

 $COMTENTS$ </u>

- M
-
-
-
- -
-
-
-
-
- T<u>EAVES</u> of TroDuces (8,Thode=Mog(x) morph of 8,-mad)
Ox-modules generated by sections (lomg, (8,F)=F(x)) forit type showes)
Vector integer and content modules (locally, feed, intertite shoot, contently personal)
Ox-modul

- <u>(QUASI-) COHERENT SHEAVES</u>
QQh(X)
. Overview of general properties of QQh(X) and Coh(X) for X scheme
. Pushforwards: for X Noetherian $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$
	- - - - Gluing modules
- (cocycle condition, gluing lemma)

 $\begin{pmatrix} P_{\mathcal{M}_3^1} & R_{\gamma} & \text{if} \text{ is equal} & 1 \text{ if} \text{ is equal} & 1 \end{pmatrix} \begin{pmatrix} Q_{\mathcal{M}} & Q_{\mathcal{M}} & \text{if} \text{ is equal} \end{pmatrix} \begin{pmatrix} P_{\mathcal{M}_3^1}(R) & Q_{\mathcal{M}} & \text{if} \text{ is equal} \end{pmatrix} \begin{pmatrix} P_{\mathcal{M}_3^1}(R) & Q_{\mathcal{M}} & \text{if} \text{ is equal} \end{pmatrix} \begin{pmatrix} P_{\mathcal{M}_3^1}(R) & Q_{\mathcal$

0.1 Classical Algebraic Geomotry: Affine varioties

0.2 Why schemes?

Some reasons:

- 1) Why always have spaces embedded in AM? (extrinsic)
Can you make sense of X without refernce to AM? (intrinsic)
2) Why not leforn varioties, nippthuts anise naturally and should not be ignored:
3) When you deforn varioti
	-

$$
\oint_{\mathbb{R}} f(x-a) \cdot (x-b) = \{a, b\} \le A
$$
\n
$$
\oint_{\mathbb{R}} x = \oint_{\mathbb{R}} x = \oint_{\mathbb{R}} (f) = \{a, b\} \le A
$$
\n
$$
\oint_{\mathbb{R}} x = \oint_{\mathbb{R}} (f) = \{a, b\} \le A
$$
\n
$$
\oint_{\mathbb{R}} x = \oint_{\mathbb{R}} x = \frac{k}{2} \left(\frac{x-a}{2} \right)
$$
\n
$$
\oint_{\mathbb{R}} x = \frac{k}{2} \left(\frac{x-a}{2} \right) \cdot \frac{x-a}{2} \quad \text{or} \quad \frac{x^2}{2}
$$
\n
$$
\oint_{\mathbb{R}} x = \frac{1}{2} \left(\frac{x-a}{2} \right) \cdot \frac{x-a}{2} \quad \text{or} \quad \frac{x^2}{2}
$$
\n
$$
\oint_{\mathbb{R}} x = \frac{k}{2} \left(\frac{x-a}{2} \right) \cdot \frac{x-a}{2} \quad \text{or} \quad \frac{x^2}{2}
$$
\n
$$
\oint_{\mathbb{R}} x = \frac{k}{2} \left(\frac{x-a}{2} \right) \cdot \frac{x-a}{2} \quad \text{or} \quad \frac{x^2}{2}
$$
\n
$$
\oint_{\mathbb{R}} x = \frac{k}{2} \left(\frac{x}{2} \right) \cdot \frac{x-a}{2} \quad \text{or} \quad \frac{x^2}{2} \quad \text{or} \quad \frac{x^2}{2}
$$
\n
$$
\oint_{\mathbb{R}} x = \frac{k}{2} \left(\frac{x}{2} \right) \cdot \frac{x-a}{2} \quad \text{or} \quad \frac{x^2}{2}
$$
\n
$$
\oint_{\mathbb{R}} x = \frac{k}{2} \left(\frac{x}{2} \right) \cdot \frac{x-a}{2} \quad \text{or} \quad \frac{x^2}{2}
$$
\n
$$
\oint_{\mathbb{R}} x = \frac{k}{2} \left(\frac{x}{2} \right) \cdot \frac{x-a}{2} \quad \text{or} \quad \frac{x^2}{2}
$$
\n
$$
\oint_{\mathbb{R}} x = \frac{k}{2} \left(\frac{x}{2} \right) \cdot \frac{x-a}{2} \quad \text{or} \quad \frac
$$

Example above: $\bigoplus (X) = k \bigtriangleup (X) \bigwedge (\chi^2)$ \leftarrow we do not reduce the ring of functions
At what cost? Values of functions need not determine the abstract function:
 $\bigoplus (X) \geq x + \beta x \longmapsto \bigg(\alpha + \beta x : X = \{o\} \longrightarrow \mathbb{A}) \in \text{Hom}(X, \mathbb$

ldleo; the abstract "A" removes that X avec from the allision of
\nhu0 points, so
$$
\beta
$$
 records tangential information : $\frac{Q}{2\alpha}\begin{vmatrix} (x+\beta x) = \beta \\ x+\beta x \end{vmatrix} = \beta$.
\n2.3 What is a point? ϵ (and irreducible if not) \sqrt{x} ; $\pm x$)

$$
\begin{array}{lll}\nX & \text{topological spac is } \underline{\text{reducible}} & \text{if } X = X_1 \cup X_2 & \text{for } \text{proper } \text{clored } X_i \subseteq X, \\
E-c \text{lidaan world (more generally if } X \text{ Hauddorff}): & \text{y} \subseteq X \text{ if} \text{rduable} \Longleftrightarrow \text{y = point} \\
\text{c-c.} & \text{if } \text{the image} & \text{if } X \subseteq X, \\
\text{c.} & \text{if } \text{the image} & \text{if } X = X_1, \\
\text{c.} & \text{if } \text{the image} & \text{if } X = X_2, \\
\text{c.} & \text{if } \text{the image} & \text{if } X = X_1, \\
\end{array}
$$

R ring = "points" of R are $Spec(R) = {preime inds of R}$ not just maxideds
Categorically a food choice since functional:
 $Q \cdot R \rightarrow S$ hom of rings = $q^2(\text{size}) = q \cdot \text{size}$ $\begin{cases} e_3, & \text{if } z \in \mathcal{B}, q^2(o) = 0 \\ e_3, & \text{if } z \in \mathcal{B}, q^2(o) = 0 \end{cases}$
 $\$

1.1 Example 35
\n1.1 Example 36
\n1.2 Example 4 shows a
$$
\frac{20 \text{ km/s}}{1000 \text{ km/s}^2}
$$

\n1.3 Example 54
\n1.4 Example 61
\n1.5 The $\frac{20 \text{ km/s}}{1000 \text{ km/s}^2}$
\n1.6 a $\frac{20 \text{ km/s}}{1000 \text{ km/s}^2}$
\n1.7 a $\frac{20 \text{ km/s}}{100 \text{ km/s}^2}$
\n1.8 a $\frac{20 \text{ km/s}}{100 \text{ km/s}^2}$
\n1.9 a $\frac{20 \text{ km/s}}{100 \text{ km/s}^2}$
\n2.247
\n2.247
\n2.25 a $\frac{1}{2}$ times the
\n2.267
\n2.27 a $\frac{1}{2}$ times the
\n2.27 a $\frac{1}{2}$ times the
\n2.28 a $\frac{1}{2}$ times the
\n2.29
\n2.201
\n2.201
\n2.201
\n2.201
\n2.21
\n2.221
\n2.23
\n2.241
\n2.25 a $\frac{1}{2}$ times the
\n2.27
\n2.29
\n2.201
\n2.202
\n2.21
\n2.22
\n2.23
\n2.24
\n2.25 a $\frac{1}{2}$ times the
\n2.27
\n2.29
\n2.201
\n2.202
\n2.21
\n2.22
\n2.23
\n2.24
\n2.25 a $\frac{1}{2}$ times the
\n2.27
\n2.29
\n2.201
\n2.202
\n2.21
\n2.22
\n2.23
\n2.24
\n2.25 a $\frac{1}{2}$ times the
\n2.27
\n2.29
\n2.201
\n2.202
\n2.21
\n2.22
\n2.23
\n2.24
\n2.25 a $\frac{$

 1.4 Sheaves

Let
$$
Re \Rightarrow \text{height} = \text{a} \times H
$$
 it is a higher value $\frac{h_{\text{tot}}}{u_{\text{tot}}}$ or $\frac{h_{\text{tot}}}{u_{\text{tot}}}$ or $\frac{h_{\text{tot}}}{u_{\text{tot}}}$ or $\frac{h_{\text{tot}}}{u_{\text{tot}}}$ or $\frac{h_{\text{tot}}}{u_{\text{tot}}}$ or $\frac{h_{\text{tot}}}{u_{\text{tot}}}$

