B4.1 Functional Analysis 1

Sheet 0 — MT 2025

Warm up / revision sheet

In the questions below the scalar field is assumed to be \mathbb{R} for simplicity, but all results hold when the scalars are complex.

1. Let X be the vector space of real sequences (x_j) and define

$$||(x_j)|| = \begin{cases} 0 & \text{if } x_j = 0 \text{ for all } j, \\ |x_{j_0}| & \text{if } j_0 = \min\{j \mid x_j \neq 0\}. \end{cases}$$

Show that the triangle inequality fails to hold, so that $\|\cdot\|$ is not a norm.

Solution: Take x = (1, 3, 0, 0, ...) and y = (-1, 0, 0, ...). Then ||x|| = ||y|| = 1 (with the definition from Q1 of the sheet), but

$$x + y = (0, 3, 0, 0, ...)$$
 so $||x + y|| = 3$.

Hence $||x + y|| \nleq ||x|| + ||y||$, so the triangle inequality fails.

2. (a) Let X be a real inner product space and, for each $x \in X$, let $||x|| = \langle x, x \rangle^{1/2}$. You may assume that $|| \cdot ||$ defines a norm on X. Verify the Parallelogram Law: for all $x, y \in X$,

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

Solution:

$$\|x+y\|^2 + \|x-y\|^2 = \langle x+y, x+y \rangle + \langle x-y, x-y \rangle = 2\langle x, x \rangle + 2\langle y, y \rangle = 2\|x\|^2 + 2\|y\|^2.$$

(b) Consider the ∞ -norm $\|\cdot\|_{\infty}$ on \mathbb{R}^n (n > 2):

$$||(x_1,\ldots,x_n)||_{\infty} = \sup_{1 \le j \le n} |x_j|.$$

By showing that the Parallelogram Law fails, prove that there is no inner product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^n such that

$$||x||_{\infty} = \langle x, x \rangle^{1/2}$$
 for all $x \in \mathbb{R}^n$.

Solution: In \mathbb{R}^n with ∞ -norm let x and y be defined by $x_j = \delta_{1j}$ respectively $y_j = \delta_{2j}$ for $j = 1, \ldots, n$. Then, $||x||_{\infty} = ||y||_{\infty} = 1$ and $||x + y||_{\infty} = ||x - y||_{\infty} = 1$. So the Parallelogram Law fails for $||\cdot||_{\infty}$ and this norm therefore cannot come from an inner product.

3. Let X be a (real) vector space equipped with a norm $\|\cdot\|$. As usual we define a metric d on X by $d(x,y) = \|x-y\|$. For $x_0 \in X$ and r > 0, let the open and closed balls be given by

$$B_r(x_0) = \{x \in X \mid ||x - x_0|| < r\}$$
 and, $\overline{B}_r(x_0) = \{x \in X \mid ||x - x_0|| \le r\}$

respectively. [The terminology was justified in the Metric Spaces course: open balls are open sets and closed balls are closed sets.]

(a) A subset $C \subseteq X$ is convex if $x, y \in C$ and $0 \le \lambda \le 1$ imply $\lambda x + (1 - \lambda)y \in C$. Prove that $B_r(x_0)$ and $\overline{B}_r(x_0)$ are convex.

Solution: Take $\lambda \in [0,1]$ and $y,z \in B_r(x_0)$. Then

$$||x_0 - (\lambda y + (1 - \lambda)z)|| = ||\lambda x_0 - \lambda y + (1 - \lambda)x_0 - (1 - \lambda)z||$$

$$\leq ||\lambda(x_0 - y)|| + ||(1 - \lambda)(x_0 - z)||$$

$$= \lambda ||x_0 - y|| + (1 - \lambda)||x_0 - z|| < r.$$

Likewise $\overline{B}_r(x_0)$ is convex.

(b) Prove that $\overline{B}_r(x_0)$ is the closure of $B_r(x_0)$.

Solution: We use the characterisation of the closure F of a set F obtained in metric spaces that $x \in \overline{F}$ if and only if there exists a sequence (x_n) so that $x_n \in F$ and $x_n \to x$. Given $x \in \overline{B}_r(x_0)$ we can choose

$$x_n = \left(1 - \frac{1}{n}\right)(x - x_0) + x_0 \in B_r(x_0)$$

to get $x_n \to x$ and hence $\overline{B}_r(x_0) \subseteq \overline{B_r(x_0)}$, while conversely if (x_n) is a sequence such that each $x_n \in B_r(x_0)$ and $x_n \to x$ then

$$||x - x_0|| \le ||x - x_n|| + ||x_n - x_0|| < ||x - x_n|| + r.$$

Letting $n \to \infty$, we get $||x - x_0|| \le r$. Hence $\overline{B_r(x_0)} \subseteq \overline{B_r(x_0)}$.

