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About these notes

These are lecture notes for the B7.2 Electromagnetism course, which is a third year course in the
mathematics syllabus at the University of Oxford. Starred sections/paragraphs are not examinable,
either because the material is slightly off-syllabus, or because it is more difficult. There are four
problem sheets. Please send any questions/corrections/comments to mark.mezei@maths.ox.ac.uk.

These notes are largely unaltered from the version written by James Sparks for Hilary term
2022, built on earlier material from Xenia de la Ossa, Fernando Alday, and Paul Tod, and with

additions by Erik Panzer.
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Reading list

The lecture notes have grown too long over the years. I have decided to move some material that
is either tangental or too advanced into a separate document, and I have expanded the discussion
of the core material in the notes. I recommend that you read this additional document as a first
step in going beyond the lecture notes.

There are many outstanding books on electromagnetism, often going into the subject in much
more depth than we will have time for, especially physical applications. Those who wish to learn

more are encouraged to dip into the following;:

e R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics, Volume 2:
Electromagnetism, Addison-Wesley. Online: https://feynmanlectures.caltech.edu/

e D. J. Griffiths, Introduction to Electrodynamics, Pearson.
e J. D. Jackson, Classical Electrodynamics, John Wiley.

The Feynman lectures are superb, especially for physical insight and applications. The book by
Griffiths is perhaps closest to this course. The book by Jackson is comprehensive, although is

closer to a graduate level text.

Preamble

In this course we take a first look at the classical theory of electromagnetism. Historically, this
begins with Coulomb’s inverse square law force between stationary point charges, dating from
1785, and culminates (for us, at least) with Maxwell’s formulation of electromagnetism in his 1864
paper, A Dynamical Theory of the Electromagnetic Field. 1t was in this paper that the electro-
magnetic wave equation was first written down, and in which Maxwell first proposed that “light
1s an electromagnetic disturbance propagated through the field according to electromagnetic laws”.
Maxwell’s equations, which appear on the front page of these lecture notes, govern a diverse array
of physical phenomena, and are valid over an enormous range of scales. It is the electromagnetic
force that holds the negatively charged electrons in orbit around the positively charged nucleus of
an atom.' Interactions between atoms and molecules are also electromagnetic, so that chemical
forces are really electromagnetic forces. The electromagnetic force is then essentially responsible

for almost all physical phenomena encountered in day-to-day experience, with the exception of

!Quantum mechanics also plays an important role.
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gravity: friction, electricity (in homes, laptops, mobile phones, etc), electric motors, permanent
magnets, electromagnets, lightning, electromagnetic radiation (radio waves, microwaves, X-rays,
ete, as well as visible light), ... it’s all electromagnetism.

Classical electromagnetism is an application of the three-dimensional vector calculus you learned
in Prelims: div, grad, curl, and the Stokes and divergence theorems. Appendix A summarizes the
main definitions and results, and I strongly encourage you to take a look at this at the start of
the course. We’ll then take a usual, fairly historical, route, starting with Coulomb’s law in elec-
trostatics, and eventually building up to Maxwell’s equations on the front page. The disadvantage
of this is that you’ll begin by learning special cases of Maxwell’s equations — having learned one
equation, you will later find that more generally there are other terms in it. On the other hand,
simply starting with Maxwell’s equations and then deriving everything else from them is probably
too abstract, and doesn’t really give a feel for where the equations have come from. My advice
is that after every few lectures you should take another look at the equations on the front page —

each time you should find that you understand better what they mean.

From a long view of the history of mankind — seen from, say, ten thousand years from
now — there can be little doubt that the most significant event of the 19" century will

be judged as Maxwell’s discovery of the laws of electrodynamics — Richard Feynman
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1 Electrostatics
1.1 Point charges and Coulomb’s law

It is a fact of nature that elementary particles have a property called electric charge. In SI units?
this is measured in Coulombs C, and the electron and proton carry equal and opposite charges Fe,
where e ~ 1.602 x 1071 C.? Atoms consist of electrons orbiting a nucleus of protons and neutrons
(with the latter carrying charge 0), and thus all charges in stable matter, made of atoms, arise
from these electron and proton charges.

Electrostatics is the study of charges at rest. We model space by R3, or a subset thereof, and

represent the position of a stationary point charge ¢ by the position vector r € R3.

Coulomb’s law Given two charges, ¢i, g2 at positions rq, ro € R3, respectively, the first charge

experiences an electrical force F1 due to the second charge given by

1 q142
F, = _— — . 1.1
' dreg lrg — o3 (r1 —r2) (1.1)

Note this only makes sense if ry # ra, so that the charges are not on top of each other, which we
thus assume. The constant €g is called the permittivity of free space, which in SI units takes the
value €y ~ 8.854 x 10712 C2N~' m~2. Notice that by symmetry the second charge experiences an
electrical force Fy, due to the first charge, where Fs is given by the right hand side of (1.1) with
the subscripts 1 and 2 swapped. In particular Fo = —F;, and Newton’s third law is obeyed.

Without loss of generality, we might as well put the second charge at the origin ro = 0, denote

r; =r, ¢2 = ¢, and equivalently rewrite (1.1) as

I qg
F, = — T, 1.2
! dmey 12 (1.2)
where I = r/r is a unit vector and r = |r|. This is Coulomb’s law of electrostatics, and is an

experimental fact. Note that:

E1: The force is proportional to the product of the charges, so that opposite (different

sign) charges attract, while like (same sign) charges repel.

E2: The force acts in the direction of the vector joining the two charges, and is inversely

proportional to the square of the distance of separation.

The above two laws of electrostatics are equivalent to Coulomb’s law. Notice that if (1.2) is the
only force acting on the first charge, by Newton’s second law of motion it will necessarily accelerate
and begin to move, and we are then no longer dealing with statics. We’ll get a feel for electrostatics
problems as the next two sections develop, and look at charges in motion starting in section 3.

The final law of electrostatics says what happens when there are more than two charges:

2where, for example, distance is measured in metres, time is measured in seconds, force is measured in Newtons.
3Since 2019, the Coulomb is defined such that the elementary charge is exactly e = 1.602176634 - 10~ C.



E3: Electrostatic forces obey the Principle of Superposition.

This means that if we have N charges ¢; at positions r;, ¢ = 1,..., N, then an additional charge ¢
at position r experiences a force

_ Yo q9i o
F=) — _(r—r;). (1.3)

— dmeo r —r;3

That is, to get the total force on charge ¢ due to all the other charges, we simply add up (superpose)
the Coulomb force (1.1) from each charge g;.

1.2 The electric field

The following looks trivial at first sight, but in fact it’s an ingenious shift of viewpoint:

Definition Given a particular distribution of charges, as above, we define the electric field E =

E(r) to be the force on a unit test charge (i.e. ¢ = 1) placed at position r.

Here the nomenclature “test charge” indicates that the charge is not regarded as part of the

distribution of charges that it is “probing”. The force in (1.3) is thus
F = ¢E , (1.4)

where by definition

N
1 qi
E(r) = 3 _r 1.
(r) Treg 2 E——E (r—r;) (1.5)

is the electric field produced by the N charges. It is a vector field (here defined on R3\ {ry,...,rn}),
depending on position r.

As we have defined it, the electric field is just a mathematically convenient way of describing the
force a unit test charge would feel if placed in some position in a fixed background of charges. In
fact, the electric field will turn out to be a fundamental object in electromagnetic theory. Notice

that E also satisfies the Principle of Superposition, and that it is measured in N C~!,

1.3 Gauss’ law

Definition Given a surface ¥ C R? with outward unit normal vector n, the integral fz E-ndS

is called the fluz of the electric field E through ¥.*

Here one often uses the notation dS for ndS. A central result in electrostatics is:

Theorem 1.1 (Gauss’ law ) For any closed surface ¥ = OR bounding a region R C R3,

N
1 Q
E-dS=—-Y¢=", 1.6
/ DX (16)

1See appendix A for vector calculus definitions and theorems.




where R contains the point charges qi,...,qn, and Q = q1 + - - - + qn s the total charge in R. In
words: the flux of the electric field through a closed surface 3 is equal to % times the total charge

contained in the region bounded by .

Proof Consider first a point charge ¢ at position ro. From (1.1), this produces an electric field

q r—rg

E(r) (1.7)

- 47’[‘60 |I'*I'0|3 '

Since V-r = 3 and on R?\ {rg} we have V |r —rg| = (r —rg)/|r — ro| (see (A.15)), it follows that

in this domain

V.E = 2 ( 3 3(r_r°)'(r_r°)>:0. (1.8)

~ 4reo r—ro)3 |r — rol®

The divergence of the electric field E produced by the point charge is thus zero everywhere, except
at the location of the charge itself.
Consider next a sphere S of radius a > 0, centred on the point ry. Since the outward unit

normal to S is n = (r —rg)/|r — ro|, from (1.7) we have

q 1 q q
E.-dS = dsS = —— ds = — . 1.
/S 471'60/5 |r — ro|? 5 dma?eq /S 5 €0 (1.9)

Here we have used the fact that a sphere of radius a has surface area 4ma?, and |r — ro| = a on S.

S; bounding ball B;

‘e

charge ¢g;

{ X bounding region R

Figure 1: Region R, with boundary 3, containing point charges qi,...,qn. We divide R =
UZ]\L 1 B; UU into a small balls B; around each charge ¢;, with boundary spheres S; = 0B;, and a
region U with boundary components ¥ and S1,...,SnN.

With these results to hand, consider now a region R, with closed boundary > = R, and assume
that R contains the charges q1,...,qy at position vectors ry,...,ry € R. Introduce small balls B;
centred on each charge, such that each B; contains only the charge ¢;, and write R = Uf\i 1 BiuU,

where the region U then contains no charges — see Figure 1. Each ball B; has boundary sphere



Si, and the outward unit normal to S; = 0B; is an inward unit normal to OU. The divergence

theorem A.2 applied to U hence gives

N
/V-EdV:/E-dS—Z/ E-dS. (1.10)

The electric field generated by the configuration of charges is given by (1.5), and (1.8) shows that

V-E=00nR3\{r,...,ry}. Since the region U contains no charges, using (1.10) we have

N N
E-dS /E'dS— / E-dS| + / E-dS
/Z (Z ,Lz:; Si > ; S

N
= / V-EdV + Z/ E-dS (divergence theorem)
U i=1 "5

:Z/S Boas =3 L. (1.11)
i=1 "1 i=1

Here the last step uses (1.9) for the i*® term in the sum (1.5): the remaining terms in the sum

have zero divergence on the ball B;, and so do not contribute to the integral. |
Note that this proof starts by analysing a single charge, and the inclusion of multiple charges is

an application of the Principle of Superposition, E3.

1.4 Charge density and Gauss’ law

For many problems it is not convenient to deal with point charges. If the point charges we have
been discussing are, say, electrons, then a macroscopic object will consist of an absolutely enormous
number of electrons, each with a very tiny charge.” We thus introduce the concept of charge density
p(r), which is a function giving the charge per unit volume. This means that, by definition, the

total charge @ = Q(R) in any region R is

Q= /deV- (1.12)

We shall generally assume that when describing a smooth three-dimensional distribution of charge,
the function p is at least continuous. For the purposes of physical arguments, we shall often think
of the Riemann integral as the limit of a sum (which is what it is). Thus, if R C R? is a small
region centred around a point r € R3 in such a sum, that region contributes a charge p(r)dV,
where 6V is the volume of J R.

With this definition, the obvious limit of the sum in (1.5), replacing a point charge ¢’ at position

r’ by p(r’) §V’, becomes a volume integral

B(r) = — / ) yar (1.13)

o 47T60 '€R |I' — I'/|3

5 A different issue is that, at the microscopic scale, the charge of an electron is not pointlike, but rather is effectively
smeared out into a smooth distribution of charge. In fact in quantum mechanics the precise position of an electron
cannot be measured in principle!



Here {r € R? | p(r) # 0} C R, so that all charge is contained in the (usually bounded) region R.

(1.13) gives the electric field generated by a charge distribution described by the density p, where

notice that we have again derived this from Coulomb’s law and the Principle of Superposition.
Similarly, the limit of (1.6) becomes

1
/ E-dS = — pdV | (1.14)
= € JR

for any region R with boundary OR = ¥. Using the divergence theorem we may rewrite this as

/R<V-E—§J) v =0. (1.15)

Since this holds for all R, we conclude from Lemma A.3 another version of Gauss’ law

vV E=2. (1.16)
€0

We have derived the first of Maxwell’s equations, on the front page, from the three simple laws of
electrostatics. In fact this equation holds in general, i.e. even when there are magnetic fields and
time dependence. We will directly show that (1.13) satisfies (1.16) in the next subsection.

As already mentioned, when writing a charge density p describing a smooth three-dimensional
distribution of charge, we shall generally assume it is at least continuous. However, if (1.16) is to
apply for the density p of a point charge q, say at the origin, notice that (1.8) implies that p =0
on R3\ {0}, but still the integral of p over a neighbourhood of the origin is equal to the charge q.

The “function” with this property is ¢ times the Dirac delta function:

Definition The Dirac delta function 6(x) in one dimension is defined by:

1 if0eICR,

) (1.17)
0 otherwise .

(i) 6(z) = 0forz #£0, (i) /I(S(x)dx = {

One can define this rigorously as a distribution, which is a linear functional on an appropriate space
of test functions. One can also view d(z) as the limit of a sequence of “bump functions”, supported
around x = 0. For more details the reader might refer to the Part A Integral Transforms course,
but we shall only need an informal understanding of the Dirac delta function for this course. The

following Proposition summarizes some key properties:

Proposition 1.2 The Dirac delta function satisfies:
0 [ @i -a)ds = 7o),
ii

(i) oz —a)] = =8z —a")

|al

i) d(g()) = 32—t (1.18)

2 g
where (1) f(z) is any continuous function, (ii) a # 0 is a real constant, and (iii) the differentiable

function g(z) has zeros g(x;) =0, i =1,...,n, with ¢'(x;) # 0.



The proofs of these essentially follow from the defining property (1.17), where in (iii) one changes
variable y = g(x), dy = ¢’(x) d in the integral. Notice from (ii) that é(x — 2’) = 6(2’ — z).
The Dirac delta function in three dimensions is then defined in Cartesian coordinates r =

(21,2, 23) as the product
d(r) = 6(x1) 6(x2) 8(x3) . (1.19)

From (1.17) this satisfies

1 ifr e R,
() 6(r—1) = 0forr£r, (i) / S(r—r)dV = el (1.20)
reR 0 otherwise.
The density for a point charge ¢ at position rq is then
p(r) = qo(r —rp). (1.21)

Example As an application of this, starting from (1.16) we may rederive Gauss’ law (1.6) for N

point charges qi,...,qy at positions ry, ..., ry inside a region R, with boundary > = OR:

N N
1 1
/z R reR €0 5 ( ) € 7

Likewise, inserting p(r') = YN | ¢; 6(r' —r;) into (1.13) gives

N N
1 1 1 gi
E(r) = = (r =1’ i 0(r' — 1) dV’ = - —r;), (1.23
(r) 4meg /rleR v —r/|3 (r—r) ;q (" —r)dV 4meg ; Ir — ri|3(r ri), (1.23)
which is the point charge formula (1.5). [ |

Proposition 1.3 The three-dimensional Dirac delta function may be written as

5(r— o) = 417rv2< ! ) . (1.24)

|r — o]

Proof This essentially follows from the calculations we have done. On R?\ {rg} note that

v <1> __(r=r) _ dmeop (1.25)

r—rol)  |r—rof q

where on the right hand side E(r) is the electric field (1.7) generated by a point charge at posi-
tion rg. Taking the divergence of (1.25), from (1.8) we immediately deduce that V2(1/|r —rg|) = 0

for r # rp, and using the divergence theorem and then (1.9) we have

1 4
/ v2< ! )dV:/ v( >-dS:—7TEO/E-dS:—47r, (1.26)
rcB Ir — 1o S=0B v — ro| q Js

where B is a ball centred on ro. These properties establish the identification (1.24). [ |




1.5 Electrostatic potential and Poisson’s equation

Returning to our point charge g at position ry, note that on R?\ {ro} equation (1.25) implies that
E = —V¢ where

__e¢ 1
o(r) = dreor—r1o] | (1.27)

Definition The function ¢ with E = —V ¢ is called the electrostatic potential.
For a continuous charge density we then have the following:

Theorem 1.4 Consider a continuous charge density p(r) with support {r € R® | p(r) # 0} C R
with R a bounded region, and define

o(r) = / p(r/)/|dV’. (1.28)

dmey Jyer |t —r

Then —V¢ = E, with the electric field E given by (1.13), which satisfies Gauss’ law (1.16).

Moreover, ¢ = O(1/r) as r — o0, so that this electrostatic potential is zero “at infinity”.

Proof The formula (1.13) follows immediately from applying —V to (1.28):

Vo) = o o [ (7)o 0

1 / -
_ / PO =) gy (1.29)
471'60 r'eR |I’—I'/‘3

where in the second line we have used the first equality in (1.25). Instead applying V? to (1.28),

and using Proposition 1.3, we deduce

V2(r) = — /r,ERVQ( ! ) o)AV = /rleR(—éLwd(r—r'))p(r')dV'

4Teg lr — 1’| 47eg

__rln) (1.30)
€0

It follows that V - E = p/ey, where E = —V¢. Finally, R being bounded means it is contained

inside some closed ball B of radius a, and p is continuous on this compact set so it is bounded.

Thus |p(r')] < M for all ¥’ € B, and

/
/ Io(r )I dV/
r'eB |I'—I' |

where in the last step we have taken r > a, and used the reverse triangle inequality: |r — r/| >

1
 dreg

|(r)]

1 M M
/ — AV’ < Vol(B,),  (1.31)

~ Adrmeg Jyep |r— 1| r—a

e = [ =7 =l =27 —a u
Corollary 1.5 The electrostatic potential satisfies Poisson’s equation

vig = -2 (1.32)
€0



Since the curl of a gradient is identically zero, we may also deduce from E = —V ¢ that

VxE=0. (1.33)

Equation (1.33) is another of Maxwell’s equations from the front page, albeit only in the special

case where 0B /0t = 0 (the magnetic field is time-independent).

* In fact V x E = 0 implies that the vector field E is the gradient of a function, provided

the domain of definition is simply-connected. Recall the latter means that every closed

loop can be continuously contracted to a point. For example, this is true for R? or in an

open ball. For non-simply-connected domains, such as R minus a line (say, the z-axis), it

is not always possible to write a vector field E with zero curl as a gradient. A systematic
discussion of this is certainly beyond this course. The interested reader can find a proof

for an open ball in appendix B of the book by Woodhouse in the reading list.

Recall from Prelims that forces F which are gradients are called conservative forces. Since

F = q E, we see that the electrostatic force is conservative. The work done against the electrostatic

force in moving a charge g along a curve C' is then the line integral

W:_/CF.dr:—q/CE-dr=q/cv¢-dr=q[¢<r1>—¢<ro>]. (1.34)

Here the curve C' begins at rg and ends at r;. The work done is of course independent of the
choice of curve connecting the two points, because the force is conservative. Notice that one may
add a constant to ¢ without changing E. It is only the difference in values of ¢ that is physical,
and this is called the voltage. If we fix some arbitrary point ro and choose ¢(rp) = 0, then ¢(r)
has the interpretation of work done against the electric field in moving a unit charge from rg to r.
Note that Theorem 1.4 says that the particular choice for ¢ in (1.28) is zero “at infinity”. From

the usual relation between work and energy, ¢ is also the potential energy per unit charge.

E field
N
A = constant
< ?

A
y

Figure 2: The field lines, which represent the direction of the electric field E, and equipotentials
around a positive point charge.



Definition Surfaces of constant ¢ are called equipotentials.
Proposition 1.6 The electric field is always normal to an equipotential surface.

Proof To see this, fix a point r and let t be a tangent vector to an equipotential for ¢(r). By
definition, the derivative of ¢(r) in a direction tangent to such an equipotential surface is zero, and
hence t - V¢ = 0 at this point. Since this holds for all tangent vectors, this means that V¢ = —E

is normal to a surface of constant ¢. |

Example (Uniform charge density in a volume) Consider a slab of infinite extent in both the
positive and negative z and y directions, but occupying the interval —a < z < a in the z direction
with uniform charge density pg. We can determine the resulting electric field in two different ways.

Since the geometry and the charge density are translationally and rotationally invariant in the
x — y plane, E = E(z)e,. Furthermore there is a reflection symmetry z — —z which sends
E(z) - —FE(—=z), where the minus sign comes from the invariance of E combined with e, — —e..

Consider a cylinder of height h with disk area A centred at z = 0. The cylinder is invariant

under reflections, and we can write the integrated form of Gauss’ law

/ E-dS = A[E (h) — E(~h)] = 2AE (h)
cylinder

1.35
:/ p(z)dV:M:2poA h (h<a), (1.35)
cylinder €0 €0 €0 a (h>a).
By equating the last expressions in the first and second lines, we get
0<2<
E(Z)=p0{z (0<z<a), (1.36)
€ |a (z>a).