\nThen, $\frac{h_{\text{tot}}}{2} = 5 \int_{\text{u}_{\text{tot}}/u_{\text{tot}}}$ $\frac{h_{\text{tot}}}{u_{\text{tot}}}$ $\frac{h_{\text{tot}}}{u_{\text{tot}}}$ $\frac{h_{\text{tot}}}{u_{\text{tot}}}$ $\frac{h_{\text{tot}}}{u_{\text{tot}}}$ $\frac{h_{\text{tot}}}{u_{\text{tot}}}$

\nThen, $\frac{h_{\text{tot}}}{u_{\text{tot}}}$ is $f \in F(U)$ $\epsilon_{\text{photon}} = 5 \int_{\text{u}_{\text{tot}}/u_{\text{tot}}}$ $\frac{h_{\text{tot}}}{u_{\text{tot}}}$ $\$

Exercise 10.1																																																								
4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2

\n For example,
$$
1 \times 1
$$
 A **field field to to**

Proposition	f^{-1} if k_{α} l_{β} if k_{β} l_{β} which q_{β} is a non- k_{α} which is a non- k_{α} is a non- k_{α} which is a non
-------------	---

 $S_i = S_j$ on $Df_i f_j \Rightarrow (f_i \cdot f_j)^N (f_j, g_i - f_i, \tilde{g}_j) = O \in \mathbb{R}$ \Leftarrow $|N \text{ depends on } i_j \text{ but non } j \text{ otherwise:}$ $(f_i^{\text{M}} \cdot f_i^{\text{M}} \cdot g_i) - (f_i^{\text{M}} \cdot f_j \cdot f_j \cdot g_j) = O$ \Rightarrow $s_j = \frac{3_j}{4_j} = \frac{\sum r_i\cdot g_i}{4}$ \in R_f ; $\forall j$ so we globalized the $r_j \in \mathcal{O}_\chi(\mathcal{D}_f)$ to $\sum r_i \cdot g_i \in \mathcal{O}_\chi(\mathcal{N}) = \mathcal{R}$ $\begin{array}{lll} \mathcal{L}_\text{coll} & \implies < \text{all } f^N_{t, \cdot} > \cdot (\alpha - \beta) = 0 & \text{if } \alpha \in \mathbb{N} \text{ such that } \alpha \text{ is a prime, } \alpha \text{ is a prime.} \end{array} \quad \text{and} \quad \alpha \text{ is a prime.} \label{eq:relaxation} \begin{array}{lll} \mathcal{L}_\text{coll} & \text{if } \alpha \in \mathbb{N} \text{ such that } \alpha \text{ is a nontrivial, } \alpha$ Profection X, R by Df, Rf we can assume $f=f$, $R_f = R$, $D_f = X$.
The By redefining X, R by Df, Rf we can assume $f = 1$, $R_f = R$, $D_f = X$. reurik: $(f_1^{(4)}) (f_1^{(4)}) - (f_1^{(4)}) \cdot (f_1^{(4)}) = 0$
 $\frac{1}{2}$
 $\frac{1}{2$ Cstraightforward algebra exercise = (Recall in Rp
Rp . 0
Rp . 0 Condiany Ox extends uniquely to a sheaf on X=SpecR called structure sheaf Stalk $\theta_{x,h} := \lim_{p \to p} \theta_x (p_f) \leftarrow \text{Ness}$ unpacting of definition:
 $\frac{1}{2} \epsilon R_g \equiv \theta_x (p_g)$
 $\frac{1}{2} \theta_x (p_g)$
 $\frac{1}{2} \epsilon R_g \equiv \theta_x$ $\frac{\partial f_{i}^{(1)}}{\partial \omega}$

WLOG $X = D_{f_{1}} \omega ... \omega D_{f_{n}}$ fraik $\omega \omega \sigma$, $S_{i} = \frac{\partial}{f_{i} n_{i}}$ sind $D_{f_{i}} = D_{f_{i}^{(n)}}$, whos $n_{i} = 1$, so $S_{i} = \frac{\partial}{\partial x}$ **Lemma 1** This is a B-sheaf on X for $B = \{ \text{basic open set } D_f, \text{feat} \}$ Existence in $\bigotimes_{i=1}^{n}$ i as before whos $U = D_F$, R_F become X , R .
Uniquess \Rightarrow in $\bigotimes_{i=1}^{n}$ can assume sections $s_i \in \mathcal{O}_X(D_k)$ agree on overlays $D_k \cap P_i = D_{k,j}$ ${\bf 1}\cdot {\bf 3}_j = \left({\overline {\bf 2}} \;\; c\cdot {\bf 4}\cdot {\bf 1} \right) {\bf 3}_j = \underbrace{{\bf 7}} \cdot c\cdot ({\bf 4}\cdot {\bf 3}_j) \stackrel{\textrm{E}}{=} \underbrace{{\bf 7}} \cdot c\cdot ({\bf 4}_j \; {\bf 3}_i) \; = \; {\bf 4}_j \left(\boldsymbol \Sigma \; c\cdot {\bf 3}_i \right)$ $\frac{Pf}{(n \bigcirc P)} \frac{(1 \wedge \neg P \wedge \neg$ $\left(\begin{array}{cccc} \alpha_{\rho} \rho_5' & \mu_{n \bar{q} \alpha \alpha_{\rm{C}} \alpha_{\rm{S}} \ \beta \gamma_{\rm{C}} \epsilon_{\rm{S}} & \epsilon_{\rm{S}} \end{array} \right) \qquad \qquad \left. \begin{array}{cccc} \delta_{\rm{c}} & \left. \right|_{\mathbf{b}_{\rm{A}} \epsilon_{\rm{S}}'} & \epsilon_{\rm{B}} \epsilon_{\rm{S}} \end{array} \right|_{\mathbf{b}_{\rm{R}} \epsilon_{\rm{S}}'} & \epsilon_{\rm{B}} \epsilon_{\rm{S}} \epsilon_{\rm{S}} \qquad \qquad \left. \begin{$ $R_f \cong R_p$. q $\Box \quad \phi = \rho \quad \text{or} \quad \alpha = \left(\phi^{\dagger} - \phi\right) \quad \text{or} \quad \Box$ \Rightarrow $\leq d! + \frac{1}{2}$ $\leq d$ $\leq d$ $\leq d$ $\Pr_{\mathbf{p}_\text{p}} \quad \lim_{\mathbf{p}_\text{p} \to \mathbf{p}} \quad \lim_{\mathbf{p}_\text{p} \to \mathbf{p}} \quad \lim_{\mathbf{p}_\text{p} \to \mathbf{p}} \quad \lim_{\mathbf{p}_\text{p} \to \mathbf{p}}$ recall Park obvious restriction maps for these $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 &$ $\begin{cases} & x \in V \subseteq W \\ & \text{some basic } V. \end{cases}$ $x \in U$ \leftarrow includes lassic $U = V \left[\begin{array}{c} \frac{\partial V}{\partial x} & \text{if } x \in V \\ \frac{\partial V}{\partial x} & \text{if } x \in V \end{array}\right]$ $\frac{1}{2}$ and cover $U = U(\text{basic } x \in V^*)$
and $t^* \in F(V^*)$ $\frac{x \in V}{s \cdot t}$ agree loally (since gens agree)) so $\bigoplus_{n=1}^{\infty}$ holds so can extend. leasy check: $\begin{pmatrix} \mathsf{Recall} & \mathbb{U} & \mathbb{U} \ \mathsf{exccuc} & \mathsf{V(q)} \in \mathsf{V}(\mathsf{F}) \ominus \mathsf{D_{\mathsf{F}}} \subseteq \mathsf{D_{\mathsf{g}}} \ \oplus \mathsf{exccuc} & \mathsf{V(q)} \oplus \mathsf{F}^{\star}_{\mathsf{C}} \mathsf{Q} \} \oplus \mathsf{geq} \mathsf{R_{\mathsf{F}}} & \mathsf{in}^{\mathsf{var}} \mathsf{N}^{\mathsf{U}} \mathsf{L} \end{pmatrix}$ $\Theta_{\zeta}({\rm d}\zeta) = R$ localised at multiplicative set $\{\partial_{\!\!j} : \partial \overline{\phantom{\rule{0pt}{3.5pt}}\,\partial}$ vanish on $\overline{\partial}_{\zeta}\}$ 1.12 Construction of $\frac{\partial_{\sec}R}{\partial x}$
X=SpecR, we define $\hat{\sigma}_x$ first on basic open sets: \angle on \hat{p}_e romand we don't For $D_f \subseteq D_g$ define natural restriction homs: (which are compatible undercomposition) \leftarrow if sections $F(U) = \begin{pmatrix} \sum_{i=1}^{n} \\ k_i \leq 1 \end{pmatrix} \leq \begin{cases} F(V) \\ \sum_{i=1}^{n} \\ \sum_{i=1}^{n} \end{cases}$ $\begin{cases} S: \mathcal{U} \rightarrow \mathcal{L} \\ \sum_{i=1}^{n} \\ k_i \leq 1 \end{cases}$ $\begin{cases} S: \mathcal{U} \rightarrow \mathcal{L} \\ \sum_{i=1}^{n} \\ k_i \leq 1 \end{cases}$ $\begin{cases} S: \mathcal{U} \rightarrow \mathcal{L} \\ \sum_{i=1}^{n} \\ k_i \leq 1 \end{cases}$ $\$ $\frac{x}{2^m}$ \longrightarrow $\frac{x}{(r\theta)^m}$ = $\frac{x}{f^{nm}}$ \Box <u>Emk</u> ϵ quivalently, it is enough to remember germs around each point: Notice: F(basic U) has not changed up to canonical identification: $s \longmapsto (s|_{\sqrt{}})$ which includes $s|_{\alpha}=s$. \leftarrow explicitly: f¹=rg so E localise further" $\lim_{\substack{\longleftarrow \\ \longleftarrow \\ (\text{basic } \cup \text{SA}}} F(V) \longrightarrow \lim_{\substack{\longleftarrow \\ (\text{basic } \cup \text{SA}}} G(V)$. $\lim_{m \to \infty}$ F(V) $\stackrel{\cong}{\longrightarrow}$ $\lim_{m \to \infty}$ F(U) $F(U) \xrightarrow{\cong} \lim_{h \to \infty} F(V)$
(bajix V) su Proof (2) : by functionality of e^{iz} : $\theta_X(\mathbf{D}_\theta) \longrightarrow \theta_X(\mathbf{D}_\theta)$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$ xe(basicV) 1.12 Construction of Ospecp $\underset{\mathbf{K}}{\cong} \mathsf{R}_{\mathbf{F}}$

