Lie Groups

Section C course Hilary 2022
kirwan@maths.ox.ac.uk

Example sheet 4

Section A (introductory questions, not for marking, solutions available)

1. Check the following properties hold for a character χ_{V} associated to a representation V of a compact Lie group G :
(i) $\chi_{V}(1)=\operatorname{dim} V$;
(ii) χ_{V} is invariant under conjugation, $\chi_{V}\left(h g h^{-1}\right)=\chi_{V}(g)$;
(iii) $\chi_{V}=\chi_{W}$ for equivalent reps $V \simeq W$;
(iv) $\chi_{V \oplus W}(g)=\chi_{V}(g)+\chi_{W}(g)$;
(v) $\chi_{V \otimes W}(g)=\chi_{V}(g) \cdot \chi_{W}(g)$;
(vi) $\chi_{V^{*}}(g)=\chi_{V}\left(g^{-1}\right)=\overline{\chi_{V}(g)}$.

Solution (i) Let G be a compact Lie group and let V, W be finite dimensional $\mathbb{C} G$ modules. ${ }^{1}$ We have $\chi_{V}(1)=\operatorname{trace}\left(\mathrm{id}_{V}\right)=\operatorname{dim} V$.
(ii) follows from the identity $\operatorname{trace}\left(P A P^{-1}\right)=\operatorname{trace}\left(A P^{-1} P\right)=\operatorname{trace}(A)$ for (invertible) square matrices A and P.
(iii) V and W are equivalent if and only if $V \cong W$ as $\mathbb{C} G$-modules; that $\chi_{V}=\chi_{W}$ for equivalent representations V and W is then immediate from the definitions.
(iv) A basis for $V \oplus W$ is given by taking a union of bases for V and W. It follows immediately that $\chi_{V \oplus W}=\chi_{V}+\chi_{W}$.
(v) We may assume without loss of generality that the representations are unitary. Take $g \in G$. Then we may choose bases $\left\{v_{i}\right\}$ and $\left\{w_{j}\right\}$ for V and W respectively consisting of eigenvectors for the multiplication by g map, say

$$
g v_{i}=\lambda_{i} v_{i}, \quad g w_{j}=\mu_{j} w_{j} .
$$

Then $\left\{v_{i} \otimes w_{j}\right\}$ forms a basis for $V \otimes W$ and

$$
g\left(v_{i} \otimes w_{j}\right)=\lambda_{i} \mu_{j}\left(v_{i} \otimes w_{j}\right) .
$$

Therefore

$$
\chi_{V \otimes W}(g)=\sum_{i, j} \lambda_{i} \mu_{j}=\left(\sum_{i} \lambda_{i}\right)\left(\sum_{j} \mu_{j}\right)=\chi_{V}(g) \cdot \chi_{W}(g) .
$$

[^0](vi) To show that $\chi_{V^{*}}(g)=\chi_{V}\left(g^{-1}\right)=\overline{\chi_{V}(g)}$, use a basis of eigenvectors v_{i} as in (v). Let $\left\{v_{i}^{*}\right\}$ be the corresponding dual basis. Then
$$
\left(g \cdot v_{i}^{*}\right)\left(v_{j}\right)=v_{i}^{*}\left(g^{-1} v_{j}\right)=v_{i}^{*}\left(\lambda_{j}^{-1} v_{j}\right)=\lambda_{i}^{-1} \delta_{i j},
$$
so $g \cdot v_{i}^{*}=\lambda_{i}^{-1} v_{i}^{*}$. By unitarity $\lambda_{i}^{-1}=\overline{\lambda_{i}}$. The equalities $\chi_{V^{*}}(g)=\chi_{V}\left(g^{-1}\right)=\overline{\chi_{V}(g)}$ follow.

Section B (questions to be handed in for marking)

2. Recall that the irreducible representation V_{n} of $S U(2)$ is given by the space of homogeneous polynomials of degree n in two variables (say z and w) with

$$
(A \cdot p)(\mathbf{z})=p\left(A^{-1} \mathbf{z}\right), \quad A \in S U(2), p \in V_{n}, \mathbf{z}=(z, w)
$$

and that the map $(z, w) \mapsto(w,-z)$, extended to a complex anti-linear map $J: V_{2 n} \rightarrow V_{2 n}$, defines a real structure on $V_{2 n}$.

Which of the irreducible representations V_{n} of $S U(2)$ may be regarded as representations of $S O(3)$?

Deduce that for each natural number n we have a real ($2 n+1$)-dimensional representation W_{n} of $S O(3)$.

Show further that the character of W_{n} is given by

$$
\sum_{k=0}^{2 n} e^{i(n-k) t}
$$

3. Show that a maximal torus in a compact Lie group is maximal among connected Abelian subgroups.
4. Find the Weyl group of the unitary group $U(n)$.
5. Let B denote the subgroup of $G L(3, \mathbb{C})$ consisting of invertible matrices of the form

$$
\left(\begin{array}{ccc}
\alpha & a & b \\
0 & \beta & c \\
0 & 0 & \gamma
\end{array}\right) \quad: \quad a, b, c \in \mathbb{C} \text { and } \alpha, \beta, \gamma \in \mathbb{C}^{*}
$$

Check that B is indeed a subgroup, and that there is a homomorphism ϕ from B onto the complex torus $T_{\mathbb{C}} \cong\left(\mathbb{C}^{*}\right)^{3}$ of diagonal elements of B. Show ker ϕ may be identified with the subgroup U consisting of elements of B with diagonal entries equal to 1 .

Show further that the elements of U with $a=c=0$ form a normal subgroup of U.
What are the maximal compact connected subgroups of T, B and U ? (You need not give detailed proofs).

Section C (optional extension questions, not to be handed in for marking)

6. (i) Let G be a compact Lie group and $C(G)$ the space of complex-valued continuous functions on G. Define a product (the convolution product) by

$$
\left(f_{1} * f_{2}\right)(h)=\int_{G} f_{1}\left(h g^{-1}\right) f_{2}(g) d g
$$

where $d g$ denotes the bi-invariant measure. Show that $\left(f_{1} * f_{2}\right) * f_{3}=f_{1} *\left(f_{2} * f_{3}\right)$.
(ii) Prove that convolution is commutative if the group is abelian.
(iii) Let $\pi: G \rightarrow \operatorname{Aut}(V)$ be a representation of G and $f \in C(G)$ a function. Define $\pi(f) \in \operatorname{End} V$ by

$$
\pi(f)=\int_{G} f(g) \pi(g) d g
$$

Show that $\pi\left(f_{1} * f_{2}\right)=\pi\left(f_{1}\right) \pi\left(f_{2}\right)$.
(iv) Use this to give an example of a group where the convolution product is not commutative.
7. Suppose (as in Question 6) that the function f satisfies $f\left(h g h^{-1}\right)=f(g)$ for all h. If π is an irreducible representation with character χ show that $\pi(f)=\alpha 1$ where

$$
\alpha=\frac{1}{\operatorname{dim} V}\langle f, \bar{\chi}\rangle .
$$

[^0]: ${ }^{1}$ All modules are assumed to be left modules.