Alternatively, we can obtain the electric field by first determining the electrostatic potential
by solving Poisson’s equation. By the same symmetry considerations as above the electrostatic

potential only depends on z and Poisson’s equation takes the form

1 —a<z<

¢'(z) =L = -2 (Fa< c= a (1.37)
€0 € |0 (otherwise) .
We focus on 0 < z and integrate
2
+Bz+C 0<z<a),

sa=-2 1% ( : (1.38)

€ |Dz+F (a < z)

Continuous differentiability of ¢ sets D = a 4+ B, F = C — a?/2. While a constant shift in ¢ is
unphysical (hence we cannot hope to fix C'), we are left with the unfixed parameter B. Taking the

derivative gives

E(zx)=—¢'() =2

=c= (1.39)
€0

z+ B (0<z<a),
a+ B (a<z).



This matches (1.36) only for B = 0. The B # 0 solutions represent a homogeneous electric field
throughout R? superposed with the field sourced by the charge density, which we discard. An
alternative way to argue is that B # 0 breaks the reflection symmetry.

Note that unlike in most problems discussed in this course the electrostatic potential does not
go to zero at infinity for any choice of the constant C'. This does not contradict Theorem 1.4,

as that theorem assumed that the charge density is localised to a bounded region, which is not

satisfied here. |

1.6 Conductors and surface charge

More interesting is when the distribution of charge is not described by a continuous charge density.
We have already encountered point charges. For many problems it is useful to introduce the
concepts of surface charge density o on a surface S, say for a charge distribution on a thin metal
sheet, and also line charge density A on a curve C, say for a charge distribution in a thin wire.
These will be taken to be appropriately well-behaved functions on S and C, representing charge
per unit area and charge per unit length, respectively.

In fact the concept of surface charge density doesn’t require a thin metal sheet to be useful, for

the following reason:

Definition An electrical conductor is a material where some of the electrons (“conduction elec-

trons”) are free to move in the presence of an external electric field.

In a static situation, the electric field inside the conducting material must be zero. Why? Because
if it weren’t, then the conduction electrons in the interior would experience a force, and thus move
by Newton’s second law.

Imagine what happens if we now switch on an external electric field: a conduction electron will
move in the opposite direction to the field (because it is negatively charged), until either (a) it
gets to the boundary of the material, or (b) the electric field inside the material has relaxed to its
equilibrium of zero. This way, one ends up with lots of electrons at, or very near, the surface of
the material; their distribution (and the distribution of other immobile charges) throughout the
material produces an electric field which precisely cancels the external field inside the material.
Thus E = 0 inside a conductor. More generally if the conductor is a surface or curve in R?, then
similarly t - E = 0 for any tangent vector t to the conductor. Since E = —V¢ we deduce the

important fact that:

Theorem 1.7 (a “Physics Theorem” ) A conductor in static equilibrium is always an equipoten-

tial for ¢, i.e. ¢ = constant throughout the conducting material.

Equation (1.16) furthermore implies that p = 0 inside a conducting material in equilibrium, and

hence the charge must be described by a surface charge density.
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Surface and line charge densities of course contribute to the total charge and electric field via
surface and line integrals, respectively. For example, a surface S with surface charge density o

gives rise to an electric field

E(r) = — / o) e ihyas (1.40)

 4meg Jyeg v 1

Notice that for r € R?\ S and o smooth the integrand is smooth. However, it turns out that E is

not continuous across S!

Proposition 1.8 For the electric field given by (1.40), generated by a surface charge density o on
a surface S, the components of E tangent to S are continuous across S, but the normal component
of E is not. Specifically, if n is a unit normal vector field to the surface pointing into what we’ll

call the “+ side”, then
Ef‘n-E -n=—, (1.41)
at every point on the surface.

Proof To see this, consider a surface S which has a surface charge density . Consider the
cylindrical region R on left hand side of Figure 3, of height € and cross-sectional area §A. Gauss’
law gives

1
/ E-dS = — (total charge in R) . (1.42)
OR €0

In the limit ¢ — 0 the left hand side becomes (E* -n — E~ - n)§A for small 64, where E* are
the electric fields on the two sides of S and the unit normal n points into the + side. The right
hand side, on the other hand, tends to o §A/€ey. Thus there is necessarily a discontinuity in the

component of E normal to S given by (1.41).

area 8 A
/E_L =t curve C
<~ bounding X

M~ T

height ¢ height ¢

£ < >

region R surface S length 8L

Figure 3: The surface S.
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Consider, instead, the rectangular loop C on the right hand side of Figure 3, of height £ and
length §L, bounding the rectangular surface . By Stokes’ theorem A.1 we have

/CE-dr:/E(VxE)-dS:0, (1.43)

where we have used the electrostatic Maxwell equation (1.33) in the second equality. If t denotes

a unit tangent vector along C' on the + side, then in the limit ¢ — 0 we obtain
(Ef-t—E™ -t)6L =0, (1.44)

for small §L. Thus the components of E tangent to .S are continuous across S

Ef-t=E -t. [ ] (1.45)
€3 z
A
T r=(0,0,b)
b Y

r'=(acos @' asind’, 0)

\ charged wire C

Figure 4: Charged plane circular wire C' of radius a, centred on the origin O in the (z,y)-plane at
z=0.

Example (Line charge density) Consider a curve C' with line charge density A. This generates an

electric field

E(r) = — / M ey | gy (1.46)

dmey Jyeo v — 13

where the curve C' C R? is parametrized by r’ = r'(s), with s’ € [sg, s1] C R. For example, consider
a plane circular wire of radius a, centred on the origin in the (z,y)-plane at z = 0, carrying a total
charge @ that is uniformly distributed around the wire — see Figure 4. A point on the wire is
r'(¢') = (acos®,asing’,0), parametrized by 6’ € [0,27], and so |dr'/d#’| = a. The uniform line
charge density is then A = Q/27a, and the electric field (1.46) is

Blr) = — /% Q r=v(0) 4y (1.47)

~ 4reo 0'—o 2ma v — 1/ (0")]3

12



It is difficult to evaluate this integral at a general point r = (z,y, ), so let us look at the point
r = (0,0,b0) on the z-axis. In this case notice that |[r — r/(¢’)] = |(0 — acos#',0 — asind’,b)| =

va? 4+ b? is independent of ', and (1.47) easily integrates to give

Q
dme (a2 + b2)3/2

B(0.00) = L Q@ [T 1

/ . ;o
= 4dmeg 21 e,zom(—aCOSH,—asmﬁ,b)dg —

€3 (1.48)

where ez is a unit vector pointing along the z-axis. Here the integrals over cos @ and sin#’ in the
x and y components of (1.48) give zero, but we could also have anticipated this by the symmetry
of the problem: the z-axis is an axis of symmetry, and on this locus the electric field then also

necessarily points along the z-axis. ]

Figure 5: Electric field lines around the plane circular wire, given by (1.47).

1.7 Electrostatic energy

In this subsection we derive a formula for the energy of an electrostatic configuration as an integral
of a local energy density. We shall return to this subject again in section 5.5.

We begin with a point charge ¢ at r;. This generates a potential

1
(1) _ q1
oM (r) Taonl (1.49)

Consider now moving a charge g from infinity to the point ro. From (1.34), the work done against
the electric field in doing this is

1 4291

= go ¢V = _ A
W2 QQ¢ (1'2) 471'60 |I'2 —I'1| '

(1.50)
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Next move in another charge g3 from infinity to the point r3. We must now do work against the

electric fields of both ¢1 and ¢2. By the Principle of Superposition, this work done is

1
Wy = < q3q1 + q392 > ‘ (1.51)
dmeg \|r3 —r1| = |r3 — 12

The total work done so far is thus Wy + W3. We may continue this process and inductively deduce

that the total work done in assembling charges q1,...,qy at r1,...,ry is

qzq] 11 4:iqj
= Z 1.52
471'60 ZZ\ ; 2 4rmey Zz\l—rﬂ (152)
i=1 j<i i=1 j#i

where notice that ¢;q;/|r; — r;| is symmetric under swapping 7 and j.

We next rewrite (1.52) as

1
=3 > aidi, (1.53)
i=1
where we have defined
1 Qj
;= . 1.54
¢ 471'60 ;\ri—rﬂ ( )

This is simply the electrostatic potential produced by all but the ith charge, evaluated at position
r;. In the usual continuum limit, (1.53) becomes

1
W= 2/Rp¢dv, (1.55)

where ¢(r) is given by (1.28). Now, using Gauss’ law (1.16) we may write

6L = ¢V.E=V.(¢E) ~V¢ E = V-(6E)+E E, (1.56)

€0

where in the last step we used E = —V¢. Inserting this into (1.55), we have

_ ¢ _ )
W= 3 UE:aRng dS+/RE EdV] : (1.57)

where we have used the divergence theorem on the first term. Taking R to be a very large ball of
radius r, enclosing all charge, the surface ¥ is a sphere. From Theorem 1.4 we have ¢ = O(1/r)
as r — oo, and one can check that this surface term is zero in the limit that the ball becomes

infinitely large. We hence deduce the elegant formula
€0
W:/ E-EdV . (1.58)
2 R3

Definition When the integral (1.58) exists the electrostatic configuration is said to have finite
energy W. The formula (1.58) suggests that the energy is stored in a local energy density

556

0 €0 2
—E-E = —E|. 1.59
. 2| (1.59)



2 Boundary value problems in electrostatics
2.1 Boundary value problems

In the previous section we have seen that electrostatics reduces to solving the Poisson equation

Vi = -2 (2.1)

€0
For problems where we are simply given a charge distribution p everywhere in space, the solution
to (2.1) for ¢ is given by the integral formula (1.28) in Theorem 1.4. We have then effectively
solved this class of electrostatics problems.
In this section we consider a different class of problems. We still want to solve the Poisson
equation (2.1), but now in a region of space R with boundary OR = X, where we specify boundary
conditions for the fields on ¥. From a mathematical perspective, given a PDE such as (2.1) it is

natural to ask what types of boundary condition we can impose. In this section we consider:
(i) Dirichlet boundary conditions, where ¢ is specified on X,

(ii) Neumann boundary conditions, where E - n is specified on X, where n is the outward unit

normal to ¥ = OR. Here the normal component of the electric field E - n on X is

E-n:—n-V¢E—gZ, (2.2)

which is minus the normal derivative of ¢.

From a mathematical perspective it makes sense to solve (2.1) only on the domain R C R3, ignoring
the exterior (complement) of R. However, in physical problems there should be something that is
effectively imposing these boundary conditions, and indeed then something outside the domain R.

Here are two classes of examples:

(i) Consider a charge distribution described by a density p in the interior of a region R, where
OR = ¥ and this boundary is surrounded by a thin conducting material — see Figure 6. As
explained in section 1.6, the conduction electrons will distribute themselves in such a way
to give ¢ = constant inside the thin layer of conducting material, but also induce a surface
charge density o on X, that we do not know a priori. However, given the solution ¢ to the
Dirichlet problem, on ¥ we may identify

by

This follows from (1.41) in Proposition 1.8, where inside the thin conducting material we
have ET = 0, and we have then used (2.2) to write E~ - n = —9¢/dn, where E~ is the
electric field just inside the boundary ¥. Of course, the solution will determine E = —V¢ in

the whole interior of R.
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thin conducting material
with ¢ = constant inside
the thin layer

vecified in region R

undary R =%

N

induced surface charge

density 0 =¢, g—g 5

Figure 6: The Dirichlet problem with ¢ = constant on the boundary OR = ¥ of a region R
containing a charge density p. Physically this boundary condition is enforced by wrapping a thin
conducting material around 3, with ¢ = constant inside this thin layer.

(ii) Consider the same set up, but where now ¥ is replaced by a thin layer of insulating material,
on which we place a specific surface charge density o. By definition the insulator doesn’t
allow these charges to move. Assuming that ET = 0 in the exterior of R, the same equation

(2.3) still holds, but where we now interpret this as fixing the normal derivative of ¢ on .

As we explain at the end of this subsection, the electric field will also be zero outside the thin
conducting material, provided there are no charges outside of R and the conductor is grounded,
meaning the potential ¢ on X is the same as that “at infinity”. We shall see various physical
examples later in this section, but for now we focus mainly on developing the general mathematical

theory. We begin with the following:

Proposition 2.1 (Green’s identities) For any closed surface ¥ bounding a region R, and for all

suitably differentiable functions u, v in R, we have

(a) / (UV2U+VU-VU)dV: u@dS,
R » on

(b) / (uV — 0 V) dV = / u 9 _ v u ds . (2.4)
R » on on

Proof For (a) apply the divergence theorem A.2 to f = u Vv, where then V- f = u Vv + Vu - Vu.
Then for (b) simply take (a) and subtract the same equation with u and v interchanged. |

Theorem 2.2 The Poisson equation with either Dirichlet or Neumann boundary condition has a

unique solution for ¢, in the latter case up to an unphysical additive constant.

Proof Let ¢1, ¢2 be two solutions to (2.1) in the interior of a region R with closed boundary

surface > = JR, with the same boundary conditions on 3. Define ¢y = ¢1 — ¢2, so that the
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Laplace equation

Vi = V2 — Vi = — L - (_p) =0, (2.5)

€0 €0

holds inside R, with boundary conditions either (i) ¢¥» = 0 on 3, or (ii) d¢¥/On = 0 on X. Now
apply Green’s first identity (a) in Proposition 2.1, with u = v = 1, to deduce

/R(¢V2@Z)+V¢-V¢)dV:/zwg:de:0. (2.6)

Since V21 = 0 this gives fR |[Vy|2dV = 0. Notice that Vi needs to be differentiable in order
for the Laplace equation to make sense, so the integrand |V1)|? is manifestly non-negative and
continuous. We deduce that V¢ = 0 and hence ¢ = constant in R, so that ¢1 = ¢2 + constant.
Recall that the electrostatic potential is only determined up to such an additive constant, which
drops out of the electric field E = —V¢. However, in the Dirichlet case ¢1 = ¢2 on the boundary
then forces this to hold everywhere in R, with ¢ = 0. |

In principle we could consider mized boundary conditions, writing > = ¥p U X as a disjoint
union, with ¢ specified on X p, and d¢/0n specified on X . The uniqueness proof in Theorem 2.2
still goes through, where on the right hand side of (2.6) either ¢ = 0 or d¢¥/On = 0 on the

respective components of X. The following is an important physical application of Theorem 2.2:

Theorem 2.3 Consider a region R with zero charge density p inside R, which is bounded by a
closed surface ¥ = OR consisting of a thin electrical conductor. Then the electric field is zero

iside R.

Proof From Theorem 1.7, the surface X is an equipotential for ¢. On the other hand, since p =0
inside R then ¢ = constant inside R solves the Poisson equation with Dirichlet boundary condition.

Theorem 2.2 implies this is the unique solution, and we deduce that E = —V¢ = 0 inside . N

This is sometimes referred to as a Faraday cage: the thin conductor “shields” its interior from any
external electric field. This is why it’s hard to get a mobile phone signal inside a building where
the walls have been reinforced with a steel mesh — that phone signal is an electromagnetic wave.
Finally, recall that in Figure 6 we had a thin conducting material wrapped around . Assuming
there is no charge in R° = R3 \ R, then the charge is confined to a bounded region in R3, and
Theorem 1.4 says that ¢ = O(1/r) at infinity. By definition, the conductor is grounded if ¢ = 0
on X, so that the potential is the same as that at infinity. We may then consider the Dirichlet
problem for R¢, which has two boundary components: ¥ and a sphere of very large radius r — oo.
Since ¢ = 0 on this boundary, then ¢ = 0 inside R® solves the Poisson equation with Dirichlet

boundary condition, and it follows that E = 0 on R = R3\ R.

17



2.2 Green’s functions

To investigate these boundary value problems further, we next introduce:
Definition A Green’s function is a function G(r,r’) satisfying
V2G(r,r") = —4rd(r —1') (2.7)

where r,r’ € R. Notice we have written the derivative with respect to the second, primed coordi-

nates r’ in G(r,r’), and recall §(r —r’) = 6(r' — r).

From equation (1.24), we can write down the particular solution to (2.7)

1
v —r'|

G(r,v') = (2.8)

Physically, this is 4meg times the electrostatic potential generated by a unit charge at position r’.

On the other hand, this solution is not unique: the general solution to (2.7) is

1

G(r, I‘,) = ‘I‘ — I‘/’ + F(I‘,I‘/) ) (2.9)
where F(r,r’) satisfies the Laplace equation in R:
V2F(r,r') = 0. (2.10)

To see how this helps us solve the Poisson equation (2.1), take Green’s second identity (b)
in Proposition 2.1, with u = ¢(r') and v = G(r,r’), where the integrals are over the primed

coordinates r’. Then

[(b(r') aGa(;’,r) — G(r,7) 8‘22‘:) s’ (2.11)

/ [6(r") V2 G(r, ) — G(r,x/) V?(r)] AV’ = /
R

X

where this holds for all r € R. Using the definition (2.7) and the Poisson equation (2.1), the left
hand side of (2.11) is

dr () + / Gr,r') (') AV | (2.12)
€ JR

so that rearranging (2.11) we have proven

Proposition 2.4 The electrostatic potential inside the region R may be expressed as

o) = o [ Gexpav e [ o) 2980 - o) 24 s 2

4d7eq 4

This is a key formula, so let us make some remarks:

e The Green’s function G(r,r’) in (2.13) is any solution to (2.7). In particular, we may choose

any solution F' to the Laplace equation (2.10) in constructing G(r,r’) via (2.9).
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e The density p in R is specified as part of the data of the problem, while (i) in the Dirichlet

problem it is ¢ that is specified on the boundary, while (ii) in the Neumann problem it is

0¢/0n that is specified. However, both terms appear in the boundary intergal in (2.13).

e We immediately recognize the solution (1.28) as a special case of (2.13), where we take the

Green’s function (2.8). In (1.28) we took the charge density p to be supported in a bounded
region of space, and ¢(r) given by (1.28) then solves the Poisson equation in the whole of
R3. The boundary terms in (2.13) are then effectively evaluated at infinity, where both the
Green’s function (2.8) and the potential ¢ are O(1/r) and hence tend to zero.

Let us analyse (2.13) for the two boundary value problems in more detail:

(i)

Dirichlet When ¢ is specified on 3, it is convenient to choose the Green’s function to also

satisfy the Dirichlet boundary condition (denoted with a subscript D on Gp)
Gp(r,r') =0, forallr’ e, reR. (2.14)

That is, the Green’s function, viewed as a function of the second variable r’, for any fixed r,

is zero on ¥ = OR. Given such a function, (2.13) becomes

/ / / 1 / 8GD(I',I',) /
/RGD(I',r)p(r)dV —47T/E¢(r)d5 . (2.15)

olr) = o

4meg
Notice we have effectively reduced the problem to constructing the Green’s function solution
G = Gp to (2.7), with Dirichlet boundary condition (2.14). This depends only on the region
R, with boundary ¥ = JR. Assuming we know Gp, then given any charge density p and
any prescribed ¢ on ¥, the (unique by Theorem 2.2) solution to the Poisson equation with

this Dirichlet boundary data is (2.15).
Neumann In this case we begin by using the divergence theorem to show that for r € R
—4r = / —4r§(r — 1) dV’ = / V2G(r,r)dV’ = / V' V' G(r,x')dV’
/ V' Ger) a8 = [ 2601 4 (2.16)
b)) on’
Thus we cannot simply set OG(r,r')/0n’ to zero on ¥, analogously to (2.14). Instead a

convenient condition to impose is

/
4
(9(?]{\;(7:;71‘):_27 forallt’ €X, reR, (2.17)

where A = [, dS is the area of ¥. This is consistent with (2.16), and (2.13) becomes

¢(r) =

4meq

/ / / 1 / a¢(r/) !
/RGN(I',I')p(r)dV +47r/ZGN(r’r) 57 ds’+ (o), (2.18)

where we have defined
1
= A/z o(r')ds’ , (2.19)
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which is an average of ¢, per unit area, on the boundary. Notice that in the Neumann
problem we are free to shift ¢ — ¢ + constant, without changing the boundary condition,
and using this we may set (¢) to any value (for example, (¢) = 0 is natural), thus fixing
this non-uniqueness. Having found the Green’s function Gy satisfying (2.17), again given
any charge density p and any prescribed 0¢/dn on X, the solution to the Poisson equation
with this Neumann boundary data is (2.18).

In summary, we have reduced both problems to finding Green’s functions (2.7) satisfying either
the Dirichlet (2.14) or Neumann (2.17) boundary conditions. It is a general theorem in analysis
that such Green’s functions do in fact exist, assuming the boundary ¥ = OR is suitably well-
behaved (for example, smooth is sufficient). Indeed, notice from (2.9) that finding such Green’s
functions is equivalent to solving the Laplace equation for F(r,r’), with appropriate boundary
conditions. However, finding such functions explicitly is in general very hard. In the remainder of
this section we will study methods that allow us to solve a variety of boundary value electrostatics
problems, and find the Green’s functions for the associated domains R. We focus mainly on the

Dirichlet problem, where we note the following result:

Proposition 2.5 The Dirichlet Green’s function Gp, solving (2.7) subject to the boundary con-
dition (2.14), is symmetric; that is, Gp(ri,re) = Gp(ra,r1) holds for all r1,ry € R.

Proof We again make use of Green’s second identity (b) in Proposition 2.1, this time with u =

G(r1,r’) and v = G(ra,r’), where the integrals are over the primed coordinates r’. We deduce

4 [GD(rQ,rl) —GD(I‘l,I'g)] = / [GD(I'l,I‘/) V/2 GD(I'Q,I'/) —GD(I'Q,I'I) VIQ GD(I‘l,I'I)] dV/

R
8GD(I'2, I") 8GD (I‘l, I‘/)
= /2 {GD(I‘LI',)M - GD(I'ZaI'/)T ds’,
=0, (2.20)
where the boundary term is immediately zero due to the Dirichlet condition (2.14). |

Remark Notice the Green’s function G(r,r’) = 1/|r —r’| in (2.8) is the Dirichlet Green’s function

on R? that is zero on the sphere at infinity, and is indeed symmetric.

