{Lie}(G) \rightarrow G$ for a Lie group $G$ :
(i) Image $(\exp ) \subseteq G_{0}$ where $G_{0}=$ connected component of $1 \in G$;
(ii) $\exp ((t+s) v)=\exp (t v) \exp (s v)$ for all $t, s \in \mathbb{R}$;
(iii) $(\exp v)^{-1}=\exp (-v)$;
(iv) if $g=\exp (v)$ then it has an $n$-th root;
(v) the exponential map exp : $\mathfrak{s l}(2, \mathbb{R}) \rightarrow S L(2, \mathbb{R})$ is not surjective.
5. Prove directly that ad is a Lie algebra homomorphism by using the fact that $\operatorname{ad}(X) \cdot Z=[X, Z]$. Show that

$$
v_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad v_{2}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad v_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

is a basis for $\mathfrak{s o}(3) \subset \operatorname{Mat}_{3 \times 3}(\mathbb{R})$.
By computing all brackets $\left[v_{i}, v_{j}\right]$, show that

$$
\mathfrak{s o}(3) \cong\left(\mathbb{R}^{3}, \text { cross product }\right), \quad v_{i} \mapsto \text { standard basis vector } e_{i}
$$

is a Lie algebra isomorphism.
Via this isomorphism we identify $\operatorname{End}(\mathfrak{s o}(3))$ with $3 \times 3$ matrices. Compute the matrices $\mathbf{a d}\left(v_{i}\right)$. By computing $\left\langle v_{i}, v_{j}\right\rangle$ show that the Killing form

$$
\langle v, w\rangle=\operatorname{Trace}(\mathbf{a d}(v) \mathbf{a d}(w)) \in \mathbb{R}
$$

is a negative definite scalar product on $\mathfrak{s o}(3)$.

## Section C (optional extension questions, not to be handed in for marking)

6. Show that for a matrix group $G$, we have $\exp \left(g X g^{-1}\right)=g \exp (X) g^{-1}$ for all $g \in G$ and $X \in \mathfrak{g}$.

Consider the subgroup $T$ of the unitary group $U(n)$ consisting of diagonal matrices. Show that $T$ is a torus $T^{n} \cong\left(S^{1}\right)^{n}$ and that $T$ lies in the image of the exponential map $\exp : \mathfrak{u}(n) \rightarrow U(n)$.

Deduce that $\exp : \mathfrak{u}(n) \rightarrow U(n)$ is surjective.
7. The three-dimensional Heisenberg group consists of matrices of the form

$$
\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

with $a, b, c \in \mathbb{R}$. Show that its Lie algebra consists of matrices

$$
\left(\begin{array}{lll}
0 & x & y \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right)
$$

and calculate the exponential map for this group. Is this exponential map surjective?
8. If $A \in G L(n, \mathbb{C})$ is diagonalizable, show that $A=\exp B$ for a complex matrix $B$.

Let

$$
A=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \ldots & 0 \\
0 & \lambda & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \lambda & 1 \\
0 & 0 & 0 & 0 & \lambda
\end{array}\right)
$$

with $\lambda \neq 0 \in \mathbb{C}$. Show, by writing this in the form $\lambda(I+N)$, that in this case too there exists $B$ such that $A=\exp B$.

The Jordan normal form states that any complex $n \times n$ matrix is conjugate to a matrix with blocks of the above form down the diagonal. Deduce that the exponential map for the Lie group $G L(n, \mathbb{C})$ is surjective.

