Lie Groups

Section C course Hilary 2022

kirwan@maths.ox.ac.uk

Example sheet 4

Section A (introductory questions, not for marking, solutions available)

- 1. Check the following properties hold for a character χ_V associated to a representation V of a compact Lie group G:
 - (i) $\chi_V(1) = \dim V$;
 - (ii) χ_V is invariant under conjugation, $\chi_V(hgh^{-1}) = \chi_V(g)$;
 - (iii) $\chi_V = \chi_W$ for equivalent reps $V \simeq W$;
 - (iv) $\chi_{V \oplus W}(g) = \chi_V(g) + \chi_W(g)$;
 - (v) $\chi_{V \otimes W}(g) = \chi_V(g) \cdot \chi_W(g)$;
 - (vi) $\chi_{V^*}(g) = \chi_V(g^{-1}) = \overline{\chi_V(g)}$.

Solution (i) Let G be a compact Lie group and let V, W be finite dimensional $\mathbb{C}G$ -modules.¹ We have $\chi_V(1) = \operatorname{trace}(\operatorname{id}_V) = \dim V$.

- (ii) follows from the identity $\operatorname{trace}(PAP^{-1}) = \operatorname{trace}(AP^{-1}P) = \operatorname{trace}(A)$ for (invertible) square matrices A and P.
- (iii) V and W are equivalent if and only if $V \cong W$ as $\mathbb{C}G$ -modules; that $\chi_V = \chi_W$ for equivalent representations V and W is then immediate from the definitions.
- (iv) A basis for $V \oplus W$ is given by taking a union of bases for V and W. It follows immediately that $\chi_{V \oplus W} = \chi_V + \chi_W$.
- (v) We may assume without loss of generality that the representations are unitary. Take $g \in G$. Then we may choose bases $\{v_i\}$ and $\{w_j\}$ for V and W respectively consisting of eigenvectors for the multiplication by g map, say

$$gv_i = \lambda_i v_i, \quad gw_j = \mu_j w_j.$$

Then $\{v_i \otimes w_j\}$ forms a basis for $V \otimes W$ and

$$g(v_i \otimes w_j) = \lambda_i \mu_j (v_i \otimes w_j).$$

Therefore

$$\chi_{V\otimes W}(g) = \sum_{i,j} \lambda_i \mu_j = \left(\sum_i \lambda_i\right) \left(\sum_j \mu_j\right) = \chi_V(g) \cdot \chi_W(g).$$

¹All modules are assumed to be left modules.

(vi) To show that $\chi_{V^*}(g) = \chi_V(g^{-1}) = \overline{\chi_V(g)}$, use a basis of eigenvectors v_i as in (v). Let $\{v_i^*\}$ be the corresponding dual basis. Then

$$(g \cdot v_i^*)(v_j) = v_i^*(g^{-1}v_j) = v_i^*(\lambda_j^{-1}v_j) = \lambda_i^{-1}\delta_{ij},$$

so $g \cdot v_i^* = \lambda_i^{-1} v_i^*$. By unitarity $\lambda_i^{-1} = \overline{\lambda_i}$. The equalities $\chi_{V^*}(g) = \chi_V(g^{-1}) = \overline{\chi_V(g)}$ follow.

Section B (questions to be handed in for marking)

2. Recall that the irreducible representation V_n of SU(2) is given by the space of homogeneous polynomials of degree n in two variables (say z and w) with

$$(A \cdot p)(\mathbf{z}) = p(A^{-1}\mathbf{z}), \quad A \in SU(2), \ p \in V_n, \mathbf{z} = (z, w),$$

and that the map $(z, w) \mapsto (w, -z)$, extended to a complex anti-linear map $J: V_{2n} \to V_{2n}$, defines a real structure on V_{2n} .

Which of the irreducible representations V_n of SU(2) may be regarded as representations of SO(3)?

Deduce that for each natural number n we have a real (2n+1)-dimensional representation W_n of SO(3).

Show further that the character of W_n is given by

$$\sum_{k=0}^{2n} e^{i(n-k)t}.$$

- 3. Show that a maximal torus in a compact Lie group is maximal among connected Abelian subgroups.
 - 4. Find the Weyl group of the unitary group U(n).
 - 5. Let B denote the subgroup of $GL(3,\mathbb{C})$ consisting of invertible matrices of the form

$$\begin{pmatrix} \alpha & a & b \\ 0 & \beta & c \\ 0 & 0 & \gamma \end{pmatrix} : a, b, c \in \mathbb{C} \text{ and } \alpha, \beta, \gamma \in \mathbb{C}^*.$$

Check that B is indeed a subgroup, and that there is a homomorphism ϕ from B onto the complex torus $T_{\mathbb{C}} \cong (\mathbb{C}^*)^3$ of diagonal elements of B. Show ker ϕ may be identified with the subgroup U consisting of elements of B with diagonal entries equal to 1.

Show further that the elements of U with a = c = 0 form a normal subgroup of U.

What are the maximal compact connected subgroups of T, B and U? (You need not give detailed proofs).

Section C (optional extension questions, not to be handed in for marking)

6. (i) Let G be a compact Lie group and C(G) the space of complex-valued continuous functions on G. Define a product (the *convolution product*) by

$$(f_1 * f_2)(h) = \int_G f_1(hg^{-1})f_2(g)dg$$

where dg denotes the bi-invariant measure. Show that $(f_1 * f_2) * f_3 = f_1 * (f_2 * f_3)$.

- (ii) Prove that convolution is commutative if the group is abelian.
- (iii) Let $\pi:G\to \operatorname{Aut}(V)$ be a representation of G and $f\in C(G)$ a function. Define $\pi(f)\in\operatorname{End}V$ by

$$\pi(f) = \int_{G} f(g)\pi(g)dg$$

Show that $\pi(f_1 * f_2) = \pi(f_1)\pi(f_2)$.

- (iv) Use this to give an example of a group where the convolution product is not commutative.
- 7. Suppose (as in Question 6) that the function f satisfies $f(hgh^{-1}) = f(g)$ for all h. If π is an irreducible representation with character χ show that $\pi(f) = \alpha 1$ where

$$\alpha = \frac{1}{\dim V} \langle f, \bar{\chi} \rangle.$$