2.3 Method of images

Consider the Dirichlet problem in a region R C R? with boundary OR = X, where for simplicity

we begin with a point charge distribution in R. Thus ri,...,ry € R are the locations of point
charges q1,...,qn, and from (1.27) we know these generate an electrostatic potential
1 g
O(F) point charges = - ; Fa—l (2.21)
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This solves the Poisson equation with density p(r) = vaz 14 6(r —1;) everywhere in R?, and hence
in R C R?, but it will not in general satisfy the prescribed Dirichlet boundary condition for ¢ on
>, which a priori is arbitrary.

We have already seen a hint of how to fix this in the last subsection: as in (2.9), write

¢(r> = ¢(r)pointcharges +F(I’) . (2.22)
If F(r) satisfies the Laplace equation in R, then ¢ satisfies the same Poisson equation in R.

The method of images Take F(r) to be the electrostatic potential generated by a set of charges

qi,---,qy that lie outside the domain R, i.e. set
1 M qr
FO) = gy 2y = Omasecturas (2.23)

with rf € R3\ R, so that V2F = 0 holds inside R. The idea is to choose these charges and their
locations so that (2.22) satisfies the prescribed boundary condition for ¢ on ¥ = 9R.

AN

image charges ¢}

N ¢ specified on OR=X . AN induced ¢ on 9R=3

Figure 7: On the left hand side: the original Dirichlet problem, with point charges q1, ..., gy inside
R, and ¢ specified on R = ¥. Replace with the right hand side: image charges ¢, ..., qj, are
added outside R, so that the solution to the Poisson equation on R? induces the given ¢ on X.

The additional charges ¢7,..., ¢}, are known as image charges (see the example below). They
aren’t part of the original problem, since they lie outside the domain R. Adding them to an
enlarged domain is just a mathematical trick to solve the original boundary value problem on R.
Of course, there is an art to this: how do we know where to put these image charges? There is no
simple answer in general, but in certain problems it is clear from the geometry.

That is the mathematical problem, but what about in physical problems? Recall that in sec-
tion 2.1 we described how the Dirichlet problem arises naturally when the boundary OR = ¥ is

surrounded by a conducting material. This forces ¢ to be constant on ¥, and if the conductor is
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grounded then in fact ¢ |gs\g = 0, as explained at the end of section 2.1. As in Figure 6, this
will result in a discontinuity of the normal derivative d¢/0n across 3, which we then interpret
physically in terms of a surface charge density on Y, due to conduction electrons. The method of
images gives us a mathematical way to solve this physics problem: forget about the conductor and
the fact that we want ¢ = 0 in the region external to R, and instead introduce fictitious image
charges in this region, as in (2.23), so that the potential in (2.22) has ¢ = 0 on X. Once we have
this solution in R3, which by construction solves the correct Poisson equation inside R with the
correct boundary condition ¢ |z = 0, now simply set ¢ = 0 also outside R to obtain the solution

to the original physics problem.

Example (Infinite conducting plane) Consider an infinite conducting plane at {z = 0} C R?, and
place a point charge ¢ at position vector ro = (o, Yo, 20), with 2o > 0. We want to solve the
Poisson equation for ¢ in the region R = {z > 0}, namely
V3p(r) = 4 d(r —ro) , for 2> 0, (2.24)
€0
with the boundary condition that ¢ |5, = 0 on the conducting plane boundary ¥ = {z = 0}.

As in (2.21) we can write down

1 q
¢(r)pointcharge = Fﬁo It — 19| . (2.25)

This solves the Poisson equation in R, but it does not satisfy the boundary condition that ¢ |5, = 0.
The problem is that for a point charge source the electric field points radially outwards, as in
Figure 2, and the electric field lines then do not generically cross ¥ = {z = 0} perpendicularly.
However, we can solve this problem with the method of images: place an image charge ¢* = —¢q

at the mirror image point to rg
I'B = (550,3/07—20) ) (226)

across the plane 3. The electric field generated by this charge has the same magnitude as the
original charge, but points in the opposite direction. If we superpose these electric fields generated
by opposite charges at mirror image points across ¥, the net electric field tangent to > will be zero
— see Figure 8. To see this explicitly, following (2.22), (2.23), put

1 q 1 q
4reg [r —rg|  Ameg v — x|

¢(I‘) = ¢<r)p0intcharge + (b(r)imagecharge = (227)
This satisfies:

(i) ¢ |s = 0, where restricting to ¥ means setting r = (z,y,0). (Geometrically, this is because

any point on ¥ is equidistant from rg and its mirror image point rfj through X.)
(ii) The Poisson equation in R3:

V3p(r) = —% d(r—ro) + %5(1‘ —rg) . (2.28)
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In particular this satisfies the correct Poisson equation inside R = {z > 0}, given in (2.24),
precisely because the image charge lies outside of R. Having found this solution in R with the
correct boundary condition on ¥, the solution to our original physics problem is given by taking

¢(r) to be (2.27) for z > 0, and ¢ = 0 for z < 0.

Figure 8: Electric field lines for E = —V¢, with ¢(r) given by (2.27). The original charge ¢
is shown in black, and is taken to be positive, while the image charge ¢* = —q is red. Note E
is perpendicular to the (z,y)-plane ¥ = {z = 0}, shown in blue. The solution to the Dirichlet
problem for z > 0 simply discards the red part of the figure, beneath the conducting plane .

Having found ¢, we can now compute the induced surface charge density o on the conducting
plane . This is given by (2.3), where the outward unit normal to ¥ is n = —es. For simplicity
we set rg = (0,0, z0), and compute (careful with the signs)

foler qg 0 1 1
oc=—€—| = ——— —
s Wm0 | Vel (2 - 20)2 Vel yPt (24 x0)?

0z

q%0 1
= = . 2.29
2m (22 + y? + 28)3/? (2.29)

‘20

Notice this is rotationally symmetric about the origin {z = y = 0}, where o takes its maximum

value, and tends to zero at infinity. The total charge ) induced on the conducting plane is

qzo [ e 1
= ds = —2— dedy = —q . 2.30
@ /z;a 2 /:_OO /y:_oo (@2 + y? + 22)3/2 ray q (2.30)

Notice this is the same as the image charge ¢* = —q.

Using the above results, we may now also construct the Dirichlet Green’s function Gp in the
region R = {z > 0}. Recall from section 2.2 this satisfies

{V’2Gp(r,r’) = —4rdé(r—1'), r.reR,

2.31
Gp(r,r') =0, reX ,reR. (2:31)
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But this is solved by taking Gp to be 4mep/q times the solution we have already obtained for ¢,

where r’ = rg is the location of the point charge. We can hence simply write down the solution

1 1
Gp(r,r') =

e e

(2.32)

where v’ = (2/,y/,2'), and v/, = (2/,y/, —2') is the reflection of ¥’ across ¥ = {z = 0}. Comparing
to (2.9), the second term on the right hand side may be identified with F(r,r’), which satisfies the
Laplace equation in R, as 1/, lies outside of R.

Using (2.15) we may then write down the potential ¢(r) for any distribution of charge p(r) in
the region R:

1
4meq

¢(r) =

/R Gp(r,v') p(x')dV’ (2.33)

where we have used the boundary condition ¢ |y, = 0, so that the boundary term in (2.15) is zero.
For example, for the original problem of a point charge ¢ at position ro we have p(r) = ¢dé(r —rp),
and (2.33) gives ¢(r) = £L-G(r, o), which is the solution (2.27). For a general charge distribution

p in R we may write (2.33) as
1 ! 1 !
o(r) = / ) gy / ) gy (2.34)
dmey Jp v — 1| dmey Jg v — )|

The first term is the usual solution (1.28) for the electrostatic potential generated by the charge

distribution p in R, while the second term is the electrostatic potential generated by the image of

minus this charge distribution, after reflection across X. |

Example (Conducting sphere) Consider a point charge ¢ placed at a point ro outside a grounded
conducting sphere of radius a, centred on the origin. From Theorem 2.3, the electrostatic potential
is zero on and inside the sphere, so that ¢(r) = 0 for all r with |r| < a. Write ro = rgto, where 1y
is a unit vector pointing from the origin towards the charge ¢, with that latter a distance rg > a
from the origin.

It is less clear how to use the method of images in this case, but the simplest possibility would
be to use a single image charge ¢* at a point inside the sphere. By symmetry this image charge
must lie on the line joining the origin to the original charge g, so we write the ansatz

o(r) = — < ¢, T ) (2.35)

~ dmeg \|r —ro| v — 1}

where rj = rjtg, with 0 < 75 < a. We will have solved the problem if we can show there are ¢*
and rj such that ¢(r) given by (2.35) satisfies ¢(r) |z = 0, where ¥ = {|r| = a}. We obtain two

equations by imposing ¢(r) = 0 on (2.35), where r = +ar, namely

* *
0=—2_ 4+ %2 o=-21 4 9 (2.36)
o — a a—ry a-+ry a—+rg
respectively, where note that 0 < rj < a < rg. These are easily solved to give

2

a a a
¢F=-—q, T15=—a=—. (2.37)

To 7o 7o
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ro - charge ¢

\
X charge ¢*

“— sphere X
X

Figure 9: Conducting sphere ¥ of radius a, centred on the origin O, with charge g at position rg
outside the sphere, and image charge ¢* lying on the same line through O, but inside the sphere.

Notice that ro and its image point r{j are then geometrically inverse points for the sphere 3. That
is, they lie on the same straight line through the origin of the sphere, with ro-rj = a®. Substituting

(2.37) back into (2.35), and writing r = r T with I a unit vector, we have

. q 1 a 1
dmeo \ \/r2+ 1 —2rrgt -t "0 \/T2+(ﬁ)2_2ﬁ7«f-.f-o
To To

¢(r) : (2.38)

It is then straightforward to see that putting » = a on the right hand side of (2.38) indeed gives
zero, for all directions . Thus (2.38) is the required solution for ¢, for r € R = {|r| > a}.

Since T points away from the origin, it is the snward unit normal to the region R = {|r| > a},
and thus (2.3) reads

. 0 q 7’8 —a?
g = 60 r- C (ﬁ |E — 60 —
or r=a 4 a (a2 + T(Q] —2argr - fo)3/2

, (2.39)

the last expression being obtained after a short computation using (2.38). For fixed r(, without
loss of generality we may take this to point along the z-axis, so that -9 = cos @, with 6 the usual
spherical polar coordinate giving the angle between r and rg. The total charge induced on the

spherical conductor is then

T 27 q 7”2 _ a2 4
Q = / adS:/ / o(0)a*sinfdfdp = 27 - — 0
b 0=0 J =0 AT | roy/a? + rd — 2arq cos —0
a
= —— 2.40
ol (2.40)
which again is the same as the image charge ¢* = —% q.

Finally, we can write down the Dirichlet Green’s function Gp(r,r’) in the region R = {|r| > a}.

The discussion is analogous to that for the previous example, with this being 4meg/q times the
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Figure 10: Electric field lines for E = —V¢, with ¢(r) given by (2.38). The original charge ¢ is
shown in black, and is taken to be positive, while the negative image charge ¢* is red. These are
located at inverse points for the sphere ¥, shown in blue. Note E is perpendicular to X.

solution (2.27) for ¢, where r' = r( is the location of the point charge. Writing r’ = r'#/; we can
identify ro = 7" and recall that r§ = a®/rg = a®/1’, so that r}, = r§ ' = (a®/r"?) r’. From (2.35) we
then write down®

1 a 1

n_ e 4L
GD(I‘,I‘) - ‘I‘—I‘/‘ r |r—(a/7”)2r’\ :

(2.41)

Consider the Dirichlet boundary problem where we fix ¢(r) | = V(0, ¢) to be a given function on
the sphere ¥ of radius a, and for simplicity suppose that there is no charge distribution, so that
p = 0. Only the second term in (2.15) now contributes, and recalling that our unit vectors r, 1/
point into R, we compute

dGp(r,r’)
on/

2 9
S i (2.42)

r=a a(r? +a? — 2art - #)%/?

__ 0Gp(r,x')

/
r'ex or

Here the last equality follows from the same calculation as (2.39). The solution for the potential

(2.15) is then

1 (7 2 a(r? —a?)
é(r) = —/ / R sin ¢’ 49/ g’ . 2.43
(x) A Jor—o J =0 (7.¢) (r2 + a2 — 2art - #)%/? ® (2.43)

Here to perform the integral one should also write ' = (sin 6’ cos ¢’, sin §’ sin ¢’, cos ') in spherical
polars. Notice that the normal derivative of the Green’s function (2.42) is acting as an integral
kernel in (2.43), effectively “propagating” the prescribed electrostatic potential ¢(r) |z = V (6, )
into the region outside this sphere. Physically we are holding the surface of the sphere X at fixed

SNotice this is symmetric Gp(r,r’) = Gp(r’,r), as must be the case by Proposition 2.5: to see this for the second
term write |r'r — (a®/7)r'|* = r"?r® + a* — 2a%r - 1'.
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voltage V (0, ¢), and (2.43) is the resulting electrostatic potential outside the sphere. In this case

Y couldn’t be a conductor for non-constant V', but it could be an insulator. |

2.4 Orthonormal functions

The electrostatic Maxwell equations (1.16), (1.33), or equivalently Poisson’s equation (2.1), are
linear — a manifestation of the Principle of Superposition. Solutions may then be expanded in
terms of a convenient basis of solutions. This is a powerful technique, where the particular basis

of functions is chosen according to the symmetries of the problem.

2.4.1 General theory

Definition A set of complex-valued functions w,, : [a,b] — C, defined on the interval [a,b] C R

and labelled by a countable index n € I (usually I = Z™* or I = Z), is said to be orthonormal if

b
/ U (2) up (z) dx = O, Vm,nel. (2.44)
a
Suppose that a function f : [a,b] — C may be expanded as a uniformly convergent series

fl@) = cnun(z), (2.45)

nel

for coefficients ¢, € C. Then the coefficients may be determined via

/ab m(®) f()dv = ch/ U () Un (2) dz = e (2.46)

nel

where we have used (2.45) and uniform convergence in the first equality, and (2.44) in the second

equality. Substituting (2.46) back into (2.45) then gives

= cpun(a) =Y / Un (2 )ty () dz’ = / (Zun ) iy (2 >d:z: (2.47)

nel nel nel

If this is to hold for any function, then from the definition of the Dirac delta function we identify
D tn(@) un(z) = 62’ —x) . (2.48)
nel

Definition The set of orthonormal functions {u,(z)}ner is said to be complete if (2.48) holds.

Notice then that f(z f flx —x)da’, and substituting (2.48) and reading equation (2.47)
from right to left says that f(z ) may be expanded as in (2.45).

Example (Fourier sine series) Consider a function f : [0,a] — R with f(0) = f(a) = 0. Then we

7

may expand f in a Fourier sine series’, with complete set of orthonormal functions

up(x) = \/3 sin (%x) , neZt. (2.49)

"Particularly familiar to those who took Part A Quantum Theory.
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That is, f(z) may be expanded as in (2.45) with [ = Z™, so

\[ ch sin —x) : (2.50)

where the coefficients are given by (2.46)

e = /Oa un(@) f(z)dz = \/3/0 sm(%”x) f(z)dz . (2.51)

The series Y~ | ¢, uy(z) converges absolutely and uniformly to f(x), provided the latter is con-

tinuously differentiable. More generally, for any function that is square-integrable, meaning
foa |f(z)]>dz < oo, the Fourier series converges almost everywhere to f. This general subject

is put on a rigorous footing in functional analysis. We also have

N
2 ™ T \ N—oo ’
u u = - in (— — — 0z —x 2.52
Z” n( aZsm(@x)sm(ax) ( ), (2.52)
n=1
(understood in terms of distributions). The function dx(z,z’) is plotted in Figure 11. [ |
100}
8o0f
60
40
20F
...... AAAAAAAAAAAN A ﬂ ” AA AAA AAAAAAAAAAAAAA )
0.2 Wiy ’ Vv 0.8 1.0
20

Figure 11: The function dy(z,2’) in (2.52), with 2/ = % the midpoint of [0, 1], and N = 100.

Example (Complex exponential Fourier series) More generally, from Prelims you know that a

function on [—%, %] may be expanded in terms of Fourier modes involving both cos (QTme) and
sin (27]{”37) The Fourier sine series arises in the special case that f : [—%, %] — R is an odd

function, and in the previous example L = 2a and we then restrict this function to x > 0. It is
sometimes convenient to rewrite the sine and cosine functions in terms of complex exponentials,

leading to a basis of functions
un(x) = ——el(Pg")e , nez. (2.53)

Notice that now n € I = Z, and it is straightforward to check the orthonormal property (2.44).
The usual Fourier expansion may be written as

o0 oo

f(z) = L Z cnei(%Tn)m = Z Cn Un(x) (2.54)

n=—o0o n=-—o00
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as in (2.45), where the coefficients are
L/2 (220) L/2
Cn = / f(x) der = / up(z) f(x)de . [ | (2.55)
VL L/2 —L)2

The last example has a natural “continuum limit”, where formally we take the size of the interval
L — oo. In this case the discrete set of orthonormal functions {uy(x)},cz becomes a continuous
set of functions {ug(z)}rer, and correspondingly sums such as (2.45) are replaced by integrals,
and the Kronecker delta symbol in the orthonormality relation (2.44) is replaced by a Dirac delta

function. The main example is:
Example (Exponential Fourier expansion/Fourier transform) Analogously to (2.53), consider
elk? (2.56)

where now the index k£ € R is a continuous variable, rather than discrete. Note that the prefactor
has been changed compared to u,(z) in (2.53). A general integrable function on R may be expanded

as

_ L > eikm
fla) = \/%/_Oo O(k) ek dk | (2.57)

which is usually called the exponential Fourier expansion. The “coefficients” C'(k), which are now

complex-valued functions on R, are given by (cf. (2.46))

C / o ik dr = / uk(x) f(x)dx 2.58
® = 7= fayds = [~ @@ (259
which is also called the Fourier transform of f(z). The orthonormality condition (2.44) now reads
o0 1 oo . ,
/ up (z) ug(z) de = o kT Q4 — §(k — k'), (2.59)
oo TJ_

while the completeness relation (2.48) takes the similar-looking form

o 1 oo ,
/ up (") ug(z) dk = o k@) 4k = §(z —a') . (2.60)
oo T ) oo
These give useful representations of the Dirac delta function. |

Remark Note that if two expansions are equal to each other, we may identify their coefficients.
For example, if [ C(k)ug(z)dk = [* D(k)uy(x)dk then using (2.59)

/;O_OO [/koo_oo C (k) ug(z) dk:] up () de = /;o_oo MOO_OO D(k) ug(z) dk | up () da

— /oo Clk) 3(k — k) dk = /OO D)ok — K)dk — C) = D(K) . (2.61)
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2.4.2 Cartesian coordinates

Consider the Laplace equation in Cartesian coordinates

2 2 2
Vi = Q!?+-Q!?—k§L? 0. (2.62)

This is of course Poisson’s equation (2.1) with zero charge density p = 0. We may seek separable
solutions by substituting ¢(z,y, z) = X (x) Y (y) Z(2) into (2.62), and dividing through by ¢, giving

1&X+1£Y+1¥Z
X dz?2 Y dy?2 7 dz?

=0. (2.63)

The usual separation of variable argument implies that each term is separately constant, so that

1 d2X 5 1d%Y 5 1d2Z 9 9

Here a priorithe constants a?, 32 are any real numbers, so that «, 8 can be real or purely imaginary,
although in the example below we will take «, 5 € R. The two solutions to the first ODE in (2.64)

are X (x) = Ax eto% with A4 integration constants, and linearity of the original Laplace equation

(2.62) implies that any linear combination of
B(z,y,2) = eFo® Y oEV 2522 (2.65)

is a solution. Imposing boundary conditions on ¢ will then restrict the possible values of «, 8, and

also the coeflicients in the series.

Example (Electrostatic potential for a rectangular box) Consider a rectangular box R = {(z, v, 2) |
x € [0,a], y €[0,b], z €]0,c]}, and consider the Dirichlet problem in which ¢ = 0 on all boundary
surfaces except the face {z = c}, where we impose ¢(z,y, c) = V(z,y), with charge density p = 0.

The resulting Laplace equation in R has separable solutions which are linear combinations of

(2.65). Let us look at a solution for fixed «, 3, and impose the boundary conditions

¢‘z:o =0, ¢’y:0 =0, ¢‘z:0 =0. (2.66)

tiax

Writing e = cosaxr tisinax, (2.66) sets the coeflicient of the cosine term to zero, so that the

solutions satisfying (2.66) take the form

sin ax sin By sinh(v/a? + 5% z) . (2.67)

On the other hand, the boundary conditions ¢|,_, =0, ¢ |y:b = 0 then imply that sinaa =0 =

sin 6b, which implies

o= —, B =—, m,n ez’ . (2.68)

8¢f the discussion of the Dirichlet Green’s function outside a sphere, after equation (2.41).
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P(xy.c) =V(xy)

b
X

Figure 12: Rectangular box R = {(z,y,2) | « € [0,a],y € [0,b], z € [0,c]}, with boundary
condition that ¢ is zero on all boundary faces except {z = ¢}, where ¢(x,y,c) = V(x,y).

