Lie Groups

Section C course Hilary 2022

kirwan@maths.ox.ac.uk

Example sheet 3

Section A (introductory questions, not for marking, solutions available)

1. Let $\mathfrak{sl}(2,\mathbb{R})$ denote the space of 2×2 real matrices of trace zero. Show that $\mathfrak{sl}(2,\mathbb{R})$ is a Lie algebra with basis

$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

and work out the bracket relations for e, f, h.

By considering subalgebras of this Lie algebra, show that it is not isomorphic to $\mathfrak{su}(2)$.

Solution Since $\operatorname{trace}(AB) = \operatorname{trace}(BA)$, the trace of any commutator of square matrices is zero, so $\mathfrak{sl}(2,\mathbb{R})$ is a Lie algebra when endowed with the matrix commutator. Any traceless 2×2 real matrix is uniquely expressible in the form

$$A = \left(\begin{array}{cc} a & b \\ c & -a \end{array}\right)$$

for real numbers a, b and c, so $\{h, e, f\}$ is a basis for $\mathfrak{sl}(2, \mathbb{R})$. By direct calculation we have

$$[h, e] = 2e,$$
 $[h, f] = -2f,$ $[e, f] = h.$

Recall $\mathfrak{su}(2) \cong (\mathbb{R}^3, \times)$ where \times is the cross product. Any two linearly independent elements of \mathbb{R}^3 generate (\mathbb{R}^3, \times) since $v \times w$ is orthogonal to both v and w and is non-zero if v and w are linearly independent. Therefore $\mathfrak{su}(2)$ has no 2-dimensional Lie subalgebras. However $\mathbb{R}\{h, e\}$ is a 2-dimensional Lie subalgebra of $\mathfrak{sl}(2, \mathbb{R})$. Thus $\mathfrak{sl}(2, \mathbb{R})$ and $\mathfrak{su}(2)$ cannot be isomorphic.

Section B (questions to be handed in for marking)

2. Let $\varphi: G_1 \to G_2$ be a Lie group homomorphism. Show that

$$\ker \varphi \subseteq G_1$$

is a closed (hence embedded) Lie subgroup with Lie algebra

$$\ker(D_1\varphi)\subset\mathfrak{g}_1.$$

A vector subspace $J \subseteq (V, [\cdot, \cdot])$ of a Lie algebra is called an **ideal** if

$$[v,j] \in J$$
 for all $v \in V, j \in J$.

Show that ideals are Lie subalgebras. Show that for a Lie subgroup $H \subseteq G$, with H, G connected,

$$H\subseteq G$$
 is a normal subgroup $\Leftrightarrow \mathfrak{h}\subseteq \mathfrak{g}$ is an ideal

(You may find it helpful to first show the identity $ge^Yg^{-1} = e^{\operatorname{Ad}(g).Y}$ for $g \in G$ and $Y \in \mathfrak{g}$). The **centre** of a Lie algebra $(V, [\cdot, \cdot])$ is

$$Z(V) = \{ v \in V : [v, w] = 0 \text{ for all } w \in V \}.$$

For G connected, prove that the centre of the group G is¹

$$Z(G) = \ker(\operatorname{Ad}: G \to \operatorname{Aut}(\mathfrak{g}))$$

Deduce that the centre of G is a closed (hence embedded) Lie subgroup of G which is abelian, normal and has Lie algebra

$$Lie(Z(G)) = Z(\mathfrak{g}).$$

 $^{^{1}\}text{Recall the centre of a group is }Z(G)=\{g\in G:hg=gh\text{ for all }h\in G\}=\{g\in G:hgh^{-1}=g\text{ for all }h\in G\}.$

Finally deduce that, for G connected,

$$G$$
 is abelian $\Leftrightarrow \mathfrak{g}$ is abelian.

3. Show that if X, Y belong to the Lie algebra of a Lie group G then

$$[X, Y] = 0 \Rightarrow \exp(X + Y) = \exp(X) \exp(Y).$$

Prove that if G is a connected Lie group with $Z(G) = \{1\}$ then G can be identified with a Lie subgroup of $GL(m, \mathbb{R})$, for some m, so \mathfrak{g} is a Lie subalgebra of $\mathfrak{gl}(m, \mathbb{R})$.

If $(V, [\cdot, \cdot])$ is a Lie algebra with $Z(V) = \{0\}$, show that V is the Lie algebra of some Lie group.

- 4. Find all the connected Lie subgroups of SO(3).
- 5. Show that Lebesgue measure \mathbf{dx} is the bi-invariant Haar measure on \mathbb{R}^n viewed as an additive group.

Find the bi-invariant Haar measure on $(\mathbb{R}_{>0}, \times)$, the multiplicative group of positive reals.

6. Give an example of an *irreducible* representation of S^1 on \mathbb{R}^2 . Describe what happens to this representation when we complexify it.

Section C (optional extension questions, not to be handed in for marking)

- 7. (i) Let $\phi: G \to \operatorname{Aut}(V)$ be a representation. If $\alpha: G \to G$ is an automorphism show that $\phi \circ \alpha$ is another representation on the same vector space.
- (ii) If $\alpha(g) = hgh^{-1}$ for some $h \in G$ show that the two representations are equivalent.
- (iii) Give an example of an automorphism where the two representations are not equivalent [$Think: complex\ conjugation$].
- 8. Consider the action of SO(3) on \mathbb{R}^3 and let $f:\mathbb{R}^3\to\mathbb{R}$ be a smooth real-valued function.
- (i) For $A \in SO(3)$ show that $(Af)(x) = f(A^{-1}x)$ defines an action of SO(3) on the space of all smooth functions.
- (ii) If $r^2 = x_1^2 + x_2^2 + x_3^2$ show that Af = f.
- (iii) Let Δ denote the Laplace operator

$$\Delta f = \sum_{i=1}^{3} \frac{\partial^2 f}{\partial x_i^2}.$$

Show that $A\Delta f = \Delta A f$.

- (iv) Consider the vector space of functions of the form f = p where $p(x_1, x_2, x_3)$ is a homogeneous polynomial of degree m. Show that this is a finite-dimensional representation V_m of SO(3) and calculate its dimension.
- (v) Let $H_m \subseteq V_m$ be the subspace of solutions to $\Delta f = 0$ for $f \in V_m$, the harmonic polynomials of degree m. Show that H_m is a representation space for SO(3) and that $V_2 = H_2 \oplus r^2 H_0$ and $V_3 = H_3 \oplus r^2 H_1$ are decompositions into inequivalent representations.
- (vi) Can you generalize this?