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0 Introduction

This is a first technical introduction to the theory of schemes.

The precise prerequisites are:

• Chapters I, II and III (ie pp. 1–50) of [AM69] (basic definitions of commutative algebra).

• Appendix A (ie pp. 417–432) of [Wei94] (basic definitions of category theory).

• Section 1, 2 and 3 of Chapter I (ie pp. 1–15) of [Wei94] (basic definitions of homological algebra).

• The first section of Chapter 3, par. 5 (ie pp. 438–443) of [GH94] (the cohomological spectral sequence
of a double complex).

• The definition of a topological space.

A first course in algebraic geometry is desirable but not technically necessary.

The terminology of these notes will generally be in line with the terminology of Hartshorne’s book [Har77].

The theory of schemes was developed by A. Grothendieck and his school, in an attempt to give an intrinsic
description of the objects of algebraic geometry, as opposed to the classical extrinsic description in terms
of varieties, which always come with an embedding into affine or projective space.

For details and lucid explanations on the material described in these notes, the reader is strongly encour-
aged to consult the foundational treatise [GD]. The Stacks Project, which can be accessed at the web address

http://stacks.math.columbia.edu/

contains detailed presentations of all the concepts introduced in [GD] and its later ramifications.
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Other valuable references are [Liu02], [GW10] and also the online notes of Ravi Vakil at Stanford university.
See

http://math.stanford.edu/˜vakil/216blog/FOAGjun1113public.pdf

for the latter.

The books [Mum99] and [EH00] can serve as conceptual introductions to the subject.

The structure of these notes of course reflect the author’s biases. Here are some of them:

• Homological algebra. The language and basic results of homological algebra are prerequisites to this
text and are not introduced alongside the main geometrical results presented in this text. Our feeling
is that introducing tools from homological algebra alongside geometrical constructions diverts the
student’s attention from the real difficulties.

• Cohomology. Cohomology appears at the very beginning of this text. Algebraic geometry extends
commutative algebra to a global situation and cohomology is a systematic procedure for dealing
with the interaction between local and global. It thus makes sense to use it from the very beginning.

• Category theory. We express many facts in categorical terms and we use categorical arguments (esp.
involving adjoint functors) when possible. We thus avoid many redundancies.

• Moduli. We insist on the duality between schemes and the corresponding functor of points (ie the
associated contravariant functor in the category of schemes). Many (most?) fundamental objects in
algebraic geometry represent certain important moduli problems and should be viewed as such. This
applies in particular to affine and projective space.

Caveat emptor. These notes are very terse. They are technically self-contained but are difficult to follow if
not supplemented by other sources.

Conventions. In this text, unless explicitly stated otherwise, all rings are assumed to be commutative and
unital.

Bibliography

[AM69] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-
London-Don Mills, Ont., 1969.

[GH94] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York,
1994. Reprint of the 1978 original.

[Wei94] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge
University Press, Cambridge, 1994.

Further reading

[EH00] David Eisenbud and Joe Harris, The geometry of schemes, Graduate Texts in Mathematics, vol. 197, Springer-Verlag, New
York, 2000.
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1 Sheaves on topological spaces and their cohomology

1.1 Cohomology

Let A be an abelian category. An object I of A is called injective if the contravariant functor

HomA(•, I) : A → Ab

is exact.

Let A• be a cochain complex in A, which is bounded below. An injective resolution of A• is a cochain
complex in A

I• : . . .→I0 d0→ I1 d1→ . . .

such that:

• for all k ∈ Z, the object Ik is injective;

• I• is bounded below;

• there is a morphism of complex A• → I•, which is a quasi-isomorphism.

If every object in A has an injective resolution, we say that A has enough injectives. Notice that this is
equivalent to requiring that for any object A in A there is a monomorphism of A into an injective object.
In that case every cochain complex A• in A, which is bounded below, has an injective resolution. See
[Har66, I.4.6i] for the proof (see also the proof of Theorem 1.3 below).

Let (B•, d•B) and (C•, d•C) be cochain complexes in A and let f•, g• : B• → C• be two morphisms of
complexes. A homotopy k• between f• and g• is a collection of morphisms ki : Bi → Ci−1 (i ∈ Z) such that
f i − gi = di−1

C ◦ ki + ki+1 ◦ di for all i ∈ Z.

Lemma 1.1. The relation ’existence of a homotopy between two complexes’ is an equivalence relation. If f• and g•

as above are homotopic thenHk(f•) = Hk(g•) for all k ∈ Z, ie f• and g• induce the same morphisms in homology.

Proof. This is exercise 1.3.