Notice here that we have taken m,n > 0 without loss of generality, since sine is an odd function.

We may then write
e 2 2
d(z,y,2) = Z Cm,n SID (%x) sin (%y) sinh <7T % + Z22> , (2.69)
m,n=1

with coefficients ¢, ,. From section 2.4.1, we recognize this as a Fourier sine series in the x and y
variables.
Finally, we just need to impose the boundary condition ¢|,_, (z,y) = V(z,y). Setting z = ¢ in

(2.69) gives the Fourier sine series expansion

o(z,y,¢) = V(z,y) = Z [cmm sinh <7T TZ; + ch)] sin (%x) sin (%y) . (2.70)

m,n=1

We can then read off the coefficients, in square brackets, from (2.50), (2.51), which gives

Cmp = / / sm sin (%y) V(z,y)dedy . B (2.71)
ab sinh ( m; + ”2 z=0

We know from the general theory in section 2.2 that the above problem must also have a solution
in terms of the Dirichlet Green’s function Gp(r,r’). Recall this satisfies (2.7) for r,r’ € R inside
the rectangular box, with Dirichlet boundary (2.14) that Gp(r,r’) |/cy, = 0, where ¥ = OR is the
boundary of the box. The solution for the electrostatic potential is then (2.15). Since here p =0

and ¢ |y, is zero except on the face ¢|,_. =V, this solution reads

o) =~ [ vty 200

el B ds’ . (2.72)

The last example suggests making an orthonormal series expansion for Gp. This Green’s function

is then effectively constructed from the solution to the following physical problem:
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Example (Point charge inside a rectangular box) Consider a point charge ¢ inside a rectangular

box that consists of a grounded conductor. Thus ¢ |5, = 0, so that ¢ is zero on all six faces, and

V2¢(r) = —% 5(r —10) (2.73)

for r = (x,y, z) inside the box R, where ro = (x0, Yo, 20) € R is the location of the point charge.
Following the last example, we can solve this via separation of variables. Due to the boundary

conditions we can expand each variable as a Fourier sine series, leading to

8 = ¢
B e () s () s (1) 7)
m,n =1

with coefficients ¢, » ¢. Substituting (2.74) into (2.73) then gives for the left hand side

8 > m2n?  nPn? Pr? mm nmw i
2. _ . . .
Vg = e mngeﬂ [cm,mg (— 2 T2 @ )] sin (71') sin (Ty> sin (Cz) (2.75)

On the other hand, from (2.52) we can write the Dirac delta function in one dimension as §(z—xg) =

232  sin (™Tz) sin (“2z), and then (1.19) gives the right hand side of (2.73) as

- d(r—rg) = —% % i 1 [sin (%m) sin (%x) sin (%yo) sin (%@

€0
m,n,f=

« sin (fz()) sin <€:z) ] . (2.76)

Equating (2.76) with (2.75), the coefficients of sin (X x) sin (% y) sin (Z—”z) must be equal, giving

. _q i sin (ng) sin ( 3 yo) sin (Z—”zg) (2.77)
™, € V abe <m27r2 + n2m2 + 427r2> ' ’

b2 c?
Substituting this into (2.74) then gives the solution, expressed as a Fourier sine series. As for the
examples in section 2.3, the Dirichlet Green’s function Gp(r,r’) for this problem is then simply

(4meg/q) d(r), with ¢(r) given by (2.74), (2.77), and where we identify ro = r’. [ |

In the above examples we have expanded the functions using the orthonormal basis of Fourier
sine modes (2.49). This was a convenient basis to use due to the rectangular boundary conditions,
which took a simple form after separating variables in Cartesian coordinates. However, in other

problems it is convenient to use a different orthonormal basis.

Example (Fourier transform of the Dirichlet Greens function on R3) Consider the Dirichlet
Green’s function on R? given by Gp(r,r’) = 1/|r — r/|. This satisfies (2.7), where from (2.60)

and setting r = (21, x2,x3), v’ = (2], ), x%4) we may write

Sr—r') = (5(3:1—x1 §(xs — %)
_ / dk’l / dkﬁg / dkﬁg elkl (z1—2)) 1k2(m2 zh) 1k3(x3 x})
27r
_ oik: (r—r) d3k‘ 2.
7 o 279
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where k = (k1, ka2, k3), and d*k = dk; dks dk3. We may then similarly expand the Green’s function
as in (2.57), which using the compact notation on the last line of (2.78) reads

11
r—r ~ (2m)p

/k . C(k) ™) @3 (2.79)
S

with coefficient function C(k), which is a function on R®. Noting that, analogously to the compu-

tation in (2.75), we have

; / 0? 0? 0? ; / / /
12 ( Lik(r—r')\ _ 1[k1 (zl—331)+k2(m2—12)+k3($3—m3)]
v (e ) (837’12 * oz * 8x§2) ¢

= (k2 — k2 — k3) ) = el (2.80)

applying V2 to (2.79) gives

1 1 : /
2 = - k) [k|? ™) a3 2.81
(5 2e) = o L e (281)

Since V2(1/|r — r|) = —47 6(r — '), equating (2.81) with —47 times (2.78) leads to the identifi-

cation of coefficient functions (c¢f. the remark at the end of section 2.4.1)

4 1
Thus the Dirichlet Green’s function on R? is
1 1 1 /
G N= = = = ik (1) g3 2.83
PO = 1 = 5 [ (2.83)
We shall return to this formula in section 5.6. |

2.4.3 Spherical polar coordinates

For problems with spherical symmetry, it is often more convenient to use a complete set of or-
thonormal functions adapted to that symmetry.
The Laplacian in spherical polar coordinates (r,0, ¢) is

10%(r¢) 1 [ 1 0 (. 09 1 0% _ 10%(r¢)
r e LinQ@@ (Smgae) * sin? 6 8902}

T r Or?

1
Vi = + T—Qvg#pgﬁ ;o (2.84)

o2 r2
where the second equality defines the angular Laplacian ngqﬁ as the term in square brackets.
Recall here that » > 0, 6 € [0,7], ¢ € [0,27), with the latter being periodically identified.
Following the start of section 2.4.2, we may again use separation of variables, but this time we
write ¢(r,0,¢) = R(r)Y(0,¢). Substituting this into (2.84) and dividing through by ¢/r? =
R(r)Y (6, ¢)/r?, the Laplace equation reads

T d?(rR)
R dr?

1
+ ?vgmy =0. (2.85)
Both terms must be constant, so that

d? R(r)
@(T‘R(T)) = )\T , V;SOY(G,@) = -AY(0,¢), where A = constant .  (2.86)
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Let us focus first on the second equation in (2.86), for the angular coordinates. We may
also separate variables here, writing Y (6,¢) = P(6) ®(p). Dividing through by Y/sin?6 =
P(0) ®(y)/sin? 0, this equation then reads

sinf d dpP 1 d?®
— (sinf— ) + Asin®0| + —— = 0. 2.87
[Pd@(sm d9>+ S ] T dy? (2:87)
Again, both terms must be constant, with the second leading to the equation ®”(¢) = —c®(yp),

with ¢ constant. Since ¢ is a periodic coordinate, in order to be single-valued we must have
®(p) = ®(p + 27) for all o, and this fixes ¢ = m? with m € Z an integer, with solutions
®(p) = eF™¥. Substituting this back into (2.87) leads to a second order ODE for P(6), depending
on the constants m? and A € R, called the general or associated Legendre equation. The solutions to
this equation are typically singular in the limits 6 — 0, 7. To find smooth solutions Y (6, p) = Y (r)

on the unit sphere S? = {r = 1} =C R3, we need a condition on \:’
Theorem 2.6 In the space of smooth functions Y : S* — C, the eigenvalue equation

has non-trivial solutions only for X of the form X\ = £({+1) with some non-negative integer { € Z>g.
For such ¢, the eigenspace has dimension 20 + 1 and is spanned by separable solutions of the form
Y(0,0) = P(0)e™ withm € {—4,—(+1,...,0—1,(}.

We can write down such a basis of Eigenfunctions explicitly:

Definition The spherical harmonics Yy,: S* — C are defined for integers ¢ > m > 0 by

Ym0, 0) = ¢ ahd m (=)™ Pn(cos6) - (2.89)

and Yy _p, = (—1)"Y,,,. Here, Py, are the associated Legendre functions, defined by
1 dt
Peo(®) = o5 @

dm
Prm(z) = (1 - $2)m/2cb7npe,o($)-

The polynomials Py(x) = Py o(x) are known as Legendre polynomials.

—1)% and
(2.90)

Theorem 2.7 The spherical harmonics {Yym}e>m|>0 are a complete set of orthonormal Eigen-

functions on the unit sphere S* = {r = 1} C R3, for the operator Vg o They satisfy:

(i) Yv@,fm(aa(p) = (_1)m Yf,m(ev(p) )

s 2
(ii) / Yim(0,0) Yo i (0, ) sinf@dfde = 6p¢ 6y (orthonormal) ,
=0 J =0
. 0 , (2.91)
N ol N _ /I /
() 3 Y Vi@ #) Vim0 ) = 206~ 20 —0)  (completeness)

=0 m=—¢
(iv) Vo, Yem = —Ll+1)Yem.

9We state this here without proof. This material will be familar to those who took Part A Quantum Theory.
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In particular, any square-integrable function f(6, ) on the sphere S? can be uniquely written as

00 V4
F0,0) =) cumYem(0:9) (2.92)

{=0 m=—¢

where the coefficients cp ., € C are constants.

Compare the orthonormal and completeness conditions in (2.91) to the one-dimensional conditions

in equations (2.44) and (2.48), respectively. The first few spherical harmonics are

1
Yoo =/ —
0,0 A 5
Yip = \/i cos 6 Yi1 = —\/i sin § el¥ (2.93)
1,0 - 47_[_ ) 171 - 87’[‘ 9 .

1 5 15 : 1 /15 .
Yoo = EUE(BCOSQG—U , Yo = — 8r sinf cosfe¥ |, Yoo = Z“% sin? 6 %% .

Notice we have only listed the functions with m > 0, with those for m < 0 determined by
property (i) in (2.91).
We now return to the first, radial equation in (2.86), which reads

52 (rR(r)) = €(£+ 1)Rff") . (2.94)

We may try to solve this by setting R = r“. Substituting this into (2.94) gives
ala+1)r* ™t =+ 1) = ala+1) =LL+1), (2.95)

which has solutions o = ¢, & = —(£ 4 1). The general solution is hence R(r) = Arf 4+ Br—(+1),
with A and B integration constants.

Putting everything together, a general solution to the Laplace equation V2¢ = 0 may be ex-
panded in spherical harmonics as

o) l

o) = >, (Ae,mruBz,m r—““)) Yim(8,0) (2.96)

£=0 m=—¢

with constants Ay, B .

Example (Electrostatic potential inside a sphere, with Dirichlet boundary condition) Consider
the Dirichlet boundary problem inside a sphere of radius a, with ¢(a,8,¢) = V (0, ¢) prescribed
on the boundary, and zero charge density p = 0.

We thus want to solve the Laplace equation for » < a, with the above boundary condition.
General solutions to the Laplace equation may be expanded as in (2.96), but notice that we should
set the constants By ,, = 0, as the negative powers r= (1) a1 diverge at the centre of the sphere
r = 0. Imposing the boundary condition at » = a then sets

o0

l
$la,0,0) = V(0,0) = > > a" Ay Yim(6, ) - (2.97)
{=0 m=—¢
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Comparing to (2.92), this is simply the spherical harmonic expansion of the function V (6, ¢). We

may compute the coefficients via

T 27
/ Vi (0,9) V(0,) sin 60 dy
6=0

=0
™ 2T
- Z SR / Ver (0,) Yr (0, 9) sin 0.0 dgo
=0m/=—1 =0 J=0
=d" Ay, (2.98)

where in the second line we have substituted the expansion (2.97), and the last line uses or-
thonormality in (2.91). Notice here that the factor of 1/sinf on the right hand side of (iii) in
(2.91) cancels the sin 6 factor in the area element sin # df dp for the sphere (see also the following

example). Substituting for Ay, given by (2.98) into (2.96) then gives the solution. [ |

Finally, comparing to the last example in section 2.3, we examine the following:

Example (Dirichlet Green’s function outside a sphere, in spherical harmonics) Let R = {r > a}
be the region outside a sphere ¥ = {r = a} of radius a, centred on the origin, and consider the

Dirichlet Green’s function Gp(r,r’) in R, which recall satisfies

V2Gp(r,r') = —4nd(r—r1'), and Gp(r,r') = Gp(r,r), Vr,r' e R,
Gp(r,r') =0, VreR, reyx. (2.99)

Focusing first on the dependence on r, which we write in spherical polars (r, 6, ¢), we may expand

in spherical harmonics as in (2.92) by writing

) 4
=2 > cem(r) Yem(0,9) . (2.100)

{=0 m=—¢

Note the coefficients ¢y, (r, ') depend on the scalar distance r to the origin, and the wector

position r’. Acting on (2.100) with the Laplacian in spherical coordinates (2.84) gives

2 Tcﬂm T )) N i /
\% GD I' I‘ Z Z |: - 3.2 72 £(€—|— 1) Cg’m(T’,I') n,m(97 90) ) (2101)
=0 m=—¢
where we have used VgMY&m(G,gp) = Ll +1)Y;m(0,¢). The expression (2.101) should equal
—47 6(r — r'), where notice that it doesn’t matter whether we act with V2 or V2, due to the

symmetry Gp(r,r’) = Gp(r/,r).

Lemma 2.8 The Dirac delta function in spherical polar coordinates is

1

o =) = g

S(r—1")6(0—0)6(p—¢) . (2.102)
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Proof Notice the denominator on the right hand side is precisely the Jacobian in going from
Cartesian coordinates to spherical polar coordinates, and indeed this is also the origin of the
1/sin @ term on the right hand side of (iii) in equation (2.91). Starting with the defining property

of the Dirac delta function we have
[e'e) T 2
f(r') = f(r)d(r —r')dry dzadas = / / / [f(r)o(r —1) 7 sin 6] dr df de (2.103)
R3 r=0 J0=0 J p=0

In order for the right hand side to give f(r’), thus picking out r =1/, § = ', p = ¢’ in the integral,
we precisely have to make the identification (2.102). [ |

The completeness relation (iii) in (2.91) for the spherical harmonics in turn allows us to write
1 00 l
e ) = 506 —) Y0 Vo0, Yin(6,) (2.104)
=0 m=—/
Equating (2.101) with —47 times (2.104) then allows us to equate the coefficients

1d%(rcopm(r,x’)) 1 ) Ar U
- A 1 = —— — Y / / . 21
r dr2 r2 6(6 + ) Cf,m(n r ) r2 (5(7’ r ) Z,m(a , P ) ( 05)

In particular, focusing on the r’ dependence we may read off
com(rt’) = Apm(r, ") Yom(0',¢) . (2.106)

The Green’s function (2.100) now reads
o0 L
Gomr) =3 S A7) Ve @, ) Yom(0,0) (2.107)
{=0 m=—¢
where from (2.105) the coefficient functions Ay, (r,r’) satisfy

1 4r
- T—QE(E + 1) Agm(r, ') = == 6(r—7") . (2.108)

r2

1 d2 (7" Aé,m (’I", T/))
r dr2

It remains to solve this second order ODE. When r # 7/, so either r < v/ or r > 7/ then (2.108)

reduces to

d%(r Agpm(r,7")) 1
A == 1)A . 2.1
12 S+ 1) A (r,1) (2.109)

We already solved this equation in (2.94), where the two independent solutions are proportional

to r! and r~*1 . We may thus write down

Ay(r')rt + By(r') r— (1) | a<r<r,

2.110
Co(r") r + Dy(r') r= D) | r>rza, ( !

Ay (1, 7") = {

anticipating that the remaining coefficients will depend on ¢, but not on m. In order for the Green’s

function to be bounded as r — oo, notice we must set Cy(r’) = 0. Next we impose the Dirichlet
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boundary condition at r = a (or equivalently ' = a due to the symmetry property on the first line
of (2.99)). This sets

0= Apmla,r) = Ag(r')a’ + By(r')a= Y = By(r') = —a® A(r") . (2.111)
Then (2.110) reads

20+1
Ag(r”) (rf—%> , a<r<r,

(2.112)
Dy(r") T}H , r>r >a,

A (7, r') = {
Next we impose the symmetry property Ag,,(r,7") = Ag,(r’,7).!% From (2.112), this relates
1 a2€+1 > Dg(?“/)

/ _ 10
Dy(r') r+Hr Ag(r) (7“ oAl (7”4 B a24+1>
,,,/l+1

where in the last step notice both sides must be a constant K,. Substituting into (2.112) gives

= A(r)r*t = K, (2.113)

Kyrt an 20+1 ,
— |1 = (- , a<r<r,
, 7,/£+1 r
Ap(r, 1) = Ko o 2041 (2.114)
/
T [1_<r’) ] , r>r >a,

which is indeed symmetric under r <+ v/, and continuous at r = r’.

It remains only to determine the constants K,, where notice that we haven’t yet used the
normalization of the Dirac delta function on the right hand side of (2.108). Multiplying this
equation by r and integrating from r =1’ — ¢ to r = r’ + ¢ implies

lim [; (rAg,m(r,r’))y% S (2.115)

e—0 r Ve r!

Notice that the second term on the left hand side of (2.108) doesn’t contribute in this limit, as

Ay (r,7") is continuous at r = /. Note also that in the upper limit r = ' 4+ ¢ > 7/, while in the
lower limit r =7/ — e < 7’. Using (2.114) thus gives

© | 4 /ot 4N 2641 d [t an 26+1
5 -nm {3 E-G .- E-0L)

‘ e a 20+1 (r' —e)t (r' —e)t a \*
:Kéig%{_g(r’%-@e“[l_(r’) ]_(£+1) it ! rl \r —¢
20+1

/ )

r=r'+¢e

- K, (2.116)

r
so that

B 47
C2U+1

Ky (2.117)

0This symmetry property was derived in Proposition 2.5, while here it is convenient to impose this to simplify
finding the Green’s function.
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We can now write down the final form of the Dirichlet Green’s function outside the sphere
Combining (2.107), (2.114) and (2.117) gives

[eS) l
Gp(r,x) =) Apn(r,7") Yo (07, €) Yo (0, 0) (2.118)
=0 m=—¢
Here we may write the compact expression
A7 7t a \ 2
A N |1 — 2.119
Z,m(T’,T) 2€+1T€>+1 [ <’I"<> ) ( )
where we have defined
{ r~=71, re= 7'/, r < r:, (2.120)
r~=r, r<=1", r>r.

That is, 7~ is the smaller of r or 7/, while r~ is the larger of r or r’.
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3 Magnetostatics
3.1 Electric currents

So far we have been dealing with stationary charges. In this subsection we consider how to describe
charges in motion.

Recall that in an electrical conductor there are electrons (the “conduction electrons”) which
are free to move when an external electric field is applied. Although these electrons move around
fairly randomly, with typically large velocities, in the presence of a macroscopic electric field there
is an induced average drift velocity v = v(r). This is the average velocity of a particle at position
r. In fact, we might as well simply ignore the random motion, and regard the electrons as moving

through the material with velocity vector field v(r).

n

Vot

Figure 13: The current flow through a surface element §X of area §.S.

Definition Given a distribution of charge with density p and velocity vector field v, the electric

current density J is defined as
J=pv. (3.1)

To interpret this, imagine a small surface % of area §.5 at position r, as shown in Figure 13. Recall
that we define S = ndS, where n is the unit normal vector to the surface ¥. The volume of the
oblique cylinder in Figure 13 is v §t - 6S, which thus contains the charge pvdt-90S =J-3dSédt. In
the time dt this is the total charge passing through 0. Thus J is a vector field in the direction of
the flow, and its magnitude is the amount of charge flowing per unit time per unit perpendicular

cross-section to the flow.
Definition The electric current I = I(X) through a surface X is defined to be
I:/J-dS. (3.2)
by

This is the rate of flow of charge through . The units of electric current are Cs~!, which is also

called the Ampeére A.
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3.2 Continuity equation

An important property of electric charge is that it is conserved, i.e. it is neither created nor
destroyed. There is a differential equation that expresses this experimental fact called the continuity
equation.

Suppose that ¥ is a closed surface bounding a region R, so R = X. From the discussion of
current density J in the previous subsection, we see that the rate of flow of electric charge passing

out of ¥ is given by the current (3.2) through 3. On the other hand, the total charge in R is

Q:Amw. (3.3)

If electric charge is conserved, then the rate of charge passing out of ¥ must equal minus the rate

dQ ap
. = —— = — —_— . .4
/zJ a8 dt /R ot " (34)

Here we have allowed time dependence in p = p(r,t). Using the divergence theorem A.2 this

/R<gf+V-J> v =0, (3.5)

of change of Q:

becomes

which holds for all R, and thus

dp
o T VI=0. (3.6)

This is the continuity equation.

In magnetostatics we shall impose dp/0t = 0, and thus
vV-J=0. (3.7)
Definition Currents J satisfying (3.7) are called steady currents.