and for stalks:

1.13 **Monplistic Lebius**
$$
\frac{1}{2} \left\{ \begin{array}{l} \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \frac{1}{2} \frac{1}{2} \
$$

$$
\Rightarrow \beta_{\chi}(u) = \begin{cases} \n\beta_{\mu} : \quad \text{if } \beta_{\mu} : \quad \text{if }
$$

 $\bigoplus_{\substack{e,k\\i,k\\i\in\mathbb{N}}} \supset_{\rho e_{C}} k \xrightarrow{\rightarrow} \gamma$
 $\downarrow \qquad \qquad \mathbb{R} = \mathfrak{G}_{\varphi e_{C}R,m} \xleftarrow{\rho} \mathfrak{F}_{\gamma} \mathfrak{F}$ local hand rings
 $\downarrow \qquad \mathfrak{M} \longmapsto \mathfrak{F}$
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \$ P^{tot} yeVEY affine open \Rightarrow f⁻¹(V) open \Rightarrow m=(unique closed) \Rightarrow f⁻¹(v)=SpecR) himing of the point of the point of the laboral point)
If Y comes with a marph Y Is Spec IK (hence By(u) are K-algebras) and above reprine morphs to
commule with π , then 34 Hom_{me}(K(3))K), and if K(3) E'K then Hom_k(Thus: $\left[\overline{f\in \text{Mor}\left(Spe\left(K,Y\right)\right)}\right]\xleftarrow{1:1}$ Hom $(K(y),k)$ and any Spec $|K\rightarrow Y$ factors: $\left(\begin{smallmatrix} a_{1}&a_{2}&a_{2}&a_{1}&a_{2}\\ a_{3}&b_{3}&a_{4}&a_{5}&a_{6}\end{smallmatrix}\right)$. Any spec R \rightarrow X and spec R \rightarrow spec Bx,x \rightarrow X some sex. $\frac{\text{Excorple 2}}{\text{h}_{\text{V}}(\text{Spec } R)}$ $X = \text{Spec } R \Rightarrow \left[\left\{ \frac{\text{f} \in \text{Mor}(\text{Spec } R, \gamma)}{\text{h} \times \text{f} \text{Cone} \cdot \gamma} \right\} \right] \xleftarrow{\text{I-1}} \text{Hom}_{\text{Mod}}(\mathcal{O}_{\gamma_{\mathcal{B}}}, R) \right] \xrightarrow{\text{Via}} \text{Hence}$ $\frac{$ u ℓ sho τ : Morphs from local rings or fields don't give more information
than already know from spec $\theta_{\mathsf{x},\mathsf{x}} \xrightarrow{} \mathsf{X}$ and spec Krsi \to X. $\frac{\kappa_{mk}}{\kappa_{r,a} \kappa_{old}}$ K $Spec \mathbb{K} = \left\{ (o) \right\}$ $Spec~|K \rightarrow Spec~K(g) \rightarrow Y$ (Since local) $\begin{array}{ll}\n\lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda\n\end{array}$
 $\begin{array}{ll}\n\lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda\n\end{array}$
 $\begin{array}{ll}\n\lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda\n\end{array}$
 $\begin{array}{ll}\n\lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda\n\end{array}$
 $\begin{array}{ll}\n\lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda\n\end{array}$
 $\begin{array}{ll}\n\lambda & \lambda & \lambda \\
\lambda & \lambda & \lambda\n\end{array}$
 $\begin{array}{ll}\n\lambda$ $R = \begin{pmatrix} 1 & 4s & -s & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\frac{5}{10}$ h forbrwind) → W.
A = S rat → z + z + B = كا = s + = z + = s = z + = s = z + = s = z + = s = z + = s = z + = s = z + = = z + = = z + = = z + = = z + = = z + = = z + = = z + = = z + = = z + = = z + = = z + = = z + = = z + $(sin \text{ker } \varphi = \varphi^{-1}(0) = m)$ $y \in U \subseteq Y$ open $M_{p \wedge e}$, then $\theta_{u, \theta} = \theta_{y, \theta} \xrightarrow{g} R$ fives $S_{p \in R} \rightarrow U \subseteq Y$ A local loom $R \xrightarrow{K} |K = kell$ factors $R \xrightarrow{quot} K \longrightarrow |K|$ Core xex=3 canonical morph spec $\theta_{X,X} \longrightarrow X$. o -
uniqueness: suppose f: SpecR -> y gives same y θ_{χ_1} /m₁₁₂ so f: spec $R \rightarrow V \subseteq Y$ so reduct to affine case. \Box $Case X = SpecK for full K.$ \Rightarrow residue field $k = R/m$ Ry (Spec K) (also written Y(IK)) $\frac{Pf}{\gamma} \bigoplus_{\gamma} \frac{S_{\rho e c}}{\psi} \mathsf{R} \xrightarrow{f} \gamma$ Non-examinable : General case we factorised
through $s_{y} \rightarrow R$ Notice in R local Example $\left(\frac{E\times \alpha+\rho(t,1)}{E\times E\times E}\right)$ Explicitly: on sets $x \mapsto res^{-1}(m_{X,x}) \subseteq \Theta_X(X)$
 $\left(\frac{E\times \alpha+\rho(t,1)}{E\times E\times E}\right)$ or sheaves over $D_f \subseteq X$: $\Theta_X(X)_{f} \xrightarrow{rest} \Theta_X(D_f)$ $\left|\frac{D_X(X)}{D_X(X)}\right| \xrightarrow{R} \left|\frac{D_X(D_f)}{D_X(D_f)}\right|$
 $\left(\frac{E\times E}{E\times E}\right)$ $\left(\frac$ Example Will show that \mathbb{A}^n = Spec $\mathbb{Z}[x_{i_1}, x_{i_1}]$ represents $\binom{n'_{i_1}}{a_{i_1}a_{i_1}}$ me who your friends are $\frac{3}{2}y$
Sch^{er}-15tts, XI-ofmorphs $\bigoplus_{i=1}^n \Theta_x \to \Theta_x$ which are Θ_x -linear") and there is Yoneda embedding $\boxed{\hat{R}_*:\Im\mathcal{L}\longrightarrow \Im\epsilon t_s\frac{s}{r}c^{\mathsf{A}}\ ^\sigma\quad\gamma\longmapsto\hat{R}_\gamma}$ is fully faithful ϵ (look $\mathbb{R}_\gamma,\mathbb{R}_\omega$) = Mor(X,W) HWK 1 natural teauformations representation frace image of id y e Mor (YY) = Ry (Y) <mark>piven</mark>, F(Y)
