Lie Groups

Section C course Hilary 2022
kirwan@maths.ox.ac.uk

Example sheet 3

Section A (introductory questions, not for marking, solutions available)

1 Let $\mathfrak{s l}(2, \mathbb{R})$ denote the space of 2×2 real matrices of trace zero.
Show that $\mathfrak{s l}(2, \mathbb{R})$ is a Lie algebra with basis

$$
h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

and work out the bracket relations for e, f, h.
By considering subalgebras of this Lie algebra, show that it is not isomorphic to $\mathfrak{s u}(2)$.
Solution Since $\operatorname{trace}(A B)=\operatorname{trace}(B A)$, the trace of any commutator of square matrices is zero, so $\mathfrak{s l}(2, \mathbb{R})$ is a Lie algebra when endowed with the matrix commutator. Any traceless 2×2 real matrix is uniquely expressible in the form

$$
A=\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)
$$

for real numbers a, b and c, so $\{h, e, f\}$ is a basis for $\mathfrak{s l}(2, \mathbb{R})$. By direct calculation we have

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h .
$$

Recall $\mathfrak{s u}(2) \cong\left(\mathbb{R}^{3}, \times\right)$ where \times is the cross product. Any two linearly independent elements of \mathbb{R}^{3} generate $\left(\mathbb{R}^{3}, \times\right)$ since $v \times w$ is orthogonal to both v and w and is non-zero if v and w are linearly independent. Therefore $\mathfrak{s u}(2)$ has no 2-dimensional Lie subalgebras. However $\mathbb{R}\{h, e\}$ is a 2-dimensional Lie subalgebra of $\mathfrak{s l}(2, \mathbb{R})$. Thus $\mathfrak{s l}(2, \mathbb{R})$ and $\mathfrak{s u}(2)$ cannot be isomorphic.

Section B (questions to be handed in for marking)

2. Let $\varphi: G_{1} \rightarrow G_{2}$ be a Lie group homomorphism. Show that

$$
\operatorname{ker} \varphi \subseteq G_{1}
$$

is a closed (hence embedded) Lie subgroup with Lie algebra

$$
\operatorname{ker}\left(D_{1} \varphi\right) \subset \mathfrak{g}_{1}
$$

A vector subspace $J \subseteq(V,[\cdot, \cdot])$ of a Lie algebra is called an ideal if

$$
[v, j] \in J \text { for all } v \in V, j \in J .
$$

Show that ideals are Lie subalgebras. Show that for a Lie subgroup $H \subseteq G$, with H, G connected,

$$
H \subseteq G \text { is a normal subgroup } \Leftrightarrow \mathfrak{h} \subseteq \mathfrak{g} \text { is an ideal }
$$

(You may find it helpful to first show the identity $g e^{Y} g^{-1}=e^{\operatorname{Ad}(g) \cdot Y}$ for $g \in G$ and $Y \in \mathfrak{g}$).
The centre of a Lie algebra $(V,[, \cdot])$ is

$$
Z(V)=\{v \in V:[v, w]=0 \text { for all } w \in V\} .
$$

For G connected, prove that the centre of the group G is ${ }^{1}$

$$
Z(G)=\operatorname{ker}(\operatorname{Ad}: G \rightarrow \operatorname{Aut}(\mathfrak{g}))
$$

Deduce that the centre of G is a closed (hence embedded) Lie subgroup of G which is abelian, normal and has Lie algebra

$$
\operatorname{Lie}(Z(G))=Z(\mathfrak{g}) .
$$

[^0]Finally deduce that, for G connected,

$$
G \text { is abelian } \Leftrightarrow \mathfrak{g} \text { is abelian. }
$$

3. Show that if X, Y belong to the Lie algebra of a Lie group G then

$$
[X, Y]=0 \Rightarrow \exp (X+Y)=\exp (X) \exp (Y) .
$$

Prove that if G is a connected Lie group with $Z(G)=\{1\}$ then G can be identified with a Lie subgroup of $G L(m, \mathbb{R})$, for some m, so \mathfrak{g} is a Lie subalgebra of $\mathfrak{g l}(m, \mathbb{R})$.
If $(V,[\cdot, \cdot])$ is a Lie algebra with $Z(V)=\{0\}$, show that V is the Lie algebra of some Lie group.
4. Find all the connected Lie subgroups of $S O(3)$.
5. Show that Lebesgue measure $\mathbf{d x}$ is the bi-invariant Haar measure on \mathbb{R}^{n} viewed as an additive group.
Find the bi-invariant Haar measure on $\left(\mathbb{R}_{>0}, \times\right)$, the multiplicative group of positive reals.
6. Give an example of an irreducible representation of S^{1} on \mathbb{R}^{2}. Describe what happens to this representation when we complexify it.

Section C (optional extension questions, not to be handed in for marking)

7. (i) Let $\phi: G \rightarrow \operatorname{Aut}(V)$ be a representation. If $\alpha: G \rightarrow G$ is an automorphism show that $\phi \circ \alpha$ is another representation on the same vector space.
(ii) If $\alpha(g)=h g h^{-1}$ for some $h \in G$ show that the two representations are equivalent.
(iii) Give an example of an automorphism where the two representations are not equivalent [Think: complex conjugation].
8. Consider the action of $S O(3)$ on \mathbb{R}^{3} and let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a smooth real-valued function.
(i) For $A \in S O(3)$ show that $(A f)(x)=f\left(A^{-1} x\right)$ defines an action of $S O(3)$ on the space of all smooth functions.
(ii) If $r^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ show that $A f=f$.
(iii) Let Δ denote the Laplace operator

$$
\Delta f=\sum_{i=1}^{3} \frac{\partial^{2} f}{\partial x_{i}^{2}} .
$$

Show that $A \Delta f=\Delta A f$.
(iv) Consider the vector space of functions of the form $f=p$ where $p\left(x_{1}, x_{2}, x_{3}\right)$ is a homogeneous polynomial of degree m. Show that this is a finite-dimensional representation V_{m} of $S O(3)$ and calculate its dimension.
(v) Let $H_{m} \subseteq V_{m}$ be the subspace of solutions to $\Delta f=0$ for $f \in V_{m}$, the harmonic polynomials of degree m. Show that H_{m} is a representation space for $S O(3)$ and that $V_{2}=H_{2} \oplus r^{2} H_{0}$ and $V_{3}=H_{3} \oplus r^{2} H_{1}$ are decompositions into inequivalent representations.
(vi) Can you generalize this?

[^0]: ${ }^{1}$ Recall the centre of a group is $Z(G)=\{g \in G: h g=g h$ for all $h \in G\}=\left\{g \in G: h g h^{-1}=g\right.$ for all $\left.h \in G\right\}$.

