
B4.1 Functional Analysis 1

Sheet 0 — MT 2025

Warm up / revision sheet

In the questions below the scalar field is assumed to be R for simplicity, but all results hold

when the scalars are complex.

1. Let X be the vector space of real sequences (xj) and define

‖(xj)‖ =

0 if xj = 0 for all j,

|xj0| if j0 = min{j | xj 6= 0}.

Show that the triangle inequality fails to hold, so that ‖ · ‖ is not a norm.

Solution: Take x = (1, 3, 0, 0, . . .) and y = (−1, 0, 0, . . .). Then ‖x‖ = ‖y‖ = 1 (with

the definition from Q1 of the sheet), but

x+ y = (0, 3, 0, 0, . . .) so ‖x+ y‖ = 3.

Hence ‖x+ y‖ � ‖x‖+ ‖y‖, so the triangle inequality fails.

2. (a) Let X be a real inner product space and, for each x ∈ X, let ‖x‖ = 〈x, x〉1/2. You

may assume that ‖ · ‖ defines a norm on X. Verify the Parallelogram Law : for all

x, y ∈ X,

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

Solution:

‖x+y‖2+‖x−y‖2 = 〈x+y, x+y〉+〈x−y, x−y〉 = 2〈x, x〉+2〈y, y〉 = 2‖x‖2+2‖y‖2.

(b) Consider the ∞-norm ‖ · ‖∞ on Rn (n > 2):

‖(x1, . . . , xn)‖∞ = sup
1≤j≤n

|xj|.

By showing that the Parallelogram Law fails, prove that there is no inner product

〈·, ·〉 on Rn such that

‖x‖∞ = 〈x, x〉1/2 for all x ∈ Rn.

Mathematical Institute, University of Oxford

Stuart White: stuart.white@maths.ox.ac.uk (with thanks to Luc Nuygen and Melanie Rupflin)

Page 1 of 4



B4.1 Functional Analysis 1: Sheet 0 — MT 2025

Solution: In Rn with ∞-norm let x and y be defined by xj = δ1j respectively

yj = δ2j for j = 1, . . . , n. Then, ‖x‖∞ = ‖y‖∞ = 1 and ‖x+ y‖∞ = ‖x− y‖∞ = 1.

So the Parallelogram Law fails for ‖ ·‖∞ and this norm therefore cannot come from

an inner product.

3. Let X be a (real) vector space equipped with a norm ‖ · ‖. As usual we define a metric

d on X by d(x, y) = ‖x − y‖. For x0 ∈ X and r > 0, let the open and closed balls be

given by

Br(x0) = {x ∈ X | ‖x− x0‖ < r} and , Br(x0) = {x ∈ X | ‖x− x0‖ ≤ r}

respectively. [The terminology was justified in the Metric Spaces course: open balls are

open sets and closed balls are closed sets.]

(a) A subset C ⊆ X is convex if x, y ∈ C and 0 ≤ λ ≤ 1 imply λx + (1 − λ)y ∈ C.

Prove that Br(x0) and Br(x0) are convex.

Solution: Take λ ∈ [0, 1] and y, z ∈ Br(x0). Then∥∥x0 − (λy + (1− λ)z)
∥∥ = ‖λx0 − λy + (1− λ)x0 − (1− λ)z‖

≤ ‖λ(x0 − y)‖+ ‖(1− λ)(x0 − z)‖

= λ‖x0 − y‖+ (1− λ)‖x0 − z‖ < r.

Likewise Br(x0) is convex.

(b) Prove that Br(x0) is the closure of Br(x0).

Solution: We use the characterisation of the closure F of a set F obtained in

metric spaces that x ∈ F if and only if there exists a sequence (xn) so that xn ∈ F
and xn → x. Given x ∈ Br(x0) we can choose

xn =
(

1− 1

n

)
(x− x0) + x0 ∈ Br(x0)

to get xn → x and hence Br(x0) ⊆ Br(x0), while conversely if (xn) is a sequence

such that each xn ∈ Br(x0) and xn → x then

‖x− x0‖ ≤ ‖x− xn‖+ ‖xn − x0‖ < ‖x− xn‖+ r.