<mark>Yonedo lemma</mark> Nat (Ry,F) = F(Y) ^{soucher} (conversity given de F(Y), verky(x) get F(q)(d) E(X) $\begin{array}{lll} \mathbb{I}_{\mathfrak{g}}^{\mathfrak{g}} & \mathfrak{g} \rightarrow \mathbb{I}_{\mathfrak{g}}^{\mathfrak{g}} & \mathfrak{g} \rightarrow \mathbb{I}_{\mathfrak{g}}^{\mathfrak{g}} \\ \mathfrak{g} & \mathfrak{g} \rightarrow \mathfrak{so}_{\mathfrak{g}} \times \mathfrak{g}_{\mathfrak{g}} \times \mathfrak{g}_{\mathfrak{g}} \\ \mathfrak{g} & \mathfrak{g} \rightarrow \mathfrak{so}_{\mathfrak{g}} \times \mathfrak{g}_{\mathfrak{g}} \times \mathfrak{g}_{\mathfrak{g}} \$ Tuniversal property of Localisation: $R_1 \stackrel{\text{def}}{\rightarrow} R_2$ and $R(5) \leq \text{index of } R_2 \Rightarrow \exists 1, R_1 \rightarrow s^{-1}R_1 \rightarrow R_2.$
 $\mu \mod p$ morph $X \rightarrow 5 \text{pec } \Gamma(X_1 \theta_X)$ Function of points $\begin{matrix} R_y : S \mathcal{L}^{\text{op}} \longrightarrow S \mathcal{A}, \\ \frac{1}{\sqrt{2}} \longrightarrow \frac{1}{\sqrt{2}} \longrightarrow \frac{1}{\sqrt{2}} \end{matrix}$ or morphs $\begin{matrix} R_y(X) = \text{No}(X,Y) \\ \frac{1}{\sqrt{2}} \longrightarrow \frac{1}{\sqrt{2}} \end{matrix}$ or morphs $\begin{matrix} R_y(X) = \text{No}(X,Y) \\ \frac{1}{\sqrt{2}} \longrightarrow \frac{1}{\sqrt{2}} \end{matrix}$ or morphs $\begin{array}{ccc} \forall & \alpha \in \infty & \Rightarrow & \text{Not}(X, \text{Spec } R) \longrightarrow \text{Hom } (R, \Gamma(X, Q)) & \text{bijednie} \downarrow \ = \text{Spec } R & \Rightarrow & \beta \longrightarrow \beta + \Rightarrow_{\text{Spec } R} & \text{gibull} \text{gcd}\text{-for} \downarrow \downarrow \end{array}$ Classical algebraic geom $X \subseteq A^n$ affine variety $(X = \mathbb{W}(\pm))$ $\{e^{\frac{\psi}{W_{\mathcal{N},\mathcal{X}}}} \neq \frac{\psi}{e^{\frac{\psi}{W_{\mathcal{N},\mathcal{Y}}}}}}$
so $\Gamma(X, \emptyset_\mathcal{X}) = k[X]$, $\mathbb{G}_\mathcal{X}(D_f) = k[X]$, $\mathbb{G}_\mathcal{X}(N) = k[X]$, $\mathbb{G}_\mathcal{X}(N) = k[X]$, \mathbb{G}_\mathcal $\chi_{\text{St+}3}^{\text{St+}}$ su ϵ^{pl} = attpary : $\{\text{ol}_j\}$ are shictors $\text{Sch}^{\text{op}}_{\text{max}}$ sets @ Gun now ask which functions Schop-sets are q ex, i.e. <u>repersented</u> by a scheme Y. Points of y" $\left| \begin{matrix} \underline{\text{pt}} & \theta_{\gamma}(Y) & \underline{\text{at}} & \theta_{\gamma}(X) & \rightarrow & \theta_{X,z} \\ \underline{\text{at}} & \theta_{\gamma(\sigma_{\text{max}})} & \theta_{\gamma(\sigma_{\text{max}})} & \theta_{\gamma,\text{max}} & \theta_{\gamma(\sigma_{\text{max}})} & \theta_{\gamma(\sigma_{\text{max}})} & \theta_{\gamma(\sigma_{\text{max}})} \\ \underline{\text{at}} & \theta_{\gamma(\sigma_{\text{max}})} & \theta_{\gamma(\sigma_{\text{max}})} & \theta_{\gamma(\sigma_{\text{max}})} & \theta_{\gamma(\sigma_{\text{max}})} & \theta_{\gamma(\$ $\cdot \theta_y(D_f) = R_f \frac{\varphi_f}{\eta} \theta_y(N) \rightarrow \theta_x(D_{\varphi f}) = \theta_x(g^{-1}D_f) = \theta_x \theta_x(D_f)$
 $\int_{|\text{calic}} |\text{calic}} \left(\frac{\varphi_f}{\eta} \int_{\text{infl}} \text{d} \theta_y \text{ for all the initial } b_y \text{ relative } \theta_x(N) \rightarrow \theta_x(D_{\varphi f})$ x +3 ∈X => = f c [Y,BX), f(x) + f(g) (equivalently = f:f(x)=0, f(y)=0) $\overline{\underline{Cert}}(X,\beta_X)$ scheme \implies canonical morph $X \rightarrow Spec \Gamma(X,\beta_X)$ in fact get embedding {Category of Affine Variatio] $\overline{c+}$ max ideal of $\partial_{\mathsf{X},\mathsf{a}}$)
in fact get embedding {Category of Affine Variatio] $\overline{c-}$ Sch $\begin{pmatrix} \lambda \overline{\zeta^2} \ \lambda \overline{\zeta} \end{pmatrix} \rightarrow$ on morphs : $\mathbf{R}_\mathbf{y} (X \overline{\zeta^+ - Z}) = (N_0 \pi(X, Y) \xrightarrow{9f} N_0 \pi(Z, Y))$ separates points, and $X \xrightarrow{\text{ini}} \{ \text{closed points} \} \subseteq \text{Spec } k[X]$
separates points, and $X \xrightarrow{\text{ini}} \{ \text{closed max} \} \subseteq \text{Spec } k[X]$ $y = 5\pi c$ $\mathbb{Z}[x]/(x^2+1)$. C-valued points of Y? $55²$ These are compatible with restrictions D $\frac{11}{R}$ $y=SpecR$ $\frac{M \times M \cup T}{M \cup M} \bigcirc \left[\overline{\mathcal{R}_{\mathcal{Y}}} \xrightarrow{\simeq} \overline{\mathcal{R}_{\mathcal{W}}} \xleftarrow{\simeq} \overline{\mathcal{Y}} \xrightarrow{\simeq} \overline{W} \right]$ $Example 1$ key Example $\begin{array}{c} \mathsf{y} = \mathsf{A}^1 \\ = \mathsf{Spec}\, \mathbb{Z}[\mathsf{x}] \end{array}$ $\mathbb{Z}[\mathbf{x}] \rightarrow \partial_{\mathbf{x}}(\mathbf{x})$ so imaged x $M_{0c}(X,\mathbb{A}^!)$ hspec R $\theta_{\mathsf{X}}(\mathsf{X})$ leternined \Rightarrow Since

 $\begin{aligned}\n\mathcal{L} &= \mathbb{S}^{p\alpha} \in k[t] \\
\mathcal{L} &= \mathbb{S}^{p\alpha} \in k[t] \\
\mathcal{L} &= \mathbb{S}^{\gamma\alpha} \in k[t+1] \\
\mathcal{L} &= \mathbb{S}^{\gamma\alpha} \in k[t+1] \\
X &= \mathbb{A}^{\gamma}_{1} \quad \text{class } t \text{ subscheme} \\
\mathcal{L} &= \mathbb{A}^{\gamma} \quad \text{class } t \text{ subscheme} \\
\mathcal{L} &= \left(\frac{\ell_{i\gamma}}{\ell_{i\gamma}}\right) \left$ $\frac{\text{panc-sosnyle}}{3}$ \mathbb{Z}_n is not flat \mathbb{Z} -mod : $\mathbb{Z} \xrightarrow{C} \mathbb{Z}$ Hen $\cdot \otimes \mathbb{Z}_n$ $9t$ $\mathbb{Z}_n \xrightarrow{O} \mathbb{Z}_n$ not inj.
 $\frac{\text{Fact (Laserd)}}{3}$ R-mod M is flat $\Leftrightarrow M = \lim_{n \to \infty} N$; some f.g. free R-mods M;