3.3 Lorentz force and the magnetic field

The force on a point charge ¢ at rest in an electric field E is simply F = g E. We used this to
define E in fact. When the charge is moving the force law is more complicated. From experiments

one finds that if ¢ at position r is moving with velocity u = dr/dt it experiences a force

F = ¢E(r) + qu xB(r) . (3.8)

Here B = B(r) is a vector field, called the magnetic field, and we may similarly regard the Lorentz
force F in (3.8) as defining B. The magnetic field is measured in SI units in Teslas, which is the

same as Nsm~ 1 C~1,
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Since (3.8) may look peculiar at first sight, it is worthwhile discussing it a little further. The

magnetic component may be written as
Fras = qux B. (3.9)

In experiments, the magnetic force on ¢ is found to be proportional to ¢, proportional to the
magnitude |u| of u, and is perpendicular to u. Note this latter point means that the magnetic force
does no work on the charge. One also finds that the magnetic force at each point is perpendicular
to a particular fixed direction at that point, and is also proportional to the sine of the angle
between u and this fixed direction. The vector field that describes this direction is called the
magnetic field B, and the above, rather complicated, experimental observations are summarized
by the simple formula (3.9).

In practice (3.8) was deduced not from moving test charges, but rather from currents in test
wires. A current of course consists of moving charges, and (3.8) was deduced from the forces on

these test wires.

3.4 Biot-Savart law

If electric charges produce the electric field, what produces the magnetic field? The answer is that
electric currents produce magnetic fields! Note carefully the distinction here: currents produce
magnetic fields, but, by the Lorentz force law just discussed, magnetic fields exert a force on
moving charges, and hence currents.

The usual discussion of this involves currents in wires, since this is what Ampere actually did in
1820. One has a wire with steady current I flowing through it. Here the latter is defined in terms
of the current density via (3.2), where ¥ is any cross-section of the wire. This is independent of the
choice of cross-section, and thus makes sense, because of the steady current condition (3.7).'! One
finds that another wire, the test wire, with current I’ experiences a force. This force is conveniently
summarized by introducing the concept of a magnetic field: the first wire produces a magnetic
field, which generates a force on the second wire via the Lorentz force (3.8) acting on the charges
that make up the current I’

Rather than describe this in detail, we shall instead simply note that if currents produce mag-
netic fields, then fundamentally it is charges in motion that produce magnetic fields. One may
summarize this by an analogous formula to the Coulomb formula (1.7) for the electric field due to

a point charge:

Biot-Savart law A charge ¢ at position ry moving with velocity v produces a magnetic field

Hog v X (= ro)
B = . 3.10
(x) 47 |r—ro|3 (3.10)

1T see this, use the divergence theorem for a cylindrical region bounded by any two cross-sections and the surface
of the wire.
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The constant pg is called permeability of free space. It is approximately g ~ 1.257-10"6 N A—2.12
Compare (3.10) to (1.7).

As in electrostatics we also have: the magnetic field obeys the Principle of Superposition.
Using the above laws of magnetostatics we may compute the magnetic field due to the steady

current [ in a wire C' by summing contributions of the form (3.10):

pol [ dr’ x (r—71')
B(r) = — _— . 3.11
(x) At Jo  r—1r'3 (3.11)
To derive this, imagine dividing the wire into segments, with the segment ér’ at position r’. Suppose
this segment contains a charge ¢(r’) with velocity vector v(r’) — notice here that v(r’) points in

the same direction as dr’. From (3.10) this segment contributes

fog v x (r—r')
0B(r) = Prar—E (3.12)

to the magnetic field. Now by definition of the current I we have I dr' = J-dSdr’ = pv - 35S dr/,
where we may take 0% of area §S to be a perpendicular cross-section of the wire. But the total
charge ¢ in the cylinder of cross-sectional area §S and length [0r'| is ¢ = p .S |0r'|. We thus deduce
that I dr’ = ¢ v and hence that (3.11) holds.

Remark The formula (3.11) for the magnetic field produced by the steady current in a wire is

also often called the Biot-Savart law.

Example (Magnetic field produced by a current in a long straight wire) As an example of (3.11),
let us compute the magnetic field due to a steady current I in an infinitely long straight wire.
Place the wire along the z-axis, and let P be a point in the (z,y)-plane at distance s from the
origin O, as in Figure 14. This is the point at which we compute the magnetic field B(r), so that
O? =r. Let Q be a point on the wire at distance 2’ from the origin, and write Oﬁ =r'. Then in
the integral Biot-Savart formula (3.11) we have (ﬁ =1’ = e3 2/, where e3 is a unit vector in the
z-direction, i.e. along the wire, and so dr’ = ez dz’. Notice that r —r’ = Q?

Next notice that the vector dr’ x (r — r’) points in a direction that is independent of OQ = r':
it is always tangent to the circle of radius s in the (x,y)-plane. To evaluate the integral in (3.11)
we thus simply have to compute the magnitude |dr’ x (r —r’)| = d2’ ]Q? |sinf = sdz’, where 6 is
the angle between OTj and Q?, as shown. Since also |r — r/| = |Q?| =82+ 22, from (3.11) we
compute the magnitude B(s) = |B| of the magnetic field to be

pol [ s /
B = — S —
(s) = 5, (24222
pol
= 3.13
27s (3.13)

12The recommended 2018 CODATA value is zo = (1.256 637 062 1240.000 000 000 19)-1075 N A =2, so it is measured
to about 10 digits. Until 2018, the value was ezactly po = 47-107" NA™2 = 1.25663706143...- 107 N A2, by the
old definition of the unit Ampere in terms of the force between two parallel wires.
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Figure 14: Computing the magnetic field around a straight wire carrying a steady current I.

where the integral may be evaluated by setting z’ = stan&. The magnetic field is thus tangent
to circles in the plane perpendicular to the wire, with a magnitude which decreases inversely with

the perpendicular distance to the wire in this plane. |

\

Figure 15: Magnetic field lines around the infinite straight wire. You might have seen a demon-
stration of this with iron filings, where the latter line up with the direction of the magnetic field.



3.5 Magnetic monopoles?

Let us return to the point charge ¢ at position vector rg with velocity v, generating the magnetic
field (3.10). We might as well put the charge at the origin, so rg = 0. Then note that since
r/r3 = —V (1/r) we have

V-<vxr>zv-[VXV(1/7’)]:0. (3.14)

r3
Here we have used the identity (A.12) in the first equality, and the fact that the curl of a gradient
is zero in the second equality. Thus we have shown that V - B = 0, except at the origin r = 0.
However, unlike the case of the electric field and Gauss’ law, the integral of the magnetic field
around the point charge is zero. To see this, let > be a sphere of radius a centred on the charge,

so that the outward unit normal is n = r/r, and compute

_ Hog vxr) (r _
/EB as = B 2(7"3 ) <T>d8 0, (3.15)

since v X r is perpendicular to r. By the divergence theorem, it follows that

/V-BdeO, (3.16)
R

for any region R, and thus

V-B=0. (3.17)

This is another of Maxwell’'s equations on the front cover. It says that there are no magnetic
monopoles (i.e. magnetic point charges) that generate magnetic fields, analogous to the way that
electric charges generate electric fields. Instead magnetic fields are produced by electric currents.
Although we have only deduced (3.17) above for the magnetic field of a moving point charge, the
general case follows from the Principle of Superposition.

You might wonder what produces the magnetic field in permanent magnets, such as bar magnets.

Where is the electric current? We discuss this in section 4.3.

* Mathematically, it is certainly possible to allow for magnetic monopoles and magnetic
currents in Maxwell’s equations. In fact the equations then become completely symmetric
under the interchange of E with —¢B, ¢B with E, and corresponding interchanges of
electric with magnetic charge densities and currents. Here ¢ = 1/egug. There are also
theoretical reasons for introducing magnetic monopoles. For example, the quantization of
electric charge — that all electric charges are an integer multiple of some fixed fundamental
quantity of charge — may be understood in quantum mechanics using magnetic monopoles.
This is a beautiful argument due to Dirac. However, no magnetic monopoles have ever
been observed in nature. If they existed, (3.17) would need correcting.

3.6 Ampere’s law

There is just one more static Maxwell equation to discuss, namely the equation involving the curl

of B. This is Ampére’s law. In many treatments of magnetostatics, this is often described as an
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additional experimental result, and/or is derived for special symmetric configurations, having first
solved for B using the Biot-Savart law (3.10) or (3.11). However, it is possible to derive Ampere’s
law directly from (3.10), as we now show.
We first use (3.10) and the Principle of Superposition to write B generated by a current density
J as a volume integral
B(r) = %; / i de’. (3.18)
This follows directly from the definition J = pv in (3.1) and taking the limit of a sum of terms of
the form (3.10). R C R3 is by definition a region containing the set of points with J # 0. We next
define the vector field

A(r) = Zg /R |:(_r2,’dv’. (3.19)

One then computes (¢f. the proof of Theorem 1.4)

0A; (r) = Mo Ji(r")
ox; ' 4w Jp v —1']3

(zj —aj)dV’, (3.20)

/

where r = (21,22, 23), v’ = (2}, 24, 25). From the first line of (A.9) we have

3
VxA= Z e; X 63: EZ: e X €;) gi; , (3.21)
so that comparing (3.20) with (3.18) we see that
B(r) = V x A(r) . (3.22)
Note that (3.22) immediately implies V - B = 0, as the divergence of a curl is zero.

Lemma 3.1 For steady currents J, supported inside a bounded region R, the vector field A defined
by (3.19) satisfies V- A = 0.

1 (1 ,
= — _ 2
(irw) = () e (3:29)
where V' denotes derivative with respect to r’, from (3.19) we compute
1 1
vV-A=[ 30 v av' = - gy v av’
A [ |r — r/| A I lr —r/|

S I v ( (') ) av’ + Ko L (V'-J3(x')) av'. (3.24)

4 Ir —r/| Ar Jp |r — 1|

Proof Using

The second term on the right hand side of this equation is zero for steady currents, satisfying (3.7).
Moreover, we may use the divergence theorem on the first term to obtain a surface integral on OR.

But by assumption J vanishes on this boundary, so this term is also zero. |
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We next take the curl of (3.22). Using the identity
Vx(VxA) =V(V-A)-V?A, (3.25)
which holds for any vector field A, together with Lemma 3.1, we deduce that
VxB=-V?A . (3.26)

On the other hand, from (3.19)

1
VA = Z?/RJ(I'/) A& (r_r,|) dv’ = %ﬁ ; J(x') (<4mé(r — 1)) AV’ = —poJ(r) ,(3.27)

where we have used Proposition 1.3 in the middle step. We hence deduce

VxB = pud. (3.28)

This is Ampére’s law for magnetostatics. It is the final Maxwell equation on the front page, albeit
in the special case where the electric field is independent of time, so OE/Jt = 0. Notice this
equation is consistent with the steady current assumption (3.7).

We may equivalently rewrite (3.28) using Stokes’ theorem as

Ampere’s law  For any simple closed curve C = 0% bounding a surface

C=0% I

where I is the current through 3.

Example Notice that integrating the magnetic field B given by (3.13) around a circle C' in the

(x,y)-plane of radius s, centred on the z-axis, indeed gives pol. |

3.7 Magnetostatic vector potential

Definition In magnetostatics the magnetic vector potential is a vector field A such that the

magnetic field B is given by
B=VxA. (3.30)

In fact we have already introduced such a vector potential in equations (3.19) and (3.22). It is

analogous to the electrostatic potential ¢ in electrostatics.

* Notice that (3.30) is a sufficient condition for the Maxwell equation (3.17) to hold, since
the divergence of a curl is zero. It is also necessary if we work in a domain with simple
enough topology, such as R or an open ball. An example of a domain where not every
vector field B with zero divergence may be written as a curl is R?\ {point}. Compare this
to the corresponding starred paragraph in section 1.5. Again, a proof for an open ball is
contained in appendix B of the book by Woodhouse.
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The vector field A in (3.30) is far from unique: since the curl of a gradient is zero, we may add

Vi to A, for any function v, without changing B:

A A=A+Vy. (3.31)
That is, B=V x A = V x A.
Definition The transformation (3.31) is called a gauge transformation of A.

We may fix this gauge freedom by imposing additional conditions on A. For example, suppose we

have chosen a particular A satisfying (3.30). Then if ¢ is a solution of the Poisson equation
V3 = -V-A, (3.32)
it follows that A in (3.31) satisfies
V-A=0. (3.33)
Definition The condition (3.33) on the magnetostatic vector potential is called the Lorenz gauge.'?

From Theorem 2.2 we know that solutions 1 to the Poisson equation (3.32) are unique, for fixed
boundary conditions.

Many equations simplify with this gauge choice for A. For example, Ampere’s law (3.28) is
o = Vx(VxA) =V(V-A) - V2A | (3.34)
so that in Lorenz gauge V - A = 0 this becomes
VA = —ppJ . (3.35)

Compare with Poisson’s equation (1.32) in electrostatics. Notice that Lemma 3.1 shows that the

vector potential A given by (3.19) is in Lorenz gauge.

* Gauge invariance and the vector potential A play a fundamental role in more advanced
formulations of electromagnetism. The magnetic potential also plays an essential physical
role in the quantum theory of electromagnetism.

3.8 Multipole expansion

In electrostatics and magnetostatics we have now derived the similar formulae

o(r) = — / P gy Ay = MO / I gy (3.36)

" dre veRr [T —1'| AT Jper v -1

In both cases R C R? is a bounded region, and the first formula gives the electrostatic potential
¢ generated by a charge density p supported inside R, while the second formula gives the mag-
netostatic vector potential A generated by a steady current density J supported inside R. The

13Mr Lorenz and Mr Lorentz were two different people.
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electric and magnetic fields are obtained from these via E = —V¢, B = V x A, respectively. In
this subsection we want to examine what these fields look like far away from the localized source
region R. Here “far away” means that the observation point P, with position vector r measured

from the origin O, is at a distance that is large compared to the size of R — see Figure 16.'

region R P

Figure 16: Observing the fields, generated by sources supported in a region R, at a point P far
away from R.

Our starting point is the Taylor expansion

1 1 1
r

1 / 3
= =—4+ —<r-r + O0(1/r°). (3.37)
_ 3
v — | r\/l—%r~r’+%2r’-r’ r

Here as usual r = |r| = \/r - r, and we have expanded for 7 > /. In particular the Cauchy-Schwarz
inequality gives |r-r'| < |r||r/| = r7/, so that the second term on the right hand side of (3.37) is
O(1/7?). Applying (3.37) to the electrostatic potential in (3.36) immediately gives

1,1 pr;)r + o0/, (3.39)

¢(r) =

 Amegr 4meg

where we have defined
Q= / p(x’)ydv’ | p = / r'p(r’)dV’ . (3.39)
r'eR r'eR

Here @ is simply the total charge, and (3.38) says that far away from the localized charge distri-
bution, the electrostatic potential to leading order looks like that generated by a point charge @)

(at the origin » = 0). This is, of course, entirely sensible.
Definition The vector p defined in (3.39) is called the electric dipole moment.

This governs the next-to-leading order term in the general expansion (3.38), and is the leading
order term when the total charge Q = 0. On the first problem sheet you will have computed the

electrostatic potential of an electric dipole. This is a configuration of two point charges +¢, with

14The methods developed in this subsection apply also to other areas of theoretical physics, perhaps most notably
to gravitational waves in General Relativity, that might have been generated by a distant collision and subsequent
merger of two black holes.
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separation vector d. Defining p = ¢d, then in the limit that ¢ — oo, d = |d| — 0, with ¢d = |p|
held fixed and the charges at the origin, you showed that the resulting electrostatic potential is

1 p-r

¢(r)dipole - (340)

dmeg 13
This is precisely the second term on the right hand side of (3.38). It arises when there is asymmetry

in the charge distribution around the origin.

Remark One might be tempted to define a centre of charge for a general charge distribution
as d = p/Q, with @ and p defined in (3.39), in precise analogy with centre of mass for a mass
distribution. However, charge distributions are often neutral, with Q = 0, and the electric dipole
moment then governs the leading order behaviour of the resulting electric field. For example, a
neutral molecule, such as a water molecule, will involve shared electrons between atoms. These
are not distributed uniformly around the molecule, which thus behaves like a tiny electric dipole.

The behaviour of a large number of small electric dipoles is discussed in section 4.

Using (3.37) we may perform a similar expansion of the magnetostatic vector potential in (3.36):

A(r) = ;%Or [i/RJ(r/)dV/+:3 R(I"I‘,)J(I‘,)dvl—l-"' . (3.41)

The following result is useful for manipulating this expression:

Lemma 3.2 For any vector field J satisfying V -J = 0 in a region R, with J being zero on the
closed boundary ¥ = OR of R, and any functions f, g, we have

/(fJ-VnggJ'Vf)dV:O- (3.42)
R

Proof Using the product rule V- (fgJ) = fgV -J +J-V(fg) we may write the first term in
(3.42) as

/RfJ-ngV:/RV‘(ng)dV—/Rng-JdV—/RgJ~Vde
—/ng-dS—O—/gJ-Vde——/gJ-Vde. (3.43)
b R R

Here in the second equality we have used the divergence theorem for the first term, and V-J =0

for the second term, and the last equality follows since J is assumed to be zero on ¥ = OR. |
Corollary 3.3 For a steady current density J supported inside a region R
/ J(r)dV =0. (3.44)
R

Proof Applying Lemma 3.2 with f = 1 and g = z;, with r = (21, 29, x3), gives fR J -Vz;dV =
fR J; dV = 0, where in the first equality note (Vz;); = d;;. [ ]
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It follows that the first term on the right hand side of the expansion (3.41) is always zero! This is
ultimately a reflection of the fact there are no magnetic point charges, analogous to electric point
charges in electrostatics. For the second term in (3.41) we may again use Lemma 3.2, this time
with f =af, g = x;, and we take the integration to be over the primed variable r’. From (3.42)

we then deduce
0= /R (2} I(x") - V2l + 25 I(x') - V'zi] dV' = /R [} Ji(x") + 2 Ji(x')] AV, (3.45)

and hence, for any vector f, we have

3 3
/(f-r’)J(r’)dV’ = > f </ ' Jj(r’)dV’) ej=— > [ </ al; Ji(x') dV’> e;
R i,7=1 R ij=1 R
= / (f-J(") ' av’. (3.46)
R
Combined with the vector triple product identity (A.6), we can thus write
1
/R () () AV = — £ x [ /R Y x I(r) dV/] . (3.47)

Definition The magnetic dipole moment generated by a steady current density J in R is

m

1
/ v x J(x')dV’ . (3.48)
2 r'eR

This is analogous to the definition of electric dipole moment we gave earlier, and combining (3.47)

for f = r with (3.41) we have proven

Proposition 3.4 The magnetostatic vector potential generated by a steady current density J in a

localized region R has an expansion with leading order term

Mo M X T
4 73

A(r) = +0(1/r%) (3.49)

as r — 00, where m is the magnetic dipole moment (3.48) generated by the current density.

The correction terms O(1/72) in (3.49) are called higher moments of J, starting with the quadrupole

moment, and can be computed with more effort.

Definition Analogously to (3.40), we may define the magnetic dipole vector potential to be

Mo M X T

A(r)dipole = E 3

(3.50)

This gives the leading order term in the expansion (3.49). The corresponding magnetic field is

B = 7% Al = 1 () = 2 - (5) ¥ ()

Mo [ m 3m-r)r
4 | 3 o ’

(3.51)
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Figure 17: Magnetic field lines for the magnetic dipole (3.51), where we have aligned the magnetic
dipole moment m pointing upwards along the z-axis direction. The magnetic field lines of a bar
magnet are similar, where the bar magnet is aligned vertically along the z-axis, with north pole
at the top and south pole at the bottom.

where r # 0, and on the first line we have used the identity (A.11). Notice here that V- (r/r?) =0

for r # 0, as in our computation of (1.8). The field lines for B(r)gipole are shown in Figure 17.

To summarize, we have shown that, far away from any localized steady current source, the
magnetic field generated will take the form (3.51), to leading order, and thus resemble Figure 17.
Notice that in this figure m points upwards along the z-axis, and the corresponding magnetic field
lines come out of the top of the magnetic dipole, which is called the north pole, and go into the

bottom of the magnetic dipole, which is called the south pole.
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4 Macroscopic media

4.1 Dielectrics

In order to write down the electrostatic or magnetostatic Maxwell equations, we need to know the
charge density p or current density J precisely, in principle everywhere in space. Except for certain
idealized situations, such as for point charges in vacuum, this is usually not possible in practice.
For instance, suppose we wish to study the effects of electromagnetism in water. In a cubic
centimetre of water there are around 10?2 water molecules. As described in section 3.8, a water
molecule is neutral, having total charge zero, but this then behaves like a tiny electric dipole: the
negative electron and positive proton charges are not uniformy distributed in the molecule, and

this generates an electric dipole moment p, with dipole field (3.40). One can view such an electric

—>E

(a) Unpolarized. (b) Medium polarized by external E.

Figure 18: The dipoles in a dielectric medium.

dipole as in Figure 18, with a positive end + and a negative end —, with p pointing from the
negative end towards the positive end.

A dielectric medium, such as water, by definition contains a very large number of these dipoles.
With no external electric field applied, the dipoles are aligned somewhat randomly, as in Figure 18a,
due to their random thermal motion. Such a configuration is said to be unpolarized, with no net
macroscopic electric field produced by the dipoles. However, now consider the effect of turning on
an external electric field E: the electric dipoles will align with E, as in Figure 18b. In doing so the
large number of aligned dipoles will superpose to generate their own macroscopic electric field. In
Figure 18b notice that the negative ends of the dipoles are on the left, while the positive ends are
on the right, creating an effective surface charge density on the left and right ends of the box. An
electric field generated by a positive/negative charge points away from/towards it, respectively, so
the electric field generated by the dipoles is in the opposite direction to E, reducing the overall
electric field.