Lemma 1.2. Let φ : A → B be a morphism of objects of A. Let I• (resp. J•) be an injective resolution of A (resp.
B). Then there is a morphism of complexes I• → J•, which is compatible with the morphisms A→ I0, B → J0 and
φ. Any two such morphisms are homotopic.

Here we view an object of A as a cochain complex concentrated in the index 0.

Proof. Exercise 1.4.

Let B be another abelian category.

Let F : A → B be a covariant functor. We say that F is additive if for all objects A,B of A, the map
Mor(A,B)→ Mor(F (A), F (B)) is a map of abelian groups.
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We say that F is left exact if for any exact sequence

0→ A′ → A→ A′′ → 0

in A, the sequence
0→ F (A′)→ F (A)→ F (A′′)

is also exact.

Suppose that A has enough injectives.

If F : A → B is a covariant (not necessarily left exact) additive functor, we may for all i ∈ Z define a
functor RiF by the following recipe. For A and object in A, let I• be a injective resolution of A (here A is
viewed as a cochain complex concentrated in the index 0). Now define RiF (A) := Hi(F (I•)). By Lemma
1.2, the object Hi(F (I)•) is well-defined up to unique isomorphism. Furthermore, the same lemma shows
that associated with any morphism A → B in A, there is a canonical morphism RiF (A) → RiF (B), and
that this association makes RiF into an additive functor. The functor RiF is the i-th right derived functor of
F . By construction, there is a natural isomorphism of functors R0F ' F .

The range of the functor RiF can be extended to all complexes A• in A, which are bounded below. One
then similarly defines

Ri(A•) := Hi(F (I•))

where I• is an injective resolution of A•. The object Hi(F (I•)) is then well-defined up to unique isomor-
phism.

Theorem 1.3. LetA be an abelian category with enough injectives. Let F : A → B be a left exact functor to another
abelian category. For any short exact sequence

0→ A′ → A→ A′′ → 0 (1)

there is a canonical ’long’ exact sequence

0→ R0F (A′)→ R0(A)→ R0F (A′′)→ R1F (A′)→ R1(A)→ R1F (A′′)→ . . . (2)

In this sequence, the subsequence RiF (A′) → Ri(A) → RiF (A′′) is the image of the sequence A′ → A → A′′ by
RiF . Furthermore, the sequence (2) is naturally functorial in the short exact sequence (1).

Proof. Sketch. There is a commutative diagram

...
...

...

0 // I
′,1 //

OO

I1 //

OO

I
′′,1 //

OO

0

0 // I
′,0 //

OO

I0 //

OO

I
′′,0 //

OO

0

0 // A′ //

OO

A //

OO

A′′ //

OO

0
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where the vertical sequences are injective resolutions (see [Lan02, Lemma 9.5]) for the details). The theo-
rem follows from this and the existence of the long exact cohomology sequence associated with an exact
sequence of complexes (see [Wei94, Th. I.3.1]).

Theorem 1.3 can be generalised to general complexes as follows:

Theorem 1.4. Let A be an abelian category with enough injectives and let F : A → B be an additive functor to
another abelian category. LetA• be a cochain complex inA, which is bounded below. Then there is aE1 cohomological
spectral sequence

Epq1 = RqF (Ap)⇒ Rp+qF (A•)

where the the morphisms RqF (Ap) → RqF (Ap+1) are induced by the morphisms Ap → Ap+1 for all p, q ∈ Z.
There is also an E2 cohomological spectral sequence

Epq2 = RpF (Hq(A•))⇒ Rp+qF (A•)

Both spectral sequences are naturally functorial in A•.

Proof. Sketch. The proof is similar to the proof Theorem 1.3, with an added twist. As before, there is a
commutative diagram

...
...

...

. . . // I0,1 //

OO

I1,1 //

OO

I2,1 //

OO

. . .

. . . // I0,0 //

OO

I1,0 //

OO

I2,0 //

OO

. . .

. . . // A0 //

OO

A1 //

OO

A2 //

OO

. . .

where the Ii,j are injective objects. Now it is possible to construct this diagram in such a way that for each
k ∈ Z, the corresponding sequence of homology objects

0→ Hk(A•)→ Hk(I0,•)→ Hk(I1,•)→ . . .

is exact and the homology objects Hk(Ir,k) are injective for all r, k ∈ Z. See [Lan02, XX, par. 9, Lemma 9.5]
for this. The two spectral sequences are then nothing but the two spectral sequences of the double complex
associated with I•,•.