Letting n→∞, we get ‖x− x0‖ ≤ r. Hence Br(x0) ⊆ Br(x0).

(c) Use (i) to show that (x1, x2) 7→ |x1|1/2 + |x2|1/2 does not define a norm on R2.

Mathematical Institute, University of Oxford

Stuart White: stuart.white@maths.ox.ac.uk (with thanks to Luc Nuygen and Melanie Rupflin)

Page 2 of 4



B4.1 Functional Analysis 1: Sheet 0 — MT 2025

Solution: In R2, consider x = (1, 0) and y = (0, 1) so 1
2
x + 1

2
y = (1

2
, 1
2
). The

“p-norm” formula with p = 1/2 would give ‖x + y‖ = (2/
√

2)2 = 2 so that x + y

would not belong to the closed ball centre 0 and radius 1. But x and y do belong

to this ball. This contradicts convexity. [A sketch of the set of points (s, t) ∈ R2

for which |s|1/2 + |t|1/2 ≤ 1 is instructive.]

4. (a) Let X be a real normed space. Let T : X → R be a linear map such that

|T (x)| ≤ ‖x‖ for all x ∈ X. Prove that T is continuous.

Solution: Linearity of T implies |Tx−Ty| = |T (x− y)|. So |Tx−Ty| ≤ ‖x− y‖,
i.e. T is Lipschitz continuous and hence of course continuous.

(b) Let X = `p, 1 ≤ p ≤ ∞, equipped with the p-norm ‖x‖p = (
∑∞

j=1 |xj|p)1/p,
respectively ‖x‖∞ = supj |xj|. Define πk : X → R by πk((xj)) = xk (for any

k ≥ 1). Check that each πk is continuous.

Solution: Fix k. Note that for any of 1 ≤ p ≤ ∞, we have |xk| ≤ ‖(xj)‖p.
Therefore πk is norm-reducing and so continuous by (i).

(c) Let X = L2([0, 1]) and define T : X → R by

T (f) :=

∫ 1

0

f dx.

Check that T is continuous. [Hint: Use Hölder’s inequality ‖fg‖L1 ≤ ‖f‖L2‖g‖L2

for every f, g ∈ L2([0, 1]).]

Solution: We use that the constant function g ≡ 1 is an element of L2([0, 1])

with ‖g‖L2([0,1]) =
(∫ 1

0
1 dx

)1/2
= 1. By Hölder’s inequality we thus get that

|T (f)| =
∣∣∣∫ 1

0
f
∣∣∣ ≤ ‖f‖L1 = ‖f · g‖L1 ≤ ‖f‖L2 · ‖g‖L2 = ‖f‖L2 so continuity follows

from (i).

(d) Let X be as in (ii). Let (aj) be a fixed sequence of real numbers and define

Y = {(xj) ∈ X | x2j = ajx2j−1 for all j ≥ 1}.

Check that Y is a subspace of X and, by writing Y as an intersection of closed sets

involving maps πk, or otherwise, show that Y is closed.

Solution: Because vector space operations in X are defined coordinatewise, it

follows from the Subspace Test (routine calculations!) that Y is a subspace.

To see that Y is closed, there are different arguments possible:

Variant 1: We know that a set F ⊂ X is closed if for any sequence (xj) with xj ∈ F
which converges xj → x ∈ X, the limit x is again an element of F . Given a sequence
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(x
(k)
j ) ⊂ Y which converges to some limit (x

(k)
j ) → (xj) as k → ∞ we must have

that also the components converge and hence x2j = limx
(k)
2j = lim ajx

(k)
2j−1 = ajx2j−1

so (xj) ∈ Y .

Variant 2: We recall that for continuous maps the preimage of any closed set is

again closed. For each k the map ρk : y 7→ π2k(y) − akπ2k−1(y) is continuous, so

ρ−1k ({0}) is closed. Then

Y =
⋂
k

ρ−1k ({0})

is an intersection of closed sets and hence is closed.
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