3) R \frac 4) チーカズメ , ローハ ケテ - キー - ズラ - バC - バイ - パイ - パイ - アナニ - カペ - カー B B M - B B M I - B mods = C B B B M - C B B B M 2 ロ example: M^2 has dim=2 you will almost alunys Example : PSB prime ideal, $q = \varphi^{-1}$ PSA prime ideal, $S = A \setminus q$, $T = B \setminus P \implies B_q = B \otimes A_q \longrightarrow B_p$ flat $\underline{H}\ominus A\rightarrow B\text{ for }\Longrightarrow A_{q}\rightarrow B_{q}\text{ for }q=q^{-1}p\rightarrow b_{q}\text{ (5) }B_{q}\rightarrow B_{p}\text{ for }b_{q}\text{ (6) }\overset{(4)}{\rightarrow}A_{q}\rightarrow B_{p}\text{ for }b_{q}.$ this and signal form of earth of the foods of strates of the discress of the foods of the discress of the disc
ance isos of rings and localisation are exact functors, set 4 flat. \$ear - desp - deal of the discress of the Xリフリス vado Jano Bvit;wiviw Iocalisation 5) $A \rightarrow B$ β at \Rightarrow $A_p \rightarrow B_p = B \otimes_A A_p$ $\beta \leftrightarrow B_p \in \sec A$ $\Rightarrow \cos A_p \otimes_B A_p = B_p \otimes_A A_p$

<u>Pf</u> $N_1 \hookrightarrow N_2$ $A_p \mod S \Rightarrow N_1 \hookrightarrow N_2$ $A_p \mod S$ (via $A \rightarrow A_p$) $\Rightarrow B \otimes_B N_1 \hookrightarrow B \otimes_B N_2$ \Box **South Heating** see the peatness Fact Another nice properties of flat morphs $f:X\to B$, for B,X levelly nooth.:
 $\frac{1}{2} \frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ $(p) \subseteq \ell: \alpha e \subseteq \rho$ lane $\begin{array}{c} u = \frac{1}{2}u \geq \frac{1}{2}u \\ \frac{1}{2}u \geq \frac{1}{2}u \geq \frac{1}{2}u \end{array}$ assumption $\left(\theta \right)$ Ring Rom q:A-7B, muthplicative sets SSA, TSB with $\phi (s)$ ST, then **Theorem** $\varphi: A \to B$ *flat* \log *live* $\lim_{x \to a} \varphi^{\#}: \operatorname{Spec} B \to \operatorname{Spec} A$ *flat* por which interrection number is constant, it may be easy to if have a family calcutate for a Agenerate fiber to 14 The total reading a lise in A²
inkroect fiber? times does how many Geometrical mativation (very loosely) $X = N(\lambda_0 - t) \subseteq \mathbb{A}^3 = \text{Spec } k[t, x, y]$ $\mathbb{A}' = \mathsf{Spec}$ k(t) $X_{\frac{1}{t}}N(x,y-t)\subseteq \mathbb{A}^{2}\quad \mathbb{X}_{0}=\mathbb{V}(x,y)$ (also)
|k[tt]]
|x (t]
|work asvicutive ring home
R->>S (get I=Ker)
Conversely given
I consider S=R/I Idea: functions $\text{Wt}(\theta_7)$, indeed J is the sheafstartion of $\text{Wt}(\theta_7)$ — need not be sheaf e.g. γ = $\frac{11}{n}$ $\%$, $\frac{1}{n}$ = spec(Zzn) $\Bigg|$
and $\theta_7(\gamma_n)$, indeed J is the sheafstartion of $\text{Wt}(\theta_7(\gamma)$. $2 \notin \text{Wt}(\theta_7(\$ 3.6 Properties of morphisms and properties we list are presenced when compose such morphs so no elts#0 Explicitly: $f: \chi$ homes $f(X) \stackrel{\text{open}}{=} \gamma$
 $\bigoplus_{\mu \in \mathbb{N}} f^* : \partial_{\gamma} \to f_* \mathbb{Q}_X$ iso $\bigoplus_{\mu \in \mathbb{N}} f^* : \partial_{\gamma} \chi_{\text{new}} \circ \pi \times \mathbb{Q}_X$ are $\bigoplus_{\mu \in \mathbb{N}} f^* : \partial_{\gamma} \to f_* \mathbb{Q}_X$ iso $\bigoplus_{\mu \in \mathbb{N}} f^* : \partial_{\gamma} \chi_{\text{new}} \circ \pi$ <u>5 amin inter</u>essed, so M βet R-mod ⇔ N d'Ari_inplies M&N →M&N2
) MQR always right exact, so M βet R-mod ⇔ N d'Ari_inplies MQN →MQN2 Note b cally; on U = spec R, J(U)={see R : se () p= NR(R)={hi/pototit}},so &callz J agres with Faubonatically $\frac{(\text{raduchon}\tilde{q}_X)}{(\text{radond})}$ is reduced), shend of ideals $\Im(U) = \{se\theta_X(u): s(p) = o\epsilon K(p)\}$ be $u\}$ (so $\theta_X = \theta_Y/2$) Example $\prod_{i: k \land i: k} Z$ is <u>not</u> free Z^{-mod} , but it is flat. An abelian γ is flat Z -mod $\Leftrightarrow \frac{1}{K}c_{k}^{new}$ A morph of schemes $\overline{f}: X \rightarrow Y$ is: $(iii]$ suppress f^*, θ_X, θ_Y from notation) **Andrew of Y** anideal ISR by RMK Can specify $\circled{6}$ apen immersion: iso onto an apen subschame \leftarrow $\cup_{k\in\mathcal{N}}^{\infty}$, $\theta_{n} = \theta_{\mathcal{N}}|_{\mathcal{N}}$
 \leftarrow \leftarrow $\cup_{k\in\mathcal{N}}^{\infty}$, $\theta_{\mathcal{N}} = \theta_{\mathcal{N}}|_{\mathcal{N}}$ r morpn on sononnes
① <u>affine</u>: equivalent conditions: • f-1(affine open cover Vi, <mark>d'Hine)</mark>
. J affine : equivalent conditions: • J affine open cover Vi, d Y , f-1(Vi) <mark>laffine)</mark>
. V affine injective (hom of R-mods) $f^* : \theta_Y(V_c) \rightarrow \theta_X(U_c;)$ finit type 3) <u>Rocally</u> of finite type: \cdot y affine opens $U \in X$, $V \subseteq Y$ with $f(u) \subseteq V$, (ii) $f(v)$ (Rings: A -B finite type:
Rings: A -B finite type:
means B f.g. as A -alg, , i.e.) \int_0^{∞} (meaning: $\phi_y(v) \xrightarrow{eX} \phi_x(x^{-1}v) \xrightarrow$ (eings: A -> B finit type .)

weave $B + 3$ as A - θ_3 , i.e.)
 θ_2 (means $B + 3$ as A - θ_3 , i.e.)
 θ_3 (meaning: θ_2 (v) $\frac{e^x}{1 - x}$, θ_3 (x⁻¹V) $\frac{e^{x}}{1 - x}$, θ_2 (v)
 θ_3 (x) θ_1 (x) $\theta_$ Algebra: R-mod M is flat if MQp. is exait funtor on R-mods
- exait function on R-mods
- exait flat find home means S flat R-mod (using r-s = exims) Fact Enough to check MQRI C MORR Vfg.ideal I cs, R. $\oint_{-}^{\infty} b \alpha f f \cdot o \rho \alpha$ U = Spec R S Y = 3 darl I = Spec (R I)
 \oint_{-}^{∞} $f^* = \Theta_f \rightarrow f_* \Theta_X$ surjection ideal sheet f^* finite type : $\circled{2}$ + $\circled{3}$: quasi-compact & bocally finite type Example $\geq \hspace{-0.12cm} \times$ = $\hspace{-0.12cm} \times$ \geq $\hspace{-0.12cm} \times$ \geq $\hspace{-0.12cm} \times$ $\hspace{-0.12cm} \times$, 3 aff. cover \forall =U Spec R.; , ideals I; S.R.; , f-'(Spec R.) = Spec (R./I.;) $\begin{array}{ccccc} \mathsf{Ext}^1(\mathsf{c}_1,\mathsf{b}_0):& f: & \times \xrightarrow{\mathsf{hormes}} f(x) \xrightarrow{\mathsf{chead}} & & & \searrow (\mathsf{sec} \mathrel{\mathsf{I}} \cdot \mathrel{\mathsf{I}} \mathsf{c}_1, \mathrel{\mathsf{I}} \mathsf{c}_1,$ closed immersion: iso onto a closed subscheme. 2 quasi-compact: replace attine by pusi-compact 2) M free \Rightarrow M flat $[9f:$ $\uparrow \cong \bigoplus_{\alpha \in \Delta} R$ \Rightarrow Mg $\downarrow \cong \bigoplus_{\alpha \in \Delta} N$. I) Basic facts \bigoplus