Theorem 1.4 will only be used Exercise 1.5 below. The reader who wants to postpone learning and using
spectral sequences can take Exercise 1.5 for granted and skip Theorem 1.4.

Remark 1.5. The theory of derived functors was developed in Grothendieck’s article [Gro57], which is still
the most valuable reference for the material of this section.
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1.2 Sheaves

Let X be a topological space. Denote the category of abelian groups by Ab. We define Top(X) as the
category whose object are the open sets of X and whose arrows (=morphisms) are the inclusion maps.

Definition 1.6. A presheaf F (of abelian groups) on X is a contravariant functor F : Top(X)→ Ab.

The presheaves on X naturally form a category, whose arrows are the natural transformations of functors.

If U → V are is an inclusion of open subsets of X and s ∈ F (V ), we write

s|U := F (U → V )(s).

A sheaf on X is a presheaf F on X , with the following properties. Let (Ui ∈ Top(X)) be a family of open
subsets of X . Then

• if for all indices i we are given si ∈ F (Ui) and furthermore si|Ui∩Uj = sj |Ui∩Uj for all i, j then there is
a unique element s ∈ F (

⋃
i Ui) such that s|Ui = si for all i.

Definition 1.7. Let F be a presheaf on a topological space X . Let x ∈ X . The stalk Fx is

Fx := lim−→U∈Top(X), x∈UF (U)

See [Wei94, Appendix A.5] for the notion of direct limit. Here is a direct construction of Fx. Let F̃x :=∐
U∈Top(X), x∈U F (U). Here

∐
refers to disjoint union. Define a relation ∼x on F̃x by the following recipe.

If U, V are open subsets of X containing x and

s ∈ F (U), t ∈ F (V ),

then s ∼x t iff there is an open set W ⊆ U ∩ V containing x such that s|W = t|W . This relation is an
equivalence relation and the set Fx is naturally isomorphic to the quotient of the set F̃x by the relation ∼x.
This quotient has a unique structure of abelian group, such that for all U ∈ Top(X) such that x ∈ U , the
natural map F (U) → Fx is a morphism of abelian groups. The reader is asked to provide the details in
Exercise 1.6.

If x ∈ X and U ∈ Top(X) contains x then for any s ∈ F (U), we write sx for the image of s in Fx. If
φ : F → G is a morphism of presheaves on X , there is a unique map of abelian groups φx : Fx → Gx such
that for any s ∈ F (U) and U ∈ Top(X) containing x, we have φx(sx) = (φ(s))x.

Proposition-Definition 1.8. Let F be a presheaf on a topological space X . There is sheaf F+ on X and a natural
transformation F → F+, both of which are uniquely defined up to unique isomorphism by the following property: if
G is a sheaf on X and F → G is a natural transformation, then there is a unique natural transformation F+ → G

such that the diagram

F+ // G

F

OO >>

commutes. The sheaf F+ is called the sheafification of F .
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Proof. Let E :=
∐
x∈X Fx, where

∐
refers to disjoint union. For any U ∈ Top(X), define

F+(U) := {f : U → E | for all x ∈ U we have f(x) ∈ Fx
and for all x ∈ U there is U(x) ∈ Top(U) containing x

and s ∈ F (U(x)) such that sy = f(y) for all y ∈ U(x)}

It follows from the construction that F+ is a sheaf. The natural transformation F → F+ is given for all by
the formula

s ∈ F (U) 7→ function f : U → E such that f(x) = sx for all x ∈ U,

which is valid for all U ∈ Top(X). If G is a sheaf and F → G is a natural transformation, then we may
define a natural transformation F+ → G by the following recipe. Let U ∈ Top(X). We use the symbols
appearing in the definition of F+. We wish to associate an element of G(U) with f : U → E. To this end
consider the covering of U given by the Ux appearing in the definition of F+. With each s(x) ∈ F (Ux) we
associate t(x) ∈ G(Ux) via the natural transformation F → G. The elements t(x) verify the sheaf property
because the s(x) do. Hence they glue to a unique element of G(U), because G is a sheaf. This is the image
of f in G(U). We leave it to the reader to verify that this defines a natural transformation F+ → G and that
it is the only one making the diagram in Proposition-Definition 1.8 commute.

Remark 1.9. Let X be a topological space and let C be a category. The notion of sheaf and of sheafification
makes sense if we define more generally a presheaf as a functor from Top(X) to C (not necessarily the
category of abelian groups). We shall sometimes use the notion of sheaf in this generality in this text but
we shall then speak of presheaves or sheaves with values in C.