(c) Use (i) to show that $(x_1, x_2) \mapsto |x_1|^{1/2} + |x_2|^{1/2}$ does not define a norm on \mathbb{R}^2 .

Solution: In \mathbb{R}^2 , consider x=(1,0) and y=(0,1) so $\frac{1}{2}x+\frac{1}{2}y=(\frac{1}{2},\frac{1}{2})$. The "p-norm" formula with p=1/2 would give $||x+y||=(2/\sqrt{2})^2=2$ so that x+y would not belong to the closed ball centre 0 and radius 1. But x and y do belong to this ball. This contradicts convexity. [A sketch of the set of points $(s,t) \in \mathbb{R}^2$ for which $|s|^{1/2}+|t|^{1/2} \leq 1$ is instructive.]

4. (a) Let X be a real normed space. Let $T: X \to \mathbb{R}$ be a linear map such that $|T(x)| \leq ||x||$ for all $x \in X$. Prove that T is continuous.

Solution: Linearity of T implies |Tx - Ty| = |T(x - y)|. So $|Tx - Ty| \le ||x - y||$, i.e. T is Lipschitz continuous and hence of course continuous.

(b) Let $X = \ell^p$, $1 \le p \le \infty$, equipped with the *p*-norm $||x||_p = (\sum_{j=1}^{\infty} |x_j|^p)^{1/p}$, respectively $||x||_{\infty} = \sup_j |x_j|$. Define $\pi_k : X \to \mathbb{R}$ by $\pi_k((x_j)) = x_k$ (for any $k \ge 1$). Check that each π_k is continuous.

Solution: Fix k. Note that for any of $1 \le p \le \infty$, we have $|x_k| \le ||(x_j)||_p$. Therefore π_k is norm-reducing and so continuous by (i).

(c) Let $X = L^2([0,1])$ and define $T: X \to \mathbb{R}$ by

$$T(f) := \int_0^1 f \, dx.$$

Check that T is continuous. [Hint: Use Hölder's inequality $||fg||_{L^1} \leq ||f||_{L^2} ||g||_{L^2}$ for every $f, g \in L^2([0,1])$.]

Solution: We use that the constant function $g \equiv 1$ is an element of $L^2([0,1])$ with $||g||_{L^2([0,1])} = \left(\int_0^1 1 \, dx\right)^{1/2} = 1$. By Hölder's inequality we thus get that $|T(f)| = \left|\int_0^1 f\right| \le ||f||_{L^1} = ||f \cdot g||_{L^1} \le ||f||_{L^2} \cdot ||g||_{L^2} = ||f||_{L^2}$ so continuity follows from (i).

(d) Let X be as in (ii). Let (a_i) be a fixed sequence of real numbers and define

$$Y = \{(x_j) \in X \mid x_{2j} = a_j x_{2j-1} \text{ for all } j \ge 1\}.$$

Check that Y is a subspace of X and, by writing Y as an intersection of closed sets involving maps π_k , or otherwise, show that Y is closed.

Solution: Because vector space operations in X are defined coordinatewise, it follows from the Subspace Test (routine calculations!) that Y is a subspace.

To see that Y is closed, there are different arguments possible:

Variant 1: We know that a set $F \subset X$ is closed if for any sequence (x_j) with $x_j \in F$ which converges $x_j \to x \in X$, the limit x is again an element of F. Given a sequence

 $(x_j^{(k)}) \subset Y$ which converges to some limit $(x_j^{(k)}) \to (x_j)$ as $k \to \infty$ we must have that also the components converge and hence $x_{2j} = \lim x_{2j}^{(k)} = \lim a_j x_{2j-1}^{(k)} = a_j x_{2j-1}$ so $(x_j) \in Y$.

Variant 2: We recall that for continuous maps the preimage of any closed set is again closed. For each k the map $\rho_k: y \mapsto \pi_{2k}(y) - a_k \pi_{2k-1}(y)$ is continuous, so $\rho_k^{-1}(\{0\})$ is closed. Then

$$Y = \bigcap_k \rho_k^{-1}(\{0\})$$

is an intersection of closed sets and hence is closed.