For
$$
e^x = \sqrt{1-\sqrt{e}}
$$
 $\int_{\frac{1}{2}x}^{x} \int_{\frac{1}{2}x}^{x} \$

Taking stalks,
ell follow
el form analogus
stakements $\sqrt{2eC_0^2}$ and $\prime\neq$ holds if X locally Noetherian scheme \prime fundition by droping finitures Claim $f: X \rightarrow Y$ flat \Rightarrow f*: θ_Y -rod $\rightarrow \theta_X$ -react (not just exact) First and $\begin{array}{c} \mathcal{N}_{\text{start}}^{\text{in} \text{t}}(\mathbf{X},\theta) \longrightarrow \mathcal{N$ by exact function from 6.4 : $\frac{1}{2}0.8 \times \frac{1}{3}$ or $-1 - 0$ exact $\begin{pmatrix} \frac{1}{2} & \$ $\boxed{\underline{\mathsf{Lemma}}\ \textsf{For} \textsf{X} = \textsf{Spec}\ \mathsf{R}: \big(\begin{matrix} \exists\ \mathsf{exact}\ \mathsf{at}\ \mathsf{set}\ \mathsf{even}\ \mathsf{et}\ \mathsf{ex}, \ \mathsf{ex} \ \mathsf{ex} \ \mathsf{ex}, \ \mathsf{ex}, \ \mathsf{ex}, \ \mathsf{ex}, \ \mathsf{ex}, \ \mathsf$ alstalk is after o or $\delta_{X,Z}$ vector bundle \Rightarrow $\lim_{\alpha \to \infty}$ generated by $\frac{6 \pi i k l_2}{2}$ many sections \geq locally goverated by sections $\frac{\partial f}{\partial t}$ F quasi-coherent \Longleftrightarrow F is locally presented, i.e. $\forall x, \exists$ open $x \in V$ $\begin{array}{ccc}\n\mathcal{O}_{\mathbf{x}} & \mathcal{O}_{\mathbf{x}} \\
\mathcal{O}_{\mathbf{x}}^{-1} & \mathcal{O}_{\mathbf{x}} \\
\mathcal{O}_{\mathbf{x}}^{-1} & \mathcal{O}_{\mathbf{x}} \\
\mathcal{O}_{\mathbf{x}}^{-1} & \mathcal{O}_{\mathbf{x}} \\
\mathcal{O}_{\mathbf{x}} & \mathcal{O}_{\mathbf{x}} \\
\mathcal{O}_{\mathbf{x}} & \mathcal{O}_{\mathbf{x}} \\
\mathcal{O}_{\mathbf{x}} & \mathcal{O}_{\mathbf{x}} \\
\mathcal{O}_{\mathbf{x}} & \mathcal{O}_{\mathbf{x}} \\
\mathcal{O}_{\mathbf{x}}$ and $\theta_{X,x} \otimes_{\theta_{X,x}} = id$ RME Morph of schemes $f : X \rightarrow Y$ is flat $\Longleftrightarrow \Theta_X$ flat $f^{-1}\Theta_Y - \text{mod}$ le $\Leftarrow |g^{-1}\Theta_Y|_{\mathcal{X}} = \Theta_{X,x}$ I be checked on stalks sing exacturess can Recall F coherent => F Rocally finitely presented (movi vienten this $\frac{1}{2}$ $\frac{6}{3}$ $\frac{6}{3}$ exact by $\frac{6nk}{3}$ \Rightarrow $f^*F = f^*F \otimes_{\theta} g$ is composite of the exact function \Box so Kernels are flat THE THE THINGS surinhery: collected = locally shiftly presented = puss-collected (= locally presented) $\mathbb{H} \quad \textcircled{\small{=}} \; \text{Let} \; H = \textcircled{\small{p} k/m} \; (\textcircled{\small{p} R} \rightarrow \textcircled{\small{p} k}) \quad \text{ (which yields a class)}$ まえ、イオ、申のしの「してしつ、ローチン」 so \Longleftrightarrow F_x $\cancel{\beta}$ \cancel{M} $\cancel{0}_{x,x}$ -mod $\cancel{V_x}$. Example U $\stackrel{\sim}{\rightarrow}$ X open subsch. \Rightarrow i $_{*}\Theta_{\alpha}$ is flat Θ_{x} -mod $\frac{Pf}{(s_{\alpha.}, s_{\beta})^2} f^{-1}$ is exact \Rightarrow θ_{γ} -Mod $\frac{f^{-1}}{F} \theta_{\gamma}$ -Mod exact, Def F is $\frac{f\partial x}{f}$ θ_{x} and if $F \otimes_{\theta_{x}}$ is exact $rac{1}{\text{Facks}}$ \leftarrow $(x, 9x)$ ringed space $\underbrace{\text{fact}}_{\text{fnd},\text{not}} \exists !\ \beta_{\chi-\text{mod}}, \ \text{pæshæl.16m1} = f^{-1}(F)(u) \otimes_{\text{f-10}(\mathcal{U})} \beta_{\chi}(\nu) \longrightarrow f^{\bullet}F(\nu) \text{ is } \beta_{\chi}(\nu) \text{-mod hom} \longrightarrow \text{f-Mon} \tag{15} \text{f.M.}$ Example $f^*G_y = \theta_X$ (since $f^{-1}\theta_y \otimes_{f^{-1}\theta_y}^{\infty} \theta_X \cong \theta_X$ canomically)

Examic $x \xrightarrow{f} y \xrightarrow{2} z \implies f^* \circ \theta^* = (g \circ f)^*$ $\mathcal{L}^{\text{(use last half.}}$ in θ_6 , $\omega_i \omega_i \theta_3 \omega_i \wedge \theta_4$
 \vdots $f^* (F \otimes \theta_y \zeta) = f^* F \otimes \theta_x f^* G$ canonical $\overline{}$ Huk3 f commutes with limits fin for example Π , if commutes with colimits $\frac{\ell_{irr}}{\ell_{irr}}$ for example@
Example $f^*(\oplus \theta_Y) = \oplus f^*\theta_Y = \oplus \theta_X$. $\frac{1}{\frac{1}{2}\frac{1}{2}}$
 $\frac{1}{2}$
 Lemme $X = Spec R$ \Rightarrow $Hom_{R_{\lambda}}(\widetilde{N}, F) \xleftarrow{\text{lin}} Hom_{R} (N, \Gamma(X,F)) \forall \theta_{x} \text{ and } \theta_{x} \text{ (where } \theta_{x} \in \mathbb{Z}_{3})$
 $\downarrow \text{where } \theta_{x} \in \mathbb{Z}_{3} \text{ (or } \theta_{x} \text{ (or } \theta_{x}) \rightarrow \text{ (} \text{ (} \text{with } \theta_{x} \text{ (or } \theta_{x$ ⇒ Homox (ř, F) = Homox (ド*M, F) = Home(M, K*F) = Home(M, L(X,F)).ロ (2) t same answer sine $X \xrightarrow{\alpha} \text{Spec } R$ $\frac{\pi}{4}$ (point, R), $\widetilde{R} = \pi$ of N by construction, $\pi^* = \alpha^* \pi^*_i$) $F_n := T^*M$
= sheafify $(M \longrightarrow M \otimes \theta_X(M))$ $\longleftarrow^{(s)}(A \times T^{-1}M \otimes \theta_X \text{ and } [T^{-1}R](M) = R$ $\psi^*M = \psi^T M \otimes_{\psi^T(M)} \psi^T (x) = M \otimes_{\Gamma(Y)} \psi^T$ $\underbrace{\underline{C}eC}_{\text{max}}\xrightarrow{\text{Spec }S\longrightarrow\text{Spec }R}\xrightarrow{\text{Spec }A\longrightarrow\text{Spec }A\longrightarrow\text{Spec }A\longrightarrow\text{Spec }R\longrightarrow\text{Spec }R\longrightarrow$ $\frac{1}{2}$ من الله عن الأناري (- 10 م) (F, (F) و - 10 م) (M) F) (M) F(X) من الله عن الله عن الله الله الله
المستقطعة الله الله عن الله الله عن الله عن الله عن الله عن الله عنه الله عن الله عن الله عنه الله عنه الله عن Upshot f: $X \rightarrow Y$ 'morph of ringed spaces = Modg_x (X) f hodg₀(Y) and f^* $f^* \pi^*_\star \wedge = \pi^*_\star \varphi^* \wedge$ $\left|f^* , f_* \right|$ are adjoint fundars : $\rho_{\alpha\beta}(f^*f, G) \cong \rho_{\alpha\beta}(f, G)$ $0_x(u)$ -mod as by RmR . $\frac{\text{Example 4}^*}{\text{Exercise 684}}$ $\Rightarrow \oplus \oplus f^* \Theta_f = \oplus \Theta_K$ hence f. left exact, f*right exact $\begin{array}{l} \pi_{\mathsf{v}}\bigcup\limits_{\mathsf{Poi} \land \mathsf{r} \to \mathsf{\Gamma}} (\mathsf{Y})) \xrightarrow{\mathsf{\Psi}} (\mathsf{Poi} \mathsf{r}, \mathsf{\Gamma}(\mathsf{X})) \\ (\mathsf{Poi} \land \mathsf{\Gamma}(\mathsf{Y})) \xrightarrow{\mathsf{\Psi}} (\mathsf{Poi} \mathsf{r}) \xrightarrow{\varphi^{\mathsf{\Psi}} : (\mathsf{\Gamma}(\mathsf{X}) \to \mathsf{\Gamma}(\mathsf{Y}))} \end{array}$ 6.9 Classification of ∂_{x} -hons $\widetilde{N} \rightarrow F$ Theodon (exercise)