4.2 Electric dipoles

We may describe this more quantitatively by examining electric dipoles in a little more detail.

Recall that an electric dipole is realized by starting with two point charges +¢q, with separation
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vector d, and taking the limit in which the distance d = |d| between the charges tends to zero, the
positive charge ¢ is taken to infinity, with the electric dipole moment p = gd held fixed.
If we place such an electric dipole in an external electric field E, what force does it experience?

The total force on the pair of point charges is (see Figure 19)

F=qgE(r+9)-¢E(r-9)
g [E(r) + (5 - V) E(r) + 0(d*)] — ¢ [E(r) - (5 V) E(r) + O(d*)]
=q[(d-V)E(r)+0(d®)] — (p-V)E. (4.1)

Here we have placed the charge +q¢ at position vector r + d/2 and the charge —¢q at position
vector r — d/2, and then used Taylor’s theorem and taken the point dipole limit. This force is

conservative, with potential energy function Vgi,ole given by
F = —VViipole » Vdipole = —P-E = p-Vo. (4.2)
To see this, we may compute
~VViipole = =V [(P-V)¢] = (p-V)(=V¢) = (p-V)E. (4.3)

Here we have used the fact that p is constant to pass the gradient V through the directional
derivative p - V. The potential energy Viipole = —p - E is minimized when p points in the same

direction as E, and maximized when p points in the opposite direction to E.

electric field

force

Figure 19: The electrical forces on a dipole consisting of a positive point charge ¢ at position vector
r +d/2, and a point charge —q at position vector r — d/2.

There is also a torque on the dipole, causing it to rotate. The total torque about the point r is

e i Y] e (e 2)] - pe. s
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The torque is perpendicular to the plane defined by the electric dipole moment p and external
electric field E, and gives a rotational force about this axis, as shown in Figure 19.'° In equilibrium
the torque on a dipole is by definition zero, but that is the case if and only if p is aligned with E,
so their cross product is zero, precisely as in Figure 18b. (Notice that if p points in the opposite
direction to E this gives an unstable equilibrium, being a maximum of the potential energy Viipole)-

An electric dipole of course also generates its own electric field. Recall that the electrostatic
potential generated by a single electric dipole moment p at the origin is

é(T)dipole = Lepr 1 p-V<1> . (4.5)

dmeg T3 4d7eq T

A dielectric medium by definition consists of a very large number of electric dipoles. By the

Principle of Superposition, dipole moments p; at position vectors r; will generate a potential

N —
1 pi - (r—r;) 1 / P(') - (r—1') !
_— [ AN S—aye | VAN 4.6
(r)dp ! 4meg iz_—l ‘I' — I'z'|3 dmeg Jyrer \r r’\3 ( )

Here we have taken the usual continuum limit on the right hand side, where by definition P(r’) 5V’

is the electric dipole moment in a small volume §V’, centred at position r’.

Definition The vector field P is called the electric polarization density, describing the distribution

of dipoles in the dielectric medium.

On the other hand, as on the right hand side of (4.5) we may then calculate

. _ 1 ’ 1 7 1 / ’ ’ 1 /
¢ (r)aipotes = dmeg /I./GR P{r) v<|r—r’]) v = Admey Jrer PE)-v lr —r/| v

— 1 / v/ . P(r,) dvl _ 1 / v, i P(r/) dvl
dmeo Jrer |r — 1| drey Jyer v —1|

_ 1 (=V'-P(r)) o,
- /r/eR av’ . (4.7)

4reg Ir — /|

Here we have used (3.23) on the first line, and in the last step have used the divergence theorem,
with P by definition being zero on, and outside, the boundary of the region R in which the dipoles
are supported. Comparing to (1.28) we may define

pbound(r) = -V P(I‘) . (48)

This is the effective charge density that produces the electrostatic potential (4.7) due to dipoles. It
is called ppound(r) as it is effectively generated by charges that are bonded to their overall neutral
molecules. Notice that the definition (4.8) looks like Gauss’ law (1.16), with —P /e playing the
role of the electric field.

What is Gauss’ law in this set-up? We may divide the total charge density p into two types: (i)

the bound charge density ppound in (4.8), that generates an electric field due to the polarization of

15Recall that an applied torque is equal to the rate of change of angular momentum.
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the dielectric medium, and (ii) an “ordinary” charge density, which we call pgee. The latter consists
of any charge added to the interior or exterior of the dielectric medium, where we effectively ignore
the charges that make up the dipoles in the material (those are accounted for in ppounq). Then

Gauss’ law (1.16) reads

1 1 1
V-E = 4 = — (pfree + pbound) = —Pfree — — V* P. (49)
€0 €0 €0

€0

On the other hand, our discussion of Figure 18 led us to conclude that the polarization density P
is everywhere aligned with the electric field E . That is, P(r) x E(r) = 0, so there is no torque on
the dipoles at position r. We thus write

lp- L E= (6 - 1) E. (4.10)

€0 €0
Definition € in (4.10) is called the permittivity of the dielectric medium, with x. = (¢/€p — 1)
called the electric susceptibility, which measures the degree of response of the dielectric to an

applied electric field.

Here in general ¢ may depend on: (i) position r if the dielectric medium is not uniform (e may
depend on local temperature, pressure, etc), (ii) time ¢ if the medium is not static, and (iii) the
frequency, magnitude and direction of the electric field. However, in many practical situations
€ may be treated as approximately constant within the medium. For the vacuum €/ey = 1, so
that P = 0 and there is no induced polarization, while for other media €¢/eg > 1, e.g. for air
€/€o =~ 1.0005, for water €/ey >~ 1.77.
Substituting (4.10) into (4.9), we have
L e = V- <E+ 1P> - V. (6 E) , (4.11)
€0 €0 €0

and the electrostatic Maxwell equations become simply'

V- (eE) = pfree » VxE =0. (4.12)

Notice that all we have done is effectively replace ¢g — €/ When € is constant the resulting
Maxwell equations are mathematically identical to the electrostatic Maxwell equations we studied
in sections 1 and 2, and may be solved with exactly the same methods. Note here that since
€/ep > 1, the electric field E generated by the free charges pgee in a dielectric medium is smaller
than it would have been without the dielectric present, by a factor of ¢ /e.

When we have boundaries between materials with different values of €, for example, air and

water, the following version of Proposition 1.8 applies (we shall need this result in section 6):

Proposition 4.1 Consider a surface S with (free) surface charge density o, that is the boundary

between two dielectric materials with different permittivities et. Then

e"Etn - ¢ E -n=o0, (4.13)

1The quantity D = €E in (4.11) is called the electric displacement.
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relates the electric fields ET on the two sides of S, with n the unit normal pointing into the “+

side”. On the other hand, the components of E tangent to S are continuous across S.

Proof The proof is almost identical to that for Proposition 1.8, where instead in the first step we
integrate Gauss’ law V - (e E) = pgee over the cylindrical region R. The divergence theorem then
gives terms €= ET integrated through the top and bottom surfaces of this cylinder, respectively.
The equation V x E = 0 is the same as before, and so proof for the components of E tangent to S

is identical to that for Proposition 1.8. |

4.3 Magnetic dipoles

In section 3 we explained that electric currents generate magnetic fields, via the Biot-Savart law
(3.10), and conversely magnetic fields exert a force on electric currents via the magnetic component
of the Lorentz force (3.8). In fact these two statements essentially summarize magnetostatics. But
you might then ask: where is the electric current that generates the magnetic field of a permanent
magnet? Similarly, in Figure 15 we mentioned that you might have seen iron filings lining up with
the magnetic field lines around a current carrying wire: but why do they line up? If the magnetic
force in (3.8) is responsible for this, where is the current in an iron filing, or in the needle of a

compass that aligns with the Earth’s magnetic field?!

* Remark on spin Perhaps surprisingly, the answers to these questions involve quantum me-
chanics in an essential way, even though the effects are macroscopic. In some magnetic materials,
the macroscopic magnetic field is indeed produced by the alignment of tiny atomic currents gener-
ated by the electrons in the material. However, in materials such as iron it is the alignment of the
“spins” of (unpaired) electrons in the atoms that is responsible for producing the magnetic field.
If you took the Part A Quantum Theory course, you will have encountered the fact that a single
electron has an intrinsic angular momentum, called its spin. A proper discussion of this quantum
mechanical notion is beyond our course here, but we can understand to some extent why “spin”
angular momentum might generate a magnetic field, via the following classical argument.

First recall the definition (3.48) of the magnetic dipole moment:

m = 1/ Y ox IV (4.14)
2 r'eR

Here J is a steady current density supported in a region R, and the magnetic dipole moment deter-
mines the leading order behaviour of the vector potential A(r) in the expansion (3.49). Recalling
also that J = pv, for a charge density p with velocity vector v, notice that the expression (4.14)
is very similar to that for angular momentum. More precisely, for a mass distribution with density

p(T)mass supported in a region R, the angular momentum (about the origin O) is

L = / r’ X pmass vdV' . (4.15)
r'eR
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Here p(r’)mass 0V is the mass of a small volume 6V’ centred at r’. Let us assume that the charge
and mass densities of some matter are proportional to each other, so p = 27y pmass With v a constant;

for example, this is the case if the matter is all made of the same elementary particles. Then

1

m = / r' x pvdV’ :'y/ ' X pmass vdV' = yL . (4.16)
2 Jyer r'ER

The magnetic dipole moment and angular momentum of the matter are hence proportional, with

gyromagnetic ratio y satisfying

Q = / pdV = 27/ Pmass AV = 2M~y = ~ = @ , (4.17)
R R 2M

where M is the total mass. It is then the angular momentum L of the charge distribution that is
effectively generating the magnetic dipole field in (3.51), with m = L.

We might then crudely imagine an electron as a ball of charge that is spinning about some
axis, with the resulting angular momentum of this body being its “spin” angular momentum. The
rotating charge gives an electric current, which in turn generates a magnetic dipole moment m.
This classical picture is not really a correct description of an electron, but it is nevertheless true
that a single electron behaves like a little magnetic dipole, with the magnetic dipole moment
aligned with the direction of its spin. In a ferromagnetic material, such as iron, the spins of the
electrons can all be aligned, and superposing all the magnetic dipole fields of the electrons leads

to the macroscopic magnetic field in your fridge magnets. [end of remark on spin]

As in the previous subsection, we can make all of this more quantitative by studying magnetic
dipoles. This is relegated to the Additional Material and here we will just state the outcome of
these calculations.

We can define the magnetic analogue of the electric polarization density P, called the magneti-
zation density M, which determines the density of magnetic dipole moments. By studying forces

action on magnetic dipoles one can derive that M aligns with B in media,
_ Xmpp _
M—B—<—>B. (4.18)
Definition p is called the permeability, with x,, = (u/po — 1) the magnetic susceptibility.

4 is not constant in general, but for uniform materials it is approximately constant. For the vacuum
w/ o = 1, for air p/po ~ 1.00000037, for water p/po =~ 0.999992, while for iron p/pg ~ 200, 000!
Substituting (4.18) into the magnetic analogue (4.9) (not derived here), we have

1
qufree =V x (B—M()M) = uov X <,u B) . (4.19)

which leads to the effective Maxwell equations

1
V-B=0, VX(B)ZJfree. (4.20)




Notice that the magnetic field generated by Jgee in a magnetic material is 11/ o times the field that
would be generated without the magnetic material present. This is e.g. a little larger for air, since

Xm > 0 (called paramagnetism), but a little smaller for water, since x,, < 0 (called diamagnetism).
Definition The quantity H = %B in (4.20) is called the magnetic field strength.
Finally, analogously to Proposition 4.1 we have:

Proposition 4.2 Consider a surface S that is the boundary between two materials with different

permeabilities u=. Then the components of B normal to S are continuous across S, so
(B*¥—B7) n=0, (4.21)
while the components of % B tangent to S are continuous across S, so
1 1
(B+ - B> t=0. (4.22)
I
Here n is the unit normal to S, pointing into the “+ side”, and t is any tangent vector to S.

Proof Following the proof of Proposition 1.8, (4.21) follows from integrating V - B = 0 over the
cylindrical region R, while (4.22) follows from integrating V x (%B) = 0 over the surface ¥*. W
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5 Electrodynamics and Maxwell’s equations
5.1 Maxwell’s displacement current

Let’s go back to Ampere’s law (3.29) in magnetostatics

/ B~dr:u0/J-dS. (5.1)
C=0% P

Here C' = 0% is a simple closed curve bounding a surface 3. Of course, one may use any such

surface spanning C' on the right hand side. If we pick a different surface ', with C' = 9%, then

OZ/J'dS_/ J-ds
E /

- /SJ-dS. (5.2)

Here S is the closed surface obtained by gluing ¥ and ¥’ together along C. Thus the flux of J
through any closed surface is zero. We may see this in a different way if we assume that S = OR

bounds a region R, since then

/J-dS:/V-JdV:O, (5.3)
S R

and in the last step we have used the steady current condition (3.7).
But in general, (3.7) should be replaced by the continuity equation (3.6). The above calculation

then changes as follows:

/J-dS— J-dS:/J dS—/VJdV /dev_ eo/a(V-E)dV
) $3Y s ot

= —60/ %—? ds = —60/ — .dS + 60/ —.dS. (5.4)
S=0R /

Here in the first line we have used the divergence theorem in the second equality, the continuity
equation (3.6) in the third equality, and Gauss’ law (1.16) in the final equality. Notice we now
regard E = E(r,t) as a vector field depending on time. In the second line of (5.4) we have then

again used the divergence theorem. We have thus shown that

OE OE
/E(J—f—Eo 8t)-dSZ// <J+60 (,%)-dS (5.5)

for any two surfaces X, ¥’ spanning C', and thus suggests replacing Ampere’s law (3.28) by

ot

VxB = pu <J+60 8E> . (56)

This is indeed the correct time-dependent Maxwell equation on the front page. The additional
term OE /0t is called the displacement current, and the above argument is due to Maxwell. It says

that a time-dependent electric field also produces a magnetic field.
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5.2 Faraday’s law

The electrostatic equation (1.33) is also modified in the time-dependent case. We can motivate
how precisely by the following argument. Consider the electromagnetic field generated by a set of
charges all moving with constant velocity v. The charges generate both an E and a B field, the
latter since the charges are in motion. However, consider instead an observer who is also moving
at the same constant velocity v. For this observer, the charges are at rest, and thus he/she will
measure only an electric field E’ from the Lorentz force law (3.8) on one of the charges! Indeed,
when we wrote down the Lorentz force law (3.8) and Biot-Savart law (3.10), we didn’t specify what
inertial reference frame we should use to measure the velocities, and this should have worried you
at the timel!

Since (or assuming) the two observers above must be measuring the same force on a given

charge, we conclude that
E =E+vxB. (5.7)
Now since the field is electrostatic for the moving observer,

0=VxE =VxE + Vx(vxB)
=VXxE+v(V-B) - (v-V) B=VXxE - (v-V)B. (5.8)

Here in the second line we have used the identity (A.11), and in the last step we have used V-B = 0.
Now, for the original observer the charges are all moving with velocity v, so the magnetic field at

position r + v7 and time ¢ + 7 is the same as that at position r and time t:
B(r +vr,t+7) = B(r,t) . (5.9)

This equation holds for all 7. Dividing through by 7 and then taking the limit 7 — 0 leads to the

partial differential equation

(v-V)B+a£’:0. (5.10)

Substituting this into the right hand side of (5.8) then gives

0B
| D 11
V x BN (5.11)

This is Faraday’s law, and is another of Maxwell’s equations. The above argument raises issues
about what happens in general to our equations when we change to a moving frame. A systematic
study of this leads to Einstein’s theory of Special Relativity, which we shall comment on in the

Additional Material.

As usual, the equation (5.11) may be expressed as an integral equation as

61



Faraday’s law For any simple closed curve C' = 9% bounding o fixed surface 3

d
Edr=-— [ B-dS. 5.12
T T (5.12)

C=0%
This says that a time-dependent magnetic field produces an electric field. For example, if one
moves a bar magnet through a loop of conducting wire C, the resulting electric field from (5.11)

induces a current in the wire via the Lorentz force. This is what Faraday did, in fact, in 1831.

Definition The integral fz B - dS is called the magnetic fluz through X.

* The current in the wire then itself produces a magnetic field of course, via Ampere’s
law. However, the signs are such that this magnetic field is in the opposite direction to
the change in the magnetic field that created it. This is called Lenz’s law, and a similar
effect is what leads to diamagnetism, mentioned at the end of section 4. The whole setup
may be summarized as follows:

Faraday Lorentz Ampere
— E —

changing B current B. (5.13)

5.3 Maxwell’s equations

We now summarize the full set of Maxwell equations.
There are two scalar equations, namely Gauss’ law (1.16) from electrostatics, and the equation

(3.17) from magnetostatics that expresses the absence of magnetic monopoles:

V-E="2, (5.14)
€0

V-B=0. (5.15)

Although we discussed these only in the time-independent case, they are in fact true in general.
The are also two vector equations, namely Faraday’s law (5.11) and Maxwell’s modification (5.6)

of Ampere’s law (3.28) from magnetostatics:

0B

E=—-— 5.16
VxE=-2 (5.16)

OE
VxB = pg (J + 60) . (517)

ot

Together with the Lorentz force law

F=¢g(E+uxB), (5.18)

which governs the mechanics, this is all of electromagnetism. Everything else we have discussed
may in fact be derived from these equations.

Maxwell’s equations, for given p and J, are 8 equations for 6 unknowns. There must therefore
be two consistency conditions. To see what these are, we first compute

0

5 (V' B) = -V (VxE) =0, (5.19)
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where we have used (5.16). This is clearly consistent with (5.15). We get something non-trivial by
instead taking the divergence of (5.17), which gives
0=v (LvxB) =V J+el v E)
— . - — . €) — .
1o * ot

dp
=VI+ o

(5.20)
where we have used (5.14) in the last step. Thus the continuity equation arises as a consistency
condition for Maxwell’s equations: if p and J do not satisfy (5.20), there is no solution to Maxwell’s
equations for this choice of charge density and current. Alternatively, we may regard this as saying

that Maxwell’s equations imply that charge is conserved.

5.4 Electromagnetic potentials and gauge transformations

In the general time-dependent case one can introduce electromagnetic potentials in a similar way
to the static cases. We work in a suitable domain in R3, such as R? itself or an open ball therein,
=4

as discussed in previous sections. Since B has zero divergence (5.15), we may again introduce a

vector potential
B=VxA, (5.21)

where now A = A(r,t). It follows from Faraday’s law that

0B 0A
O—VXE—I—at—VX(E—{—at). (5.22)
Thus we may introduce a scalar potential ¢ = ¢(r,t) via
0A
E+ — = - . 5.23
+ oy = Vo (5.23)
Thus
B=VxA, (5.24)
0A
E=-V¢p - —. 5.25
¢~ 5 (5.25)

Note that, by construction, with (5.24) and (5.25) the Maxwell equations (5.15) and (5.16) are

automatically satisfied.

Definition Generalizing the discussion in section 3.7, we define the gauge transformations

9y

A5 A=A+Vy, gb—)&zqﬁ—g,

(5.26)

which leave (5.24) and (5.25) invariant.
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Again, one may fix this non-uniqueness of A and ¢ by imposing certain gauge choices. Suppose
we have chosen a particular A and ¢ satisfying (5.24), (5.25), and let ¥ = 1 (r,t) be a solution to

the following wave equation with source

1 0% 9 1 9¢
= A 2
2o — V=Y 28t+v (5.27)
where we have defined
1
2= . 5.28
€0l0 ( )

Compare (5.27) to the analogous time-independent Poisson equation (3.32) in magnetostatics.