If φ : F → G is a morphism of sheaves (=natural transformation of functors) on a topological space X ,
then we define the kernel ker(φ) of φ as the presheaf

U ∈ Top(X) 7→ ker(φ(U))

This presheaf is a sheaf: see Exercise 1.7.

We define the cokernel coker(φ) of φ as the sheafification of the presheaf

U ∈ Top(X) 7→ coker(φ(U))

Proposition-Definition 1.10. Let X be a topological space. The category Ab(X) of sheaves on X is an abelian
category. If φ : F → G is a morphism of sheaves, then the categorical kernel (resp. cokernel) of φ is canonically
isomorphic to ker(φ) (resp. coker(φ)). A cochain complex

· · · → F i−1 → F i → F i+1 → . . .

is exact in Ab(X) if and only for any x ∈ X , the corresponding sequence of stalks

· · · → F i−1
x → F ix → F i+1

x → . . .

is exact.

Proof. See Exercise 1.8.
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Let f : X → Y be a continuous map of topological spaces. For F is a sheaf on X , we define the presheaf
f∗(F ) by the formula

V ∈ Top(Y ) 7→ F (f−1(V ))

The presheaf f∗(F ) is a sheaf (easy). This construction naturally gives rise to an additive functor Ab(X)→
Ab(Y ), also denoted by f∗.

For F a sheaf on Y , we define the sheaf f−1(F ) as the sheafification of the presheaf on X given by the
formula

U ∈ Top(X) 7→ lim−→V ∈Top(Y ),V⊇f(U)F (V )

Again, this leads to an additive functor Ab(Y )→ Ab(X), denoted by f−1.

Proposition 1.11. The functor f−1 is left adjoint to the functor f∗.

Proof. We have to show that for any sheaf F on Y and any sheaf G on X , there is a natural isomorphism

Mor(f−1(F ), G) ' Mor(F, f∗(G))

and that this morphism is natural for morphisms of sheaves on Y (resp. onX). An element of Mor(f−1(F ), G)

is a collection of maps of abelian groups

lim−→V0⊇f(U)F (V0)→ G(U)

(whereU ∈ Top(X)) satisfying certain compatibility properties. An element of Mor(F, f∗(G)) is a collection
of maps of abelian groups

F (V )→ G(f−1(V ))

(where V ∈ Top(Y )) again satisfying certain compatibility properties. We wish to establish a bijective cor-
respondence between Mor(f−1(F ), G) and Mor(F, f∗(G)). Start with Mor(f−1F,G). Setting U := f−1(V ),
we obtain a map

lim−→V0⊇f(f−1(V ))F (V0)→ G(f−1(V )) (3)

Now since V ⊇ f(f−1(V )), we have natural map F (V ) → lim−→V0⊇f(f−1(V ))F (V0). Composing this map
with the map (3), we obtain a map

F (V )→ G(f−1(V ))

We leave to the reader to show that this indeed defines a natural transformation of functors Top(Y )→ Ab.

Now start with Mor(F, f∗(G)). Applying lim−→, we obtain a map

lim−→V0⊇f(U)F (V0)→ lim−→V0⊇f(U)G(f−1(V0)) (4)

Now for any V0 ⊇ f(U), we have f−1(V0) ⊇ U and hence there is a natural map

lim−→V0⊇f(U)G(f−1(V0))→ G(U).

Composing the map (4) with this map, we obtain a map

lim−→V0⊆f(U)F (V0)→ G(U)

We again leave it to the reader to show that this defines a natural transformation of functors. One can easily
verify that the maps Mor(f−1(F ), G) → Mor(f−1(F ), G) and Mor(f−1(F ), G) → Mor(f−1(F ), G) that we
have just described are inverse to each other and are natural in the sheaves F and G.
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Remark 1.12. The fact that f−1 and f∗ are adjoint to each other formally implies that f∗ is left exact and
that f−1 is right exact. See Exercise 1.2.

If (Fi) is a family of sheaves on a topological space X , we define the presheaf
∏
i Fi by the formula

U ∈ Top(X) 7→
∏
i

Fi(U)

where
∏
i Fi(U) is the product of the abelian groups Fi(U) (ie the cartesian product of the sets Fi(U),

endowed with the evident group structure). It can easily be verified that the presheaf
∏
i Fi is a sheaf. By

construction, if G is another sheaf on X , we have an identification

Mor(G,
∏
i

Fi) '
∏
i

Mor(G,Fi)

Theorem 1.13. Let X be a topological space. The category Ab(X) has enough injectives.