 $C' = \prod_{i,j} \Gamma(u_{ij}) \xrightarrow{d} \prod_{i,j,k} \Gamma(u_{ij}k) = C^2$
 $(S_{ij}) \longmapsto (S_{jk}) = S_{ik} \Big| + S_{ij} \Big|_{u_{ijk}} \Big| + S_{ij} \Big|_{u_{jk}k} \Big| + S_{ij} \Big|_{\text{no-}k} \Big| + S_{ij} \Big|_{u_{jk}k}$ $\frac{8.1}{9.1}$ Lech complex X + $\frac{1}{4}$ $\frac{C^{n} \rightarrow C^{n+1}}{\left(d s\right)_\mathcal{I}} = \sum_{j=0}^{n+1} (-1)^j \frac{s}{s+j} \frac{1}{\left| \alpha f \right|}$ and $\frac{1}{\alpha} \left(\alpha f \right) = \sum_{j=0}^{n+1} (-1)^j \frac{s}{s+j} \frac{1}{\left| \alpha f \right|}$ and $\alpha f \text{ is a non-constant}$ and $\frac{1}{\left(\alpha f \right)^{n+1}}$ if $\alpha m + i_j, i_k, ...$ $\frac{\frac{Lex_{\text{max}}}{\frac{1}{2}}}{\frac{1}{2}\left[\begin{array}{c}J_{1} & J_{2}(X,F) = \Gamma(X,F) \\ J_{2} & J_{2} | J_{3} \end{array}\right]} = s_{1} | J_{4} \left[\begin{array}{cccc}S & S & S & S \\ S & S & S & S \\ S & S & S & S \end{array}\right] = s_{2} | J_{5} \left[\begin{array}{cccc}S & S & S & S & S \\ S & S & S & S & S \\ S & S & S & S & S \end{array}\right] = s_{1} | J_{6} \left[\begin{array}{cccc}S & S & S & S & S \\ S & S & S & S & S \\$ size is
actually n+1 $\frac{\zeta_{\mathsf{OM}}\mathscr{B}\mathsf{QV}\mathsf{C}\mathsf{M}\mathscr{B}\mathsf{S}}{2\mathfrak{f}+\mathfrak{g}+\mathfrak{g}+\mathfrak{h$ $\frac{\rm RmK}{\rm Hm}$ If a formomorphism d_n : $C_n \rightarrow C_{n-1}$ decreases the degree by 1, and d_{n-1} af=0
filen $H_n =$ Ker d_n /Im dn+1 is called the <u>homology</u> of (C_n, d_n) . In this case a
chain homology is degree increasing : R **8. Čech Cohomology -** Motivation for cohomology: assign grove or rings) linotation:
2.1 Park candex V La sair H*(X) + H*(Y) then X = Y are not isosof) li_{vi} = U. ny.
2.1 Park candex V La sair (X) + W . apply cover we ve since je missing in Ie $\underline{\text{Def}} \qquad |H^N(X,F)=\overline{H}^N_{\{u_x\}}(X,F)=\text{Ker-d}\overline{\int\limits_{X\text{Im }A} \text{Im }X^{-1}}\frac{\left\langle -\left(H^N(X,F)\text{ depend on }U\right)_{\text{ch }X\text{ in }Q}\text{ of }U_x\right\rangle}{\frac{R^mK}{2^mM}}$ $\frac{1}{2} \left\{ \frac{1}{2} \left(\frac{1}{2} \right)^{k} \left(\frac{1}{2} \right)^{k} \left(\frac{1}{2} \right)^{k} \right\} = \sum_{\substack{n=1 \\ n \neq 0}}^{n+1} \left(\frac{n+1}{2} \left(\frac{1}{2} \left(-1 \right)^{k+1} \right)^{k} \right) = \sum_{\substack{n=1 \\ n \neq 0}}^{n+1} \left(\frac{1}{2} \left(-1 \right)^{k+1} \right)^{k} \sum_{\substack{n=1 \\ n \neq 0}}^{n+1} \left(\frac{1}{2}$ $\begin{aligned} \Longleftarrow & \begin{bmatrix} \zeta_0 = \zeta_{\mathcal{I}} & \zeta_1 = \zeta \\ \overline{\bot} = (\zeta_0, \zeta_1) \\ \overline{\bot}_0 = (\zeta_1) = \zeta \end{bmatrix} \end{aligned}$ Nordered, allow repetitions $2) f = g : H^n \rightarrow H^n \leftarrow (d \circ = \circ \Rightarrow [f \circ -g \circ] = \Box d \& c] = 0$
Key trick To show $H^* = O$ can find chain homolopy between *id*,0. $C^n = \frac{\gamma_1}{\gamma_0} = \frac{\gamma_2}{\Gamma \Gamma \Gamma} \frac{\gamma_0}{(\nu_1 F)^2} F \in Ab(X)$
 $C^n = \zeta_{\text{B4}} = \frac{\Gamma \Gamma \Gamma}{\Gamma \Gamma \nu} \frac{(\nu_1 F)^2}{\Gamma \Gamma \Gamma \nu} = \frac{\gamma_0}{\gamma_0} = \frac{\gamma_0}{\gamma_0} \frac{\gamma_0}{\gamma_0} = \frac{\gamma_0}{\gamma_0} \frac{\gamma_0}{\gamma_0} \frac{\gamma_0}{\gamma_0} = \frac{\gamma_0}{\gamma_0} \frac{\gamma_0}{\gamma_0} \frac{\gamma_0}{\gamma_0} = \frac$ EF(U_I) so sum makes sense.
EF(U_I) so sum makes sense. $C^o = \prod_i \Gamma\left(U_i\right) \xrightarrow{d} \prod_i \Gamma\left(U_i\right) = C^1$ $(s_i) \longrightarrow (s_j \mid s_i \mid u_{ii})$ $\frac{C \mid \alpha_{i} \mid \alpha_{i}}{C}$ $d^{2} = 0$, so (C^{*}, d) is a complex Example $\frac{Pf}{P}$. Easy direction: $M \rightarrow F = \tilde{M} \rightarrow F(X) = \tilde{M}(X) = M$. conversion of $\begin{bmatrix} B_y & \omega r & \lambda & 3\\ w & \omega r & \lambda & 3 \end{bmatrix}$
 \Rightarrow locally $\forall \rho \in X, \exists \rho \in D_{\rho} \text{ s.t. } \prod_{D_{\rho}} \frac{q_{\rho}}{z} \overline{D}$ some $R_{\rho} \mod N$ or $\begin{bmatrix} w_{i/3} & \mu_{i+1} &$ Sub-claim This is exact $(\Rightarrow \text{N}= \text{Ker } \phi_p = \text{M}, \overline{\eta}_\ell$ iso, $\psi_{jk} = i\text{d}$ unduridentification(via.)
 If Enough to prove after localising at each max ideal m
 Bg @ not all f;em otherwise IE<allf;> Em Z $\begin{array}{llllll} & \text{But, } & \text{if }$ hama= noon so image of a via previous map (A) is a direct summand WLOG M: = N_f (identify via $\psi_{\ell i}$), so cocycle conditioners: $N_{f_i f_k} = \frac{e^{\sqrt{k_{f_k}}} \sin \omega \omega \, \mathrm{d}}{(\mathsf{M}_k)_k \cdot \mathsf{M}_f}$