Then from (5.26) we compute

19¢ ~ 10 1 0% 9
A= —-— A = 5.29
28t+v 2 ot 028t2+v VY= (5:29)
Definition The Lorenz gauge (cf. (3.33)) for A, ¢ is the condition
1 0¢
A = .
2 + V- 0. (5.30)
In Lorenz gauge Gauss’ law (5.14) becomes
p 0A 9 1 0%
L V. E=V.([-Véd—-""Z") = -V - 5.31
€0 < ot > o+ 2 ot (5:31)
while the Ampere-Maxwell equation (5.17) becomes
82
VXB—V(V-A)—VQA—MO[J—€0< Vo + 8t2>] . (5.32)
In Lorenz gauge V (V- A) = %%qu = —60#0%V¢), which cancels against the same term on the
right hand side of (5.32), giving
1 O*A
2
—V*A+ S5— = poJ. .
v —l— 22 = Mo (5.33)

We may summarize this as follows:

Theorem 5.1 In Lorenz gauge Maxwell’s equations reduce to the wave equations with sources

O¢ = -2, (5.34)
€0
OA = —puoJ . (5.35)

Here we have defined the d’Alembertian operator (some references have the opposite overall sign)
O=-5-5+ V2. (5.36)
c

It will turn out that the wave speed ¢, defined in terms of the permittivity and permeability of free
space via (5.28), is the speed of light in vacuum, as we discuss in detail in section 6. The Green’s

function method for solving these wave equations with sources is discussed in section 5.6.
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5.5 Electromagnetic energy and Poynting’s theorem

Recall that in section 1.7 we derived a formula for the electrostatic energy density Eelectric =

€0 |E[? /2 in terms of the electric field E. The electrostatic energy of a given configuration i

—
w0

the integral of this density over space (1.58). One can motivate the similar formula Enagnetic =

IB|? / 2110 in magnetostatics, although we won’t elaborate on this here. This leads to the following:

Definition The electromagnetic energy density is

_ 1 2 1 2 €0 2 2 2
5:2<60|E| +MO|B\>:2(|E| +c|B|). (5.37)

We then have

Theorem 5.2 (Poynting’s Theorem) The electromagnetic energy density satisfies

o0&
—~ + C N ; - _E N -] .

where we have defined the Poynting vector P to be

1
P=—ExB. (5.39)
Ho

Proof Taking the partial derivative of (5.37) with respect to time we compute

o€ OE 1 0B
= B — 4+ —_B. =
o = O o T o
1 1
= —E- (VxB - uwJ) — —B-(VxE)
Ho Ho
1
:—V-<E><B>—E-J. (5.40)
Ho
Here after the first step we have used the Maxwell equations (5.17) and (5.16), respectively. The
last step uses the identity (A.12). [ |
Notice that, in the absence of a source current, J = 0, (5.38) takes the form of a continuity

equation, analogous to the continuity equation (3.6) that expresses conservation of charge. It is
thus natural to interpret (5.38) as a conservation of energy equation, and so identify the Poynting
vector P as some kind of rate of energy flow density. One can indeed justify this by examining
the above quantities in various physical applications, and we shall look at the particular case of
electromagnetic waves in section 6.

Integrating (5.38) over a region R with boundary ¥, using the divergence theorem we obtain

d/EdV——/’P-dS—/E-JdV. (5.41)
dt Jr 5 R

Given our discussion of £, the left hand side is the rate of increase of energy in R. The first term

on the right hand side is the rate of energy flow into the region R. When J = 0, this is precisely
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analogous to our discussion of charge conservation in section 3.2. The final term on the right hand
side of (5.41) is interpreted as (minus) the rate of work by the field on the sources. To see this,
remember that the force on a charge ¢ moving at velocity v is F = ¢ (E + v x B). This force does
work at a rate given by F-v = ¢E - v. Recalling the definition (3.1) of J = pv, we see that the
force does work on the charge ¢ = pdV in a small volume §V at a rate F-v = E-JdV. The final
term in (5.41) is thus expressing the rate of conversion of electromagnetic energy into mechanical

energy, acting on the sources.

5.6 Time-dependent Green’s function

The form of the time-dependent Maxwell equations (5.34), (5.35) in Lorenz gauge motivates study-

ing the wave equation with source
Oy = —4rn f(r,1) (5.42)
for arbitrary source function f(r,t¢), where recall J is defined in (5.36). Following section 2.2:
Definition A (time-dependent) Green’s function is a function G(r,t¢;r’,t') satisfying
OG(r,t;r',t') = —dnd(t —t)o(r — 1) . (5.43)

Given such a function, a solution to (5.42) is

/ / (r,t;0' ) f(/,¢)dV'dt’ (5.44)
r'eR3 Jt'=—c0

as one sees by applying J to the right hand side. As we saw (and also exploited) in section 2, Green’s
functions are not unique: we may add to G any solution F' = F(r,t;r’,¢') to the homogeneous wave
equation O F = 0, and this will be another solution to (5.43). Uniqueness follows after imposing
appropriate boundary conditions, which are ultimately determined by the precise physical setup.
To gain some insight into the time-dependent problem, let us recall the electrostatics Green’s

function equation
ViG(r,r') = —4nd(r —1') . (5.45)

The unique solution to this equation that is zero “at infinity” in R?® is G(r,r/) = 1/|r — /.
Physically, this Green’s function is 4mwep times the electrostatic potential generated by a unit
charge at position r’. Our aim in this subsection is to find the analogous time-dependent solution
o (5.43). Physically, from the Maxwell equation (5.34) this should be 4mey times the electric
potential ¢(r,t) generated by a unit charge that appears at position r’ at an instant of time t'.
Before this localized disturbance happens at time ¢’ we assume there are no electromagnetic fields
excited, and hence the Green’s function G(r,t;r',t') = 0 for ¢t < t’. Since O is a wave operator,
we can guess that the disturbance at position r’ and time ¢’ should lead to a wave that propagates

spherically outwards from the source point r’, at speed c.
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To work out the details, we make use of the exponential Fourier expansion/Fourier transform of
section 2.4, with complete set of functions (2.56). We already computed the electrostatic Green’s

function G(r,r’) = 1/|r — r’| in this expansion in equation (2.83). Following (2.78), we first write
]. o0 H / H /

S(t—t)é(r—r') = / / e w(t=t) gike(r=x") 435 qey | 5.46

E=00E =) = o s S (5:46)

which expresses the completeness relation for the functions (2.56). Notice that compared to (2.78)
there is additional integral over an angular frequency variable w, which leads to the time depen-

dence. We correspondingly write

1 o0 H / H /
Gr,t;r' ) = i / / g(k,w) e W) oIk r=) 31 q¢, | (5.47)
keR3 Jw

where we have tacitly assumed that the solution we want depends only on r — r’ (as for the

=—00

electrostatic Green’s function 1/|r — r’|) and ¢t — /. The function g(k,w) is the Fourier transform
of G. Applying (0 = —C%g—; + V2 to (5.47), a similar calculation to (2.80) gives
2
] (efiw(tft/) eik-(rfr’)> _ <w2 . ‘k’2) efiw(tft’) eik-(rfr’) ' (548)
c
Equating (G with —47 times (5.46), we can read off the Fourier coefficient function
4 1

k = . A4
9(k,w) (2m)? |k|? — w?/c? (5.49)
Substituting this back into (5.47) gives
47 > 1 ; AN ’
Y AN —iw(t—t ik-(r—r 3
Gr 157, 1) = G /keRS /:OO R aC (1) el =) @3 oy (5.50)

This is analogous to the way we derived (2.83), although there is now an additional integral over w.

Looking more closely at the latter integral

> 1 —iw(t—t

we see that there are two simple poles at w = +c |k|. Because of this, as written the integral (5.51)
is not actually well-defined, and this is related to the already-mentioned fact that Green’s function
solutions to (5.43) are not unique.

We may define and then evaluate the integral (5.51) more carefully using a complex contour

method. We set

1

w = Rez, a=—(t—t), f(z) = P (5.52)

and consider the contour integral
II) = / f(z)e% dz . (5.53)
r

This is to be regarded as a definition of the ill-defined integral in (5.51). The contour I'" should
include the real axis, so as to reproduce the real integral I in (5.51), although as mentioned there
are simple poles at z = £c|k|: these must be avoided in order for the integral to be well-defined.

We also recall the following:
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Lemma 5.3 (Jordan’s Lemma) Let f(z) be a meromorphic function on the complex plane, and

suppose that f(z) — 0 as |z| = R — oo. Let vxP*"

r (0)
contour of radius R in the upper half plane, and 19V (0)

R
contour of radius R in the lower half plane. Then

= ReéY for 6 € [0,7] be the semi-circular

= Rel for 6 € [r,27] be the semi-circular

(5.54)

hmR;)oo f’yupper f(Z) eiaz dz = f01” a>0 ,
R
limp_ o0 f,y}gwer f(z)e**dz =0 fora <0 .
----------- -(--.-..._."'~.
i N\ N\ :
-R, z=-c|K| 0 z =c|K| IR
1 ]
\ |
\ I
\ 1
\ 1
\ /
\ /
\ /
\ /
\ /
\ /
\ /
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\
\ /
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Figure 20: The contour I'. For ¢ < t' we close in the upper half plane (shown in green/small
dashes), while for ¢ > ' we close in the lower half plane (shown in blue/longer dashes). In both

cases we indent the contour above the simple poles at z = £¢|k|, so that the upper green contour
contains no singularities, while the lower blue contour contains the two simple poles.

The correct contour I' for the Green’s function we want is shown in Figure 20. Notice

(i) We choose to indent I' above both simple poles at z = +c |k|.

(ii) For a = —(t — t') > 0, or equivalently ¢t < ¢, we close the contour in the upper half plane,

while for a = —(t —t') < 0, or equivalently ¢ > t, we close the contour in the lower half plane.

Point (ii) here allows us to apply Jordan’s Lemma 5.3 to conclude that the semi-circular part of
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in point (i) then means that the upper contour for ¢ < ¢’ contains no singularities, and the Residue
Theorem immediately gives I(I') = 0. With this definition of the w integral in (5.51), and hence
(5.50), we deduce that

G(r,t;v',t) =0 fort<t . (5.55)

This was a physical requirement we mentioned earlier: before the localized disturbance at time ¢’

we assume there are no electromagnetic fields excited.

Definition Green’s functions satisfying (5.55) are called retarded Green’s functions.

Remark If we had chosen to indent below both simple poles, we would instead obtain a Green’s

function which is zero for t > ' (called an advanced Green’s function, which is also useful).

Using the lower contour in Figure 20, for ¢t > ' the Residue Theorem instead gives

omi(t—t)z ei(t—t")z
I(T') = —27i |Residue <lk|2—z2/02’ z= c|k\) + Residue <|k|2—22/02’ z=—c ’H)]
s o—ic [k|(t—t) - eick|(t—t’)]
2¢ K| 2¢ k|
= o ﬁ sin [c [k|(t —t')] . (5.56)

Here in the first line note that the overall minus sign is because the lower blue contour I' runs
clockwise in the plane, so that —I" is positively oriented. Inserting (5.56) for the integral I back

into Green’s function (5.50) hence gives

4 ) ,
G(r,t;r' ) = (2:)4/1( u {27r|li\sm [C|k|(t_t/)]}elk~(r—r)d3k
€
c >~ 1

™ s
= — — . k?sin [ck(t —t' / / elhlr=rlcost in g Ak do dy . 5.57
272 k=0 k [ ( )] 0=0 J =0 ( )

Here in the second line we have introduced spherical polar coordinates for k € R?, with k = |k,
6 being the angle between the vectors k and r — r’, and d®k = k? sinf dk df dy. Integrating first
over the angular variables 0, ¢ immediately gives

T

. ’
e1Ic|1r‘—1r' | cos 0:| dk
0

c e.¢]

t:r' ) = — Esin [ck(t — )| 27 | ———

G(r,t;r',t) 272 Jis sin [ck( )] 77[ ikr — /|
c 1 S .

= 2= [, Sin ekt = ¢)] 2sin (kir - r']) dk

c 1 &0

= - sin [ck(t — t')] sin (k|r — r'|) dk

; |I‘ - I'/’ k=—o00

c 1 > ick(t—t)  —ick(t—t")\ [ iklr—r'| _ .—iklr—r'|

= —— <e —e ) (e —e ) dk
am ’I‘ - I‘,’ k=—00
c 1 ©

_ |:eick(t7t’+\rfr’\/c) _ eick(tft’f\rfr’\/c)} dk . (558)

_% |I' - I'/’ k=—o00
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Here in the third line we have used the fact that the integrand is an even function of k£, and in
the fourth line we have written sine in terms of exponentials. In the final step the four terms
one obtains in multiplying out the brackets in the penultimate line are seen to be pairwise equal
on replacing k — —k. Finally, recall that the completeness relation (2.60) allows us to identify
Oz —2') = % fkoi_oo e*(@=2") 4k, Changing the integration variable k = k/c in the last line of
(5.58), and using the completeness relation to integrate over k, gives

- -
G(r,t;r' ') = ! [5 (tt’+|rr|)+6(tt’|rr|)] : (5.59)
C

=1 c

The first Dirac delta function term is zero, since |r — r’|/¢ > 0 and notice here we are assuming

t > t', so that the argument is strictly positive. We have thus proven:

Proposition 5.4 The retarded Green’s function is

s
Glr,tir #) = — 6<t—t’—’r r’). (5.60)

-1/ c

Notice here that when ¢ < ¢/ the argument of the Dirac delta function is strictly negative, so that
the Green’s function is indeed zero. In fact G(r,t;r’,¢') = 0 unless ¢(t — t') = |r — 1’| > 0, which
is the equation for a sphere of radius ¢(¢t — t'), centred on the point r’. Indeed, t —t' = |r —1’|/c is
the time taken for a disturbance at the point r’ to reach the point r, travelling radially outwards
with constant speed c. This solution hence has all the properties we were looking for: it gives a
wave that originates from a localized electromagnetic disturbance at position r’ and time ', that
expands spherically with speed ¢ from this source.

Having obtained the correct Green’s function, using (5.44) we can now simply write down the

solution to the original wave equation with source (5.42):

P(r,t) = / / G(r,t;0' ) f(',¢)dV’ dt |
r'eR3 Jt'=—o0

00 1 —
— / / — (t i |rr|> F ) dv'dy
reRr3 Ji——oo [T — 1| c
1 / r — 1’| /
- et av’ (5.61)
r’'€R3 |I‘ - I‘/’ ¢

where in the last step we have integrated over . We may hence also write down the electromagnetic

potentials that solve the general time-dependent Maxwell equations (5.34), (5.35):

oet) = 1o /r/eRs v (5.62)
J (r’,t — M)
o=t s

Remark One can verify that these potentials satisfy the Lorenz gauge condition (5.30).
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Compare (5.62), (5.63) to the static case equations in (3.36). The only difference is the time
dependence, where notice that the fields at time ¢ are determined by integrating the charge density

p and current density J at the retarded time

v

t = tretarded = T — (564)

Cc

As already remarked, |r — r’|/c is the time it takes for the Green’s function wave to propagate
from the source point r’ to the observation point r. We shall see in section 6 that c is the speed
of light in vacuum, and formulas (5.62), (5.63) say there is no instantaneous action at a distance
in electromagnetism, but rather there is a delay between a change in the sources and the resulting

change in the fields at time ¢, given by (5.64). We now have the tools to address the following:

5.6.1 Moving point charge

Consider a point charge ¢ moving on an arbitrary trajectory r = ro(t), with velocity v = drg(t)/dt.
If the charge were stationary, we could use Coulomb’s law (1.7) to deduce the electric field E
produced. But Coulomb’s law led to the electrostatic Maxwell equations, while in a general time-
dependent setting we have Faraday’s law V x E = —9B/0t. Indeed, because the charge is moving
we expect it to produce a magnetic field B via the Biot-Savart law (3.10). But the latter led to
Ampere’s law, which in general has the Maxwell displacement current OE/0t on the right hand
side of (5.6). In fact neither Coulomb’s law nor the Biot-Savart law are correct in this setting,
because of the complicated way that the fields feed back into each other in Maxwell’s equations.
But we have solved the general time-dependent equations via (5.62), (5.63), and so may use these
to solve this problem.

The charge density and current density of the point charge are by definition

p(r,t) = qd[r —ro(t)], J(r,t) = qv(t)d[r —ro(t)], where v(t) = dr(;)t(t) . (5.65)

From (5.62) we thus compute

_q > 1 I / N P U,
orvt) = 1 /r/ew/t_oo Ol = ro)5 [¢ = (¢ = = |/c)] v
q

_ / Tl S (= —ro(t)]/e)] d . (5.66)

471'60 t=—o00 |I‘ — I'()(t/)‘

Here in the first line we have imposed the retarded time condition (5.64) by (re)inserting a Dirac
delta function and integral over ¢/, and in the second line we have integrated over r’. Notice that
the Dirac delta function on the second line is a non-trivial function of ¢/, for which we shall need
property (iii) in equation (1.18) of Proposition 1.2.

We next define

R(t) =r—ro(t), R(t) = [R(t), (5.67)
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where R(t) is the position vector of the observation point r, relative to the position vector rq()
of the point charge at time ¢, and compute

AR d 1 dro(t) R

S r—ro) (r—10(t)) = —— (r —ro(t)) - = .. 5.68

W &) = o) T = R )
The Dirac delta function on the second line of (5.66) sets ' =t — R(t')/c, where R(t') is a known

function of ¢, as the trajectory ro(t') is given, and using property (iii) in Proposition 1.2 and (5.68)

we obtain
q 1 1
t) = 5.69
¢<I‘, ) 47req R(t/) _ lR(t/l) . V(t/) ( )
¢ R(t") ¢ such that ¢ =t—R(#')/c

We can see the usual Coulomb field ¢/(4megR) generated by a point charge ¢, but there is an
extra term multiplying this, together with the complication of determining the retarded time #/,
which is determined implicitly from ¢ =t — R(t") /c. Notice that R(t")/R(t’) is a unit vector, while
[v(t')/c| < 1 for speeds small compared to ¢, so as long as the particle is moving slowly compared
to ¢, the multiplicative correction term to the Coulomb potential in (5.69) is approximately 1.

One can write down a similar general formula for A using (5.63): Since J = vp, we just get an
extra factor of v(t'), concretely

G(r,t) n Qo v(t')
A(r,t) = t)= — .
) c? V() 4 R(t') = R(t') - v(¥') /¢y such that ' =t—R(t')/c

(5.70)

The equations (5.69) and (5.70) are known as Liénard—Wiechert potentials.
Let us now specialize to the case where the particle moves with constant velocity v = wve;
along the z-axis direction, starting at the origin at time ¢t = 0, so that ro(t) = vte;. We have

R(t) = (r —vt)e; + yes + ze3 and R(t) = /(z — vt)2 + y2 + 22, and the retarded time ¢’ solves

02(t . t/)2 — R(t’)2 _ (CC —Ut/)z +y2 —|—Z2

= <1—Zz)t’2—2t’(t—;x)+t2—w=0. (5.71)
Introducing
v =) = B S , (5.72)
the quadratic equation (5.71) in ¢’ has solution
= t—:ﬂ‘;@W?(w—vthH% : (5.73)

Here we have chosen the root with ¢ — ' > 0. Those who have studied Special Relativity will
recognize the Lorentz factor v making a remarkable appearance, as well as other features of Lorentz

transformations! Examining the potential ¢(r,t) in (5.69), some algebra gives

R(t') — %R(t/) v(t) = (z —vt') +y? 22— %(:c —ot') = c(t —t) — %(x —ot)

1 1
=c <t — ?t’ - va:) = Y2 (x —vt)? +y2 + 22, (5.74)




where the last step uses (5.73). The potential ¢(r,t) in (5.69) thus simplifies to

qv 1
r,t) = . 5.75
¢( ) 47T€0 \/72(1, _ vt)2 + y2 + 22 ( )

This is the Coulomb potential one might naively guess is generated by a point charge ¢ at position
ro(t) = vteq, up to the relativistic factors of . The vector potential in this case is given by the

similar formula

al 1 _ oln) (5.76)

A(r,t) =
(I', ) 47T€OC2 \/’y2($f’l)t)2+y2+z2v 02

where from (5.28) note 1/(eg ¢) = puo-

5.7 Maxwell’s equations in macroscopic media

In section 4 we derived the electrostatic Maxwell equations (4.12) and magnetostatic Maxwell
equations (4.20) in macroscopic media. One can generalize this discussion to include time depen-
dence, in essentially the same way as we have done for the vacuum Maxwell equations in this
section. Rather than repeat the arguments, we here simply present the the final complete set of

macroscopic Mazwell equations (or Mazwell equations in matter):

V- (eE) = ptree, VXE:—O—B,
ot (5.77)
V-B=0, Vx <1B> _ gy B
W ot

These are similar in form to the equations originally introduced and studied by Maxwell. Al-
though we have motivated them as an effective set of equations, approximately valid in certain
media where €, 1 characterize the media’s electromagnetic properties, notice that setting € = ¢y,
1= po gives the microscopic Mazwell equations on the front page, which are regarded as funda-

mental, and exact.
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6 Electromagnetic waves
6.1 Source-free equations and electromagnetic waves

We begin by writing down Maxwell’s equations in vacuum, with no electric charge or current:

V.-E=0, V.-B=0, (6.1)
0B 1 OE

where as in (5.28) we have defined

@)
Il

\/5 . (6.3)

We have already seen that c is a speed; for example, the speed of the spherical wavefront that
propagates out from the source point in the Green’s function (5.60). The great insight of Maxwell
was to realise that this is the speed of light in vacuum.

Taking the curl of the first equation in (6.2) we have

B
0:V(V-E)—V2E+an—:—V2E+ 0

_ o2g . LB
= _VY E_|_C2 57 (6.4)

Here after the first step we have used the first equation in (6.1), and in the last step we have used

the second equation in (6.2). It follows that each component of E satisfies the wave equation

Ou=0, (6.5)

where u = u(r,t), and as in (5.36) the d’Alembertian operator is O = c%g—; — V2. You can similarly

check that B also satisfies (1B = 0.
The equation (6.5) governs the propagation of waves of speed ¢ in three-dimensional space. It

is the natural generalization of the one-dimensional wave equation

2 2
LA (6.6)
which you met in Prelims. Recall that this has particular solutions of the form uy (x,t) = f(xFct),
where f is any function which is twice differentiable. In this case, the waves look like the graph
of f travelling at constant speed ¢ in the direction of increasing/decreasing z, respectively. The
general (d’Alembert) solution to (6.6) is u(z,t) = f(x — ct) + g(x + ct), as shown in the Prelims
course on Fourier Series and PDEs .

The above generalizes naturally to the three-dimensional equation (6.5), by writing
u(r,t) = fle-r—ct), (6.7)

where e is a fixed unit vector, |e|?> = 1. Indeed, using the chain rule we compute V?u = e - e f”,

0?u/ot? = 2" so that (6.7) solves (6.5) for any twice differentiable function f of one variable.
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Definition Solutions to the wave equation (6.5) of the form (6.7) are called plane-fronted waves.

The terminology here is justified by noting that at any constant time, u is constant on the planes
{e - r = constant} orthogonal to e. As time ¢ increases, these plane wavefronts propagate in the
direction of e at speed c. However, unlike the one-dimensional equation, we cannot write the

general solution to (6.5) as a sum of two plane-fronted waves travelling in opposite directions.

6.2 Monochromatic plane waves
An important special class of plane-fronted waves (6.7) are given by the complex harmonic waves
u(r,t) = aekr—wt) (6.8)

where « is a complex constant, w > 0 is the constant frequency of the wave, and k is the constant

wave vector. To relate to (6.7), note that

k-r—wt:g(e-r—ct), (6.9)
c
provided we identify
w
k = ke, where k = . (6.10)

Here k = |k| is called the wave number. Thus (6.8) solves the wave equation (6.5) provided (6.10)
holds, which is simply the equation

speed ¢ = % = % . 2% = frequency x wavelength . (6.11)

The harmonic waves (6.8) are of course complex, although notice that the real and imaginary

parts separately solve the wave equation. One can then take linear combinations of these real sine

and cosine solutions. Note also that the complex harmonic wave (6.8) is simply the product of

exponential Fourier modes (2.56) in each variable x,y, z,t. In fact it is a result of Fourier analysis

that every solution to the wave equation (6.5) is a linear combination (in general involving an
integral) of these harmonic waves, as (6.8) form a complete set of orthonormal functions, (5.46).

Since the components of E and B satisfy (6.5), it is natural to look for solutions of the complez

harmonic wave form
Ec(r,t) = Egelk™) = Be(r,t) = Byelkr1) | (6.12)

where Ey and By are constant complex vectors. Here and in the following we understand these
expressions to mean that we take the real part of the complex exponential to obtain the real
electromagnetic field, so E = Re (Ec¢), B = Re (B¢). The expressions (6.12) of course satisfy the
wave equation, but we must ensure that we satisfy all of the Maxwell equations in vacuum (6.1),
(6.2). Since V- E¢c = Eg - VellkT=wt) — jk . Egel(kr=%!)  the two equations in (6.1) immediately

give
k-Eg =0=k -Bg. (6.13)
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The first equation in (6.2) reads

B ,
0 =V xEc+ aat(c = (ik x Eg — iw Bg) e/t (6.14)

allowing us to read off
1 1
BQZ*kXEOZ*eXEO, (615)
w c

where in the second equality we have used (6.10). One can then verify that the second equation
in (6.2) is automatically satisfied, using k x (% k x Eo) + % Eo = % (k-Eo) k— %2 Eo+ 5 Eo =0,
where the first equality uses the vector triple product (A.6), and in the second we have used (6.13)

and (6.10). To summarize, we have shown
Proposition 6.1 The monochromatic electromagnetic plane wave, given by

Eo(r,t) = Boe®™=0)  Bo(r¢) = %k < Bo(r,t) | (6.16)
solves the vacuum Mazwell equations (6.1), (6.2), provided |k| = w/c, and k - Eg = 0.

Notice that the solution is specified by the angular frequency w, the direction of propagation
e = k/|k|, and with the electric field direction specified by a constant vector Eq that is orthogonal
to the direction of propagation. In fact both E and B are orthogonal to the direction of propagation
(6.13), which is known as a transverse wave. One can contrast this with, e.g. sound waves, which
are longitudinal waves, with the wave motion aligned with the direction of propagation. E and B
are also orthogonal to each other. Fourier analysis implies that the general vacuum solution is a

combination of these monochromatic plane waves.

6.3 Polarization

So far we have written complex solutions to the vacuum Maxwell equations, but as mentioned the
actual electric and magnetic fields are given by the real (or imaginary) parts of the monochromatic

plane waves in (6.16). Focusing on the electric field, we thus have
E(r,t) = Re(Ec(r,t)) = a cos(k-r —wt) — B sin(k - r — wt) , (6.17)

where we have defined o« = Re Eg, 3 = Im Eg, which are real vectors, orthogonal to the direction

of propagation k. The magnetic field is
1 1 1
B(r,t) = —k xE(r,t) = —kxacos(k-r—wt) — —k x Bsin(k-r —wt) . (6.18)
w w w
If we fix a particular point in space, say the origin r = 0, then the electric field (6.17) is

E(0,t) = a cos wt + 3 sin wt . (6.19)

As t varies, this sweeps out an ellipse in the plane spanned by a and 3 (similar remarks apply

to the B-field in (6.18)). As a simple example, taking o = ae;, 3 = [es where e, ey are
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orthonormal vectors, so that e = k/|k| = es is the direction of propagation, then the 1 and 2

components of E in (6.19) are Fj = « cos wt, Ey = 3 sin wt, and thus

EY | Ej

a =l (6.20)

This is an ellipse, with semi-major(minor) axis length a, semi-minor(major) axis length (3, centred

on the origin.

cB
A
E
\
(a) Linear polarization. (b) Circular polarization (right-handed).

Figure 21: Polarizations of monochromatic electromagnetic plane waves, viewed from the direction
of propagation.

There are two special choices of o and 3, which have names:

(i)

Linear polarization: If « is proportional to 3, so that the ellipse degenerates to a line,
then the monochromatic plane wave is said to be linearly polarized. In this case, E and B
oscillate in two fixed orthogonal directions — see Figure 21a. For example, taking 8 = 0 the

electric and magnetic fields at the origin are

1
E = aejcoswt , B = —aezcoswt . (6.21)
c

Circular polarization: If a- 3 = 0 (as in the example (6.20) above) and also |a| = |3,
so that the ellipse is a circle, then the monochromatic plane wave is said to be circularly
polarized. In this case, E and B rotate at constant angular velocity about the direction of
propagation — see Figure 21b. A circularly polarized wave is said to be right-handed or left-
handed, depending on whether |a|?e = a x B or |a|?e = —a x B3, respectively. With your
thumb aligned with the direction of propagation e, the direction of the electric and magnetic

fields is given by the curl of your fingers on your right and left hands, respectively.

In general, electromagnetic waves are combinations of waves with different polarizations.
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Finally, notice the formula (6.15) gives
B — %exE —  ¢B| = |, (6.22)
and thus the energy density (5.37) of a monochromatic plane wave is
& = %0 (B> + ABJ?) = & [E . (6.23)
The Poynting vector (5.39) is
L

1 1 1
’PEEXB:Ex(exE> = —|Efe = ce, (6.24)
140 1o c Hoc

which is in the direction of propagation of the wave, with magnitude |P| = ¢&. Thus electromag-

netic waves carry energy, a fact which anyone who has made a mircowave pot noodle can confirm.

6.4 Reflection and refraction

Maxwell postulated that the electromagnetic waves we have been discussing describe light. If
that’s the case, then all observed (classical) properties of light must be a consequence of Maxwell’s
equations. In this section we prove the laws of optics. Here a ray of light that hits the boundary
between two transparent materials, such as air and water, is divided into a reflected ray and a

refracted ray. These obey (see Figure 22):

(i) Law of reflection: the reflected ray lies in the plane of incidence, with the angle of incidence

f equal to the angle of reflection 0”.

(ii) Law of refraction: the refracted ray lies in the plane of incidence, with the angle of incidence

# and angle of refraction 6’ related by Snell’s law
nsinf = n' sind’ | (6.25)
where the materials have a refractive index n, n’, respectively.
For example, n,i ~ 1, while nyater = 1.3. In fact we will show that

n= |- (6.26)
€oHo

where €, {1 are the permittivity and permeability of the medium. Snell’s law (6.25) rearranges to

sing = % siné | (6.27)

so that when moving from a material with a lower n to a higher n’ (such as from air to water), the
angle of refraction 0’ is smaller than the angle of incidence 6, causing the light to bend towards the
normal direction to the boundary (as in Figure 22). On the other hand, moving from a material

with a higher n to a lower n’ (such as from water to air), there is a critical angle of incidence
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incident reflected

0 5 0 ) 0 5 5 5 5 ) o A 8 A

2

refracted

Figure 22: A light ray striking the boundary between two materials. The incident light ray,
refracted light ray and reflected light ray travel in the directions k, k/, k”, respectively, with angle
of incidence 6, angle of refraction #’, and angle of reflection 6#”.

. = arcsin (n’/n), where for 6 > 6, the right hand side of equation (6.27) is larger than 1, and
hence there is no solution for #’. There is then no refracted light ray, a phenomenon called total
internal reflection.

To derive these laws from Maxwell’s equations, we model the incident light ray as a monochro-

matic plane wave, travelling in the direction k, with electric field
Eincident = EO ei(k~r—wt) . (628)

The corresponding magnetic field is B = %k x E, where it is convenient to work with complex
plane waves and drop the subscript C from Ec and Be. Without loss of generality, we take the
plane that divides the two materials to be the (z,y)-plane {z = 0}, and take

k
ezm = (sinf, 0, —cosf) , (6.29)

so that the plane of incidence, spanned by the normal ez to {z = 0} and incident direction k, is
the (z, z)-plane {y = 0}, as in Figure 22. Notice then that the electric field (6.28) is independent

of the y coordinate. Necessarily k - Eg = 0, and we take
EO = EO e , (630)

so that Eincigent points into the page in Figure 22.

Similarly including the reflected and refracted waves, we may write

E = { EinCident + Ereﬂected - EO ei(k~r—wt) +E6, ei(k”~r—w”t) ’ z2>0 ’ (631)

s ! !
Erefracted = E6 el(k W't ’ z2 < 0.

79



The Maxwell equations in a general macroscopic medium are (5.77), and simply involve replacing
€0 — € o — p. It follows from (6.3) that in a general macroscopic medium the wave speed

propagation is not the speed of light ¢ in vacuum, but rather

1 1
V=g — = 60#067 Vo= = 0RO (6.32)
€ € ¢! !

Thus (6.10) becomes

(JJ” wl

w

KM=2 =2 =Y (6.33)
Given the incident ray, it remains to then determine the directions of k’, k”, which will give the
laws of refraction and reflection, and also ', w”, E, Ej. This comes from analysing the boundary
conditions at {z = 0}.

Proposition 4.1 and Proposition 4.2 say'":
(i) The components of E and iB tangent to {z = 0} are continuous across this surface.
(ii) The components of ¢ E and B normal to {z = 0} are continuous across this surface.
Focusing first on the electric field, the two tangent directions are e; and ez, so we may write down

= Ercfracted - €i ) 1 =1,2,

(Eincident + Ereﬂected) 1€ 0
z=

2=0

= 6/ Erefracted - €3 ’ . (634)

€ (Eincident + Ereﬁected) - e3

z=0

More explicitly, these read
(E/OI . el) ei(k”'(xayzo)fwnt) — (EI . el) ei(kl'(xayzo)fw/t) s
EO el(|k\xsm0—wt) + (Eg . e2) ei(k//'(mayyo)_wut) — (E/ . e2) el(k/(xayyo)_wlt) ,

. (Eg . e3) ei(k”~(as,y,0)—w”t) _ 6,( 6 . 93) ei(k/.(:c,y,())—w’t) , (635)

where we have used the form of Ey and k in (6.30) and (6.29), respectively. These equations hold for
all x,y and t, which are clearly quite strong conditions! In particular, notice that the exponential

k are linearly independent functions of x, for different k. So for example the

Fourier modes e
functional equation ae'** 4+~ = 3 ¥ with coefficients a, 3, ~# 0, implies k =k =0, a+~v = 8.

Unpacking (6.35) is a little fiddly. We look first at the middle equation. Notice we cannot have
both (Ef - e2) and (Ej - e2) equal to zero, otherwise Ey = 0 and there is no incident ray. Suppose
these coefficients are both non-zero.'® Then from the remark above about linear independence,

looking at the ¢ dependence of the middle equation in (6.35) immediately gives

w=u =", (6.36)

7The alert reader will notice these were derived for statics. However, one can verify that the additional time-
dependent terms in the surface integral over the rectangular surface ¥ do not contribute on taking ¢ — 0.

181f instead say (E{ -e2) # 0 but (E{ - e2) = 0, then if there is a refracted ray one of (Ef -e1) or (Ef - e3) must be
non-zero. Then just add a multiple of the first or last equation in (6.35) to the middle equation, respectively, and
the reasoning below proceeds in the same way.
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so that reflected and refracted frequencies are the same as the incident frequency. Since the term
proportional to Ejy is independent of y, and non-zero, looking at the y dependence implies that

the other two terms in the middle equation of (6.35) are also independent of y. That is,
(SHI k/ = €9 k// =0. (6.37)

But this says that the reflected and refracted rays lie in the plane of incidence, namely the (z, z)-

plane. As in Figure 22, we may hence write

k/ k//
— = (sin@',0, —cosf) , g

] = (sin6”, 0, cosd”) . (6.38)

The x dependence in the middle equation of (6.35) then gives
k| sinf = |K'| sin@’ = |k”| sin§” . (6.39)

But substituting (6.36) into (6.33), this implies |k| = |k”| and v|k| = v'|k’| and hence
1

0 =20", % sinf = o sin¢’ . (6.40)

We have thus proven the law of reflection, and the law of refraction (6.25), with the dimensionless
refractive index given by (6.26), which using (6.32) may also be written as n = ¢/v.
To finish solving the problem we must also impose the boundary conditions on the B-field at

{z = 0}, although in the following we just outline the steps. These boundary conditions read

(kxEo+k' xEf) e = — (kK xEj) -e , i=1,2,

==

1

I
(kxEo+ k" xEfj) -e3 = (K xEj) -es . (6.41)
One can verify that (6.35), (6.41) are solved by taking
0= Epes, 0 = Ejex, (6.42)

so that the incident, reflected and refracted electromagnetic fields all have the same polarization

(linear, in the y-axis direction), where equation (6.35) then imposes only
Ey+ Ej = E|, (6.43)

while after a little work one checks that (6.41) imposes only

/
(Eo — Ej) cosf = 6—/ Ej cos® (6.44)
\/

=

where we have used (6.32), (6.33). Assuming p = p/, which is approximately the case for air and

water, one can solve (6.43), (6.44) using (6.40) to find

_sin(d — ¢")
sin(6 + 6")

,  2cosf sind’

=" El =
07 sin(@+0) O 0

Ey . (6.45)
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We have thus determined completely the reflected and refracted waves, in terms of the incident

wave, in the case when the wave is polarized orthogonal to the incidence plane.

For polarization parallel to the incidence plane,

cos f cos ' —cosf
E) =Ly 0 0= E} 0 0=E} 0
sin 6 sin 8’ sin
0 0 0
kE, K'E! kE"
Bo=—2(-1| By=""0(-1] B/=220[_1
“ \o “ \o “ \o

solving the boundary conditions similarly as above leads to the solution (for u = u')

, sin @’ cos @ sin(6 — 0") cos(0 + 0')

Ey=2FE El =2F .
0 Osin(6 + 0)cos(6 — )" ° Osin(6 + 0) cos(6 — 0')

(6.46)

(6.47)

Note that when 0 + ¢’ = 7/2, then Ej = 0, that is there is no reflection! This angle 6 is called

Brewster angle. 1t can be used to produce linearly polarized light: shine light with arbitrary

polarizations under the Brewster angle # on the material; then the reflected beam is linearly

polarized (orthogonally to the plane of incidence).
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A Vector calculus

The following is a summary of some results from the Prelims Multivariable Calculus course. As
in the main text, all functions and vector fields are assumed to be sufficiently well-behaved in
order for formulae to make sense. For example, one might take everything to be smooth (partial
derivatives to all orders exist). Similar remarks apply to (the parametrizations of) curves and

surfaces in R3.

A.1 Vectors in R3

We work in R3, or a domain therein, in Cartesian coordinates. If e; = (1,0,0), ex = (0,1,0),

e3 = (0,0,1) denote the standard orthonormal basis vectors, then a position vector is

3
r = Zl’z e; , (Al)
=1

where 1 = x, x2 = y, 3 = z are the Cartesian coordinates in this basis. We denote the Euclidean

r| = r = /23 + 23 +23, (A.2)

so that * = r/r is a unit vector for r # 0. A vector field f = f(r) may be written in this basis as

length of r by

f(r) = Z fi(r)e; . (A.3)

The scalar product of two vectors a, b is denoted by

3
a-b = Zaibi , (A.4)
i=1
while their vector cross product is the vector
axb = (a2b3 — agbg) e + (a3b1 — albg) ey + (a1b2 — azbl) €3 . (A5)
The vector triple product tdentity reads
ax(bxc)=(a-c)b—(a-b)c, (A.6)
which holds for all vectors a, b, c.

A.2 Vector operators

The gradient of a function 1 = 1 (r) is the vector field

3
dy = =
grad ¢ = Vi ; o
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The divergence of a vector field f = f(r) is the function (scalar field)

af;
8301 Z oz; ’ (A-8)

3
divf=V.-f = Zei
i=1
while the curl is the vector field

3
curlf:foEZeix
i=1

Ofs  0f ofi  0fs Ofs  0fq
== - == —_ - == —_ - = . A.
(63:2 81‘3) et (8.%‘3 (93?1 et 81‘1 81’2 3 ( 9)
Two important identities are
x (Vy) =0, V- (Vxf)=0, (A.10)

or in words: the curl of a gradient is zero, and the divergence of a curl is zero. Two more identities

we shall need are

Vx(axb)=a(V-b)—b(V-a)+ (b-V)a— (a-V)b, (A.11)
V-(axb) =b-(Vxa)—a - (Vxb). (A.12)

The second order operator V2, defined by

3 Qw
Vi = V- ZW (A.13)
is called the Laplacian. We shall also use the identity
Vx(Vxf)=V(V-f) - Vf. (A.14)

Notice from the definitions (A.2) and (A.7) that

3
vr—zaxz Z%ei:;:f‘, (A.15)

i=1

and, by translating r — r — r/, more generally V|r — /| = (r — /) /|r — 1|

A.3 Integral theorems

Definition (Line integral) Let C be a curve in R?, parametrized by r : [tg,t1] — R3, or r(¢) for

short. Then the line mtegml of a scalar field ¥ and vector field f along C are respectively

/¢ds = [ ve) d‘;it)' dt | /Cf~dr - /1f(r(t))-dz(tt) dt (A.16)

to
Note that 7(t) = dr/dt is the tangent vector to the curve — a vector field defined on C. The values

of these integrals are independent of the choice of oriented parametrization (proof uses the chain
rule).
A curve is simple if r : [tg, t1] — R3 is injective (then C is non-self-intersecting), and is closed if

r(tp) = r(t1) (then C forms a loop).
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Definition (Surface integral) Let ¥ be a surface in R?, parametrized by r(u,v), with (u,v) € D C

R2. The unit normal n to the surface is

ty Xt
S e <t (A-17)
where
or or
ty = —, t, = — A.18
ou ov ( )

are two tangent vectors to the surface. These are all vector fields defined on .. The surface integral

of a function ¢ over % is

/E¢d5=//Du)(r(u,v>> i

The sign of n in (A.17) is not in general independent of the choice of parametrization. Typically,

dudv . (A.19)

the whole of a surface cannot be parametrized by a single domain D; rather, one needs to cover
> with several parametrizations using domains D C R2, where I labels the domain. The surface
integral (A.19) is then defined in the obvious way, as a sum of integrals over D; C R2. However,
in doing this it might not be possible to define a continuous n over the whole of ¥ (an example

being a Md&bius strip).

Definition (Orientations) A surface ¥ is orientable if there is a choice of continuous unit normal
vector field n on Y. If an orientable ¥ has boundary 90X, a simple closed curve, then the normal
n induces an orientation of 9%: we require that 7 X n points away from X, where T denotes the

oriented tangent vector to 9% — see Figure 23.

The point here is that the choice of direction 7 along the curve 0¥ in turn fixes the choice of sign

when integrating over 0.

AN

Figure 23: Surface > with unit normal n, and boundary 9% with oriented tangent vector 7. The
direction of 7 is fixed by requiring 7 X n to point away from . (Right hand rule for the cross
product: 7 points along the index finger, n along the middle finger, and 7 x n along the thumb.)

With this in hand, we may now state

Theorem A.1 (Stokes) Let X be an orientable surface in R, with unit normal vector n and

boundary curve OX. If f is a vector field then

/Z(fo)-ndS:/ f-dr. (A.20)

0%

85



Definition (Volume integral) The integral of a function v in a (bounded) region R in R? is

/Rwdv = ///Rzp(r)dxldmdxg. (A.21)

Theorem A.2 (Divergence) Let R be a bounded region in R with boundary surface OR. If f is
a vector field then

/V-de:/ f.-nds , (A.22)
R OR

where n is the outward unit normal vector to OR.

Note that the surface ¥ in Stokes’ theorem has a boundary 09X, whereas the surface R in the

divergence theorem does not (it is itself the boundary of the region R).

Finally, we will need the following result proved in the Prelims Multivariable Calculus course:
Lemma A.3 If f is a continuous function such that
/ fdvV =10, (A.23)
R
for all bounded regions R, then f =0.

The proof of this is standard: if f is non-zero at a point rg € R3, say f(rg) > 0 is positive, then
by continuity f is also positive in a small neighbourhood around ry. But then the intergal of f

over that neighbourhood will be positive, contradicting (A.23).
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