Proof. We shall use the fact that Ab is a category with enough injectives. See Exercise 1.10 for this. Let F be
a sheaf on X . We shall construct an injective sheaf I and a monomorphism F → I . For each x ∈ X , choose
an injective abelian group Ix and an injection ιx : Fx → Ix. Denote also by x the inclusion map x → X ,
where x is viewed as a topological space. Define

I :=
∏
x∈X

x∗(Ix)

Note that by construction we have for all U ∈ Top(X) an isomorphism

I(U) '
∏
x∈U

Ix

which is compatible with restrictions to smaller open sets. In particular, we may define a morphism F → I

by the formula
s ∈ F (U) 7→

∏
x∈U

ιx(sx)

This morphism is a monomorphism: if the image of s ∈ F (U) vanishes, then sx = 0 for all x ∈ U ; hence
s = 0 by the sheaf property.

Now let
0→ F ′ → F → F ′′ → 0

be an exact sequence of sheaves on X . We wish to show that the corresponding sequence

0→ Mor(F ′′, I)→ Mor(F, I)→ Mor(F ′, I)→ 0 (5)

is exact. Now we have natural isomorphisms

Mor(F, I) ' Mor(F,
∏
x∈X

x∗(Ix)) '
∏
x∈X

Mor(F, x∗(Ix)) '
∏
x∈X

Mor(x−1(F ), Ix) '
∏
x∈X

Mor(Fx, Ix).

For the second isomorphism, we used the remarks before the statement of this theorem. For the third
isomorphism, we used Proposition 1.11 and for the last isomorphism, we used the fact that by definition
x−1(F ) = Fx. Hence the sequence (5) is isomorphic to the product over all x ∈ X of the sequences

0→ Mor(F ′′x , Ix)→ Mor(Fx, Ix)→ Mor(F ′x, Ix)→ 0

11



which are exact because the Ix are injective abelian groups and the sequences

0→ F ′x → Fx → F ′′x → 0

are exact by Proposition 1.10.

1.3 Cohomology of sheaves

The functor
Γ(X, •) : Ab(X)→ Ab

described by the formula
Γ(X,F ) := F (X)

is left exact. We shall often write Hi(X, •) for the i-th right derived functor RiΓ(X, •) of Γ(X, •).

More generally, let f : X → Y be a continuous map of topological spaces. The functor

f∗ : Ab(X)→ Ab(Y )

is left exact. This is a consequence of Remark 1.12 but we ask to reader to give a direct proof in Exercise
1.9. We shall record an important consequence of the proof of Theorem 1.13 in the following

Proposition 1.14. Let f : X → Y be a continuous map of topological spaces and let V ∈ Top(Y ). LetU := f−1(V )

and let u : U → X , v : V → Y be the inclusion maps. Let fV : U → V be the natural map. Let F be a sheaf on X .
For all i > 0, we have canonical isomorphisms

v−1(Rif∗(F )) ' RifV,∗(u−1(F )).

and these isomorphisms are natural in F .

Proof. First notice that the theorem holds for i = 0, by the definition of f∗. To compute the various derived
functors, we choose an injective resolution I• for F . We thus have an exact sequence

0→ F → I0 → I1 → . . .

We may choose all the Ik as in the proof of Theorem 1.13. These injective sheaves have the property that
for any open set u0 : U0 → X of X , the sheaf u−1

0 (Ik) is injective on U0. Now we may compute

v−1(Rif∗(F )) ' v−1(Hi(f∗(I•))) ' Hi(u−1(f∗(I
•))) ' Hi(fU,∗(v−1(I•))) ' RifU,∗(u−1(F ))

The naturality in F follows from Lemma 1.2.

Cech cohomology. We shall now describe how a sheaf can be related categorically to its restrictions to
open subsets. So let F be a sheaf on a topological space X . Let I be a finite set and let (Ui∈I) be a covering
ofX by open sets indexed by I . In the following discussion, when i0, . . . ip ∈ I , we shall use the short-hand
i0 . . . ip for (i0, . . . , ip) ∈ I{0,...,p}. For i0, . . . ip ∈ I , we define

Ui0...ip := Ui0 ∩ Ui1 ∩ · · · ∩ Uip

12



and we let ji0...ip : Ui0...ip → X be the inclusion map. Furthermore, for all p > 0, let

Cp((Ui), F ) :=
⊕
i0...ip

ji0...ip,∗(j
−1
i0...ip

(F ))

We now define a morphism of sheaves

dp : Cp((Ui), F )→ Cp+1((Ui), F )

by the formula ⊕
i0...ip

αi0...ip 7→
p+1∑
k=0

(−1)k
⊕

i0...ip+1

αi0...îk...ip+1
|Ui0...ip+1

∩V

where V ∈ Top(X) and
αi0...ip ∈ ji0...ip,∗(j−1

i0...ip
(F ))(V ) = F (Ui0...ip ∩ V )

The hat symbol ·̂ signifies that the term under the hat is omitted. Furthermore, we define a morphism

d : F → C0((Ui), F ) =
⊕
i

ji,∗j
−1
i (F )

by taking the direct sum of the natural morphisms

F → ji,∗j
−1
i (F )

arising from Proposition 1.11.

Theorem 1.15. The sequence of sheaves

0→ F
d→ C0((Ui), F )

d0→ C1((Ui), F )
d1→ . . . (6)

is an exact cochain complex.

Proof. We leave it to the reader to verify that (6) is a complex. Since (6) is a complex of sheaves, it is
sufficient to prove that its restriction to any U is exact for any open set U contained in some Ul. If we write
j : U → X for the inclusion map, the restriction of (6) to U is naturally isomorphic to the Cech complex for
j−1(F ) associated with the open covering (Ui∈I∩U) ofU . Note that this open covering containsUl∩U = U .
So it is sufficient to prove the theorem under the supplementary hypothesis that for one of the open sets
Ui we have Ui = X .

So we suppose that Uρ = X until the end of the proof.

We shall need the following notation. If the image of the sequence i0 . . . ip is contained in the image of the
sequence l0 . . . lq , there is a inclusion map Ul0...lq → Ui0...ip that we shall denote by jl0...lq 7→i0...ip . The maps
jl0...lq 7→i0...ip satisfy obvious transitivity properties and the maps

ji0...ikρ ik+1...ip 7→i0......ip

are isomorphisms for any k ∈ {0, . . . , p}. In this proof, we shall write j[−1]
i0...ikρ ik+1...ip 7→i0......ip for the inverse

of ji0...ikρ ik+1...ip 7→i0......ip .

We shall show that the sequence of abelian groups

0→ F (X)
d→ C0((Ui), F )(X)

d0→ C1((Ui), F )(X)
d1→ . . . (7)
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induced by (6) is exact. This is sufficient to prove the theorem because it implies that a sequence analogous
to (7) is exact when X is replaced by any of its open subsets. From this, we can deduce that the sequence

0→ F
d→ C0((Ui), F )

d0→ C0((Ui), F )
d1→ . . .

is exact (use Exercise 1.11).

To prove that the sequence (7) is exact, define for all p > 1 a map

hp : Cp((Ui), F )(X)→ Cp−1((Ui), F )(X)

by the formula
hp(

⊕
i0...ip

αi0...ip) :=
⊕

i0...ip−1

j
[−1],−1
ρ i0...ip−1 7→i0...ip−1

(αρ i0...ip−1
)

We compute

dp−1hp(
⊕
i0...ip

αi0...ip)) = dp−1(
⊕

i0...ip−1

j
[−1],−1
ρ i0...ip−1 7→i0...ip−1

(αρ i0...ip−1))

=

p∑
k=0

(−1)k
⊕
i0...ip

j−1

i0...ip 7→i0...îk...ip

(
j

[−1],−1

ρ i0...îk...ip 7→i0...îk...ip
(αρ i0...îk...ip))) (8)

and

hp+1dp(
⊕
i0...ip

αi0...ip)) = hp+1
( p+1∑
k=0

(−1)k
⊕

i0...ip+1

j−1

i0...ip+1 7→i0...îk...ip+1
(αi0...îk...ip+1

)
)

=

p+1∑
k=0

(−1)khp+1
( ⊕
i0...ip+1

j−1

i0...ip+1 7→i0...îk...ip+1
(αi0...îk...ip+1

)
)

=

p+1∑
k=0

(−1)k
⊕
i0...ip

j
[−1],−1
ρ i0...ip 7→i0...ip(j−1

ρ i0...ip 7→ρ i0...îk−1...ip
(αρ i0...îk−1...ip

))

=

p∑
k=0

(−1)k+1
⊕
i0...ip

j
[−1],−1
ρ i0...ip 7→i0...ip(j−1

ρ i0...ip 7→ρ i0...îk...ip
(αρ i0...îk...ip))

+
⊕
i0...ip

j
[−1],−1
ρ i0...ip 7→i0...ip(j−1

ρ i0...ip 7→i0...ip(αi0...ip)) (9)

In the third and fourth line, in the situation where k = 0, the symbol îk−1 means that ρ is omitted. Now
using the transitivity relations, we see that

j
[−1],−1
ρ i0...ip 7→i0...ip ◦ j

−1

ρ i0...ip 7→ρ i0...îk...ip
= j−1

i0...ip 7→i0...îk...ip
◦ j[−1],−1

ρ i0...îk...ip 7→i0...îk...ip

and of course we have
j

[−1],−1
ρ i0...ip 7→i0...ip ◦ j

−1
ρ i0...ip 7→i0...ip = Id

Now if we use these identities while summing the expressions (8) and (9), we get

(dp−1hp + hp+1dp)(
⊕
i0...ip

αi0...ip) =
⊕
i0...ip

αi0...ip

This identity immediately implies that the Hp(C•((Ui), F )(X)) = 0. On the other hand, the kernel of d0 in
(7) is precisely the image of F (X) by the sheaf property. We have thus shown that the sequence (7) is exact,
which completes the proof of the theorem.
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Complement 1.16. A variant of the Cech complex that will be useful is the following. Choose a total
ordering on the index set I . Define the complex C•((Ui), F ) as before but restrict the sequences of indices
i0 . . . ip to strictly increasing sequences. We shall call this new complex the Cech complex with ordering. The
Cech complex with ordering is naturally a subcomplex of the original Cech complex and Theorem 1.15 is
still valid for this complex. To see this, modify the definition of the map hp in the proof of Theorem 1.15 as
follows. Define as before

hp(
⊕
i0...ip

αi0...ip) :=
⊕

i0...ip−1

j
[−1],−1
ρ i0...ip−1 7→i0...ip−1

(αρ i0...ip−1
)

with the following conventions. If the sequence ρ i0 . . . ip−1 is not strictly increasing but is injective (ie
there are no repetitions of indices) then let σ is the unique permutation of {ρ, i0, . . . , ip−1} such that
σ(ρ) σ(i0) . . . σ(ip−1) is increasing. We then define

αρ i0...ip−1 := (−1)sign(σ) · ασ(ρ) σ(i0)...σ(ip−1)

and
j

[−1],−1
ρ i0...ip−1 7→i0...ip−1

(αρ i0...ip−1) := j
[−1],−1
σ(ρ) σ(i0)...σ(ip−1)7→i0...ip−1

(ασ(ρ) σ(i0)...σ(ip−1))

Here sign(σ) is the sign of σ. If the sequence ρ i0 . . . ip−1 is not injective, then we set

αρ i0...ip−1
= j

[−1],−1
ρ i0...ip−1 7→i0...ip−1

(αρ i0...ip−1
) = 0

The proof of Theorem 1.15 then goes through verbatim for the Cech complex with ordering in place of the
Cech complex.

Note that the Cech complex with ordering only has a finite number of non-vanishing terms.

We now explain how to glue sheaves defined on open subsets.

Suppose given (Ui) an open covering of topological space X . If j : U → X is an open subset of X and F is
a sheaf on X , we shall often write F |U instead of j−1(F ).

Suppose given on Ui a sheaf Fi. Suppose given isomorphisms φij : Fi|Ui∩Uj
∼→ Fj |Ui∩Uj for all indices i, j,

satisfying the properties (1), (2), (3) below.

(1) φii is the identity;

(2) φji = φ−1
ij ;

(3) φik|Ui∩Uj∩Uk = φjk ◦ φij |Ui∩Uj∩Uk .

for all indices i, j, k.

If F is a sheaf on X , the sheaves Fi := F |Ui come with the isomorphisms

φij : Fi|Ui∩Uj
∼→ Fj |Ui∩Uj

coming from the natural isomorphism of functors ((•)|Ui)Ui∩Uj
=→ ((•)|Uj )Ui∩Uj . We leave it to the reader

to verify that the φij verify (1), (2), (3) above.

The following proposition establishes a converse.
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Proposition 1.17. Given sheaves Fi on Ui and isomorphisms φij : Fi|Ui∩Uj
∼→ Fj |Ui∩Uj satisfying (1), (2),

(3) above, there up to unique isomorphism a sheaf F on X with the following properties. There are isomorphisms
ψi : F |Ui

∼→ Fi such that the natural isomorphism

(ψ−1
j |Ui∩Uj ) ◦ φij ◦ (ψi|Ui∩Uj )

is the isomorphism
(F |Ui)Ui∩Uj ' (F |Uj )Ui∩Uj .

Proof. Let E :=
∐
iEi, where Ei :=

∐
x∈Ui Fi,x. Notice that there is an obvious projection map π : E → X .

We define a relation ∼ on E in the following way. Let e, f, g ∈ E. If e ∈ Ei and f ∈ Ej lie above the same
point x ∈ Ui ∩Uj , then we declare that e ∼ f if f = φi,j,x(e). Property (1) above shows that e ∼ e. Property
(2) shows that f ∼ e if e ∼ f . Property (3) shows that if e ∼ f and f ∼ g then e ∼ g. We have thus shown
that ∼ is an equivalence relation.

We shall write q : E → E/ ∼ for the mapping of E to the quotient space of E by ∼ (=the family of
equivalence classes of ∼). The quotient space E/ ∼ comes with a natural map ρ : (E/ ∼) → X such that
ρ ◦ q = π. This is because ∼ only identifies points of E, which lie over the same point in X . Furthermore
the maps q|Ei : Ei → E/ ∼ are by construction injective. We now define a sheaf F on X by the recipe

F (U) := {s : U → E/ ∼ | ρ ◦ s = IdU and for all x ∈ U there is

an index i, an open set V (x) ∈ Top(Ui) containing x and an element t ∈ Fi(V (x))

such that s(v) = qi|Ei(tv) for all v ∈ V (x)}

for U ∈ Top(X).

By construction, F |Ui is canonically isomorphic to Fi for any index i. It can easily be verified that these
canonical isomorphisms verify the requirements of the proposition.

Complement 1.18. Let X be a topological space and (Ui) a covering of X by open subsets. Suppose given
sheaves Fi (resp. Gi) on Ui and isomorphisms φij : Fi|Ui∩Uj

∼→ Fj |Ui∩Uj (resp. ψij : Gi|Ui∩Uj
∼→ Gj |Ui∩Uj )

satisfying the properties (1), (2), (3) above. Let F (resp. G) be the sheaf associate with these data by
Proposition 1.17. Then to give a morphism of sheaves λ : F → G is equivalent to giving for each i a
morphism of sheaves λi : Fi → Gi such that ψij ◦ λi|Ui∩Uj = λj |Ui∩Uj ◦ φij . The proof is straightforward.

Flasque sheaves. Let X be a topological space and let F be a sheaf on X .

Definition 1.19. The sheaf F is flasque if for all U, V ∈ Top(X) such that U ⊆ V , the natural map F (V )→ F (U)

is surjective.

Lemma 1.20. Let
0→ F ′ → F → F ′′ → 0

be an exact sequence of sheaves on X . Then

(a) If F ′ is flasque then the sequence

0→ F ′(X)
d′→ F (X)

d→ F ′′(X)→ 0

is exact.
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(b) If F ′ and F are flasque then F ′′ is flasque.

Proof. (a): Let (Ui) ∈ Top(X) be a family of open sets in X . We suppose that (Ui) is totally ordered by the
inclusion relation (ie for two indices i, j, we have either Ui ⊆ Uj or Uj ⊆ Ui). Let Utot :=

⋃
i Ui.

Notice that the various sequences

0→ F ′(Ui)→ F (Ui)→ Image(d(Ui))→ 0 (10)

are exact. The abelian groups F (Ui) naturally form an inverse system (see [Wei94, Appendix A.5] or more
concretely [AM69, p. 103]). Furthermore, by the sheaf property, the natural map

F (Utot)→ lim←−
i

F (Ui)

is an isomorphism. A similar statement is true for F ′. Using these isomorphisms and applying lim←−i to the
sequences (10), we obtain a sequence

0→ F ′(Utot)→ F (Utot)→ lim←−
i

(Image(d(Ui)))→ 0. (11)

We assert that the sequence (11) is exact. This implies in particular that we have a natural isomorphism
Image(d(Utot)) ' lim←−i(Image(d(Ui))). Now it is a consequence of [AM69, Prop. 10.2, p. 104], (whose proof
the reader is encouraged to read) that the inverse limit of the sequence (10) will be exact if the various
arrows in the inverse system of the F ′(Ui) are surjective. This is true here by the assumption that F ′ is
flasque and we have thus proven the assertion.

Fix now an element σ ∈ F ′′(X). Consider the collection AC of open sets U in X such that in the sequence

0→ F ′(U)→ F (U)→ F ′′(U)

we have σ|U ∈ Image(d(U)). Consider the partial order on AC given by inclusion. By the assertion proven
above, every totally ordered subset of AC has an upper bound. It thus follows from Zorn’s lemma ([AM69,
bottom of p. 3]) that there is a maximal element Umax in AC. If Umax = X , we are done. Otherwise, let
x ∈ X\Umax. Let V be an open neighbourhood of x. We choose V sufficiently small so that in the sequence

0→ F ′(V )→ F (V )
d(V )→ F ′′(V )

we have σ|V ∈ Image(d(V )). Now consider the sequence

0→