= 0 - N natural $\oplus N_f$ (and $\oplus N_f$ f)

= 0 - N natural $\oplus N_f$ (and $\oplus N_f$ f)

(and $\oplus N_f$ f) $\overline{P\pm}$ F = F(X) by Theorem. In definition of wherent take global rections => F(X) coherent R-mod, To and conversely if M coherent get \widetilde{H} coherent sind \sim is exacted fully fullful. [Γ . Projective R-mod)
Fact X = Spec R : FEVect X (= F F = F for finitely presented) (= f : projective R-mod)
Fact X = Spec R : Cor X = Spec R: F E CohX => F = M for coherent module M <| endit R Noeth.gt;
Cor X = Spec R: F E CohX => F = M for coherent module M Hipans:
Ketwo given functors
Kempere to shindors
Kempere to shindors
Li idantity tundors of some free R-mod means in R-mads
Hom (M, -) exact. Theorem $\boxed{$ For $X = 5\rho e c R$, \exists equivalence of catgories $R - M \rightarrow Q G h(X)$
 $F(M) = \Gamma(X, F) \longleftarrow R \overline{N}$ 7.6 Q(ch(X), coh(X), Vect(X) for $X = Spec R$ $\begin{array}{lll} \displaystyle\Longrightarrow& {\mathsf{O}}\to{\mathsf{N}}\xrightarrow{{\mathsf{in}}{\mathsf{in}}{\mathsf{in}}} \,\,\oplus\, {\mathsf{N}}\xleftarrow{{\mathsf{M}}}\,\,\oplus\, {\mathsf{N}}\xleftarrow{{\mathsf{M}}}\,\,\oplus\, {\mathsf{N}}\xleftarrow{{\mathsf{M}}}\,{\mathsf{N}}\xleftarrow{{\mathsf{M}}}\,{\mathsf{N}}\xleftarrow{{\mathsf{M}}}\,{\mathsf{N}}\xleftarrow{{\mathsf{M}}}\,{\mathsf{N}}\xleftarrow{{\mathsf{M}}}\,{\mathsf{N}}\xleftarrow{{\mathsf{M}}}\,{\$ $\left(\begin{matrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{matrix}\right)$ $\hat{\mathbb{I}}$

$$
\frac{\int_{\mathbb{R}^{n}}\int
$$

 $(e.a)$ x) $\Gamma(X)$ left exact \Rightarrow $H^o(X,F) \in \Gamma(X,F)$ \leftarrow forwal conservation <u>Cultival Rimis</u> For any scheme X and sheaf F of abelian groups have H°CX
but also in degree 1 : 3 $\text{H}^1(\chi,\mathit{F}) \cong \mathsf{H}^1(\chi,\mathit{F})$. So for example $\text{Prc}(X) \cong \text{H}^1$ $\frac{1}{2} \frac{d}{dx} \quad 0 \to F \to \Gamma' \quad \Rightarrow \quad 0 \to F \otimes G \to T' \otimes T' \quad \text{inflowwhich, not a.}$ Idish If G, G, EQQb X , H^(X,G;)=0 An>1 ⇒ G, ⊕G, also, sin $Q \rightarrow G_1 \oplus G_2 \longrightarrow G_2 \rightarrow 0$ ses and the Les got H $\frac{PE}{C}$ sheaf cohomology $H(X,F) = \omega$ homology of $\Gamma(X,\Gamma')\rightarrow$
Check the conditions of Theorem: then take <u>total comple</u> $O \rightarrow F \rightarrow J'$ exact \Longleftrightarrow exact on statles \Longleftrightarrow $O \rightarrow \Gamma(J) \rightarrow \Gamma(J)$ $\frac{C_{\text{O}}}{H}$ X separanta, Noetherian = sheef cohomology $H''(X,F) \cong \frac{H''}{H}$ 3) A Rasque F on a top space X, Rave H^(X,F) = O Vn >1 (Hanthle
3) H injechive R-module I , and R Noalk ⇒ I on Spec R is Respye (\Rightarrow H^(X, \widetilde{K}) = H^(T(X, \widetilde{L})) = H^(I), \Rightarrow I in the sequence \Rightarrow H^(X), H = \Rightarrow H^(I), \widetilde{L} $\frac{\text{Rmk}}{\text{Link}}$ Injective $\theta_{\mathbf{x}}$ -mods are flasque (Hartshorne III.2.4) (in deg=0 get \sim bi-complex (compare 8. exact sin 1) A sheaf F is <u>flasque</u> if all rishikons F(U)—)F(V) are surjech $\frac{Pf\top h n}{P}$ F \leq \widetilde{N} for $n = \Gamma(X,F)$ by 7.6. Pick injective resolution of the ℓ Sine U a Gor Flasque resolutions are acyclic by (2), so can be used to compu ⇒ o→k → f exact, each fr flasge, so com we this to Non-examinable proof ide<u>as</u> The cleanest proof is to build machinery: Theorem R Noelh., FEQGh(Spec R) => H^ (Spec R,F) = 0 ∀n>1 $\frac{\overline{(v_0 \ldots v_{x,0} \ldots v_{x,0})}}{\overline{f_{\alpha \cdot t}}} = \frac{\overline{f_{\alpha \cdot t} \circ g_{\alpha \cdot t} \circ g_{\alpha \cdot t}}}{\overline{f_{\alpha \cdot t}}} = \frac{\overline{f_{\alpha \cdot t} \circ g_{\alpha \cdot t} \circ g_{\alpha \cdot t}}}{\overline{f_{\alpha \cdot t}}} \times H^1(X, G) \longrightarrow H^{1+1}(X, F \otimes_{\mathcal{G}_s} G)$ $\frac{1}{2}$ = $\frac{1$ need I', J' to be "pure acyclic resolutions" to ensure this "
is resolution. Then given any inj res. FQG -> K',
the identity FQG in FQG extent to I "QJ" -> K'.
Taking [(x,) yiels the result. (see key lake under the Fact in -stronger than quasi-compact $exact$ since $\Gamma(u,.)$ left exact (sec.1.9) $\lambda\lambda\lambda$) Lemma in 2.1 proves \exists LES 94 Product on sheaf cohomology ii) by the Theorem below. D rwon-examinable

Let d:= Lem(deg f;) . Call homogeneous ment inelevant :f (R+·m)n.d=0 for all large N.
M called <u>inelevant</u> :f all hare incluvant. <u>Fact</u> ® holds if replace "torion" by "irrelevant". Exercice Show Ro Nocth, and R generated as Ro-alg. by finitely many f., ..., faceR. Now assume only R Noeth graded ring.

<u>warning</u> P roj is <u>not</u> functionial like spec $\ell(P+1) \geq S_+$ more generally, suffices $\sqrt{\varphi(R_+) . \overline{S}} = S_+$
If $\varphi : R \rightarrow S$ gradud like spec $\varphi : R \rightarrow S$ gradud like in the place φ then get morph $\varphi^* : P_2 : S \rightarrow \varphi$ by R
b $\Theta|_{p_{\mathbf{f}}} = \Theta_{\mathbf{\mathbf{\hat{y}}_{f}e\epsilon\left(\left(\mathbf{\hat{R}}_{\mathbf{\hat{r}}}\right)\right)}} \quad \text{and} \quad p_{\mathbf{\hat{q}}_{\mathbf{\hat{p}}_{\mathbf{\hat{q}}}} = e} \left(\text{or } p_{\mathbf{\hat{q}}_{\mathbf{\hat{q}}}=p_{\mathbf{\hat{r}}}} \text{ or } p_{\mathbf{\hat{q}}_{\mathbf{\hat{q}}}} \text{ and } \Theta_{\mathbf{\mathbf{\hat{p}}_{\mathbf{\hat{q}}}}(p_{\mathbf{\hat{q}}_{\mathbf{\hat{q}}_{\mathbf{\hat{$ $Sheaf$ $U:=D_{PQ}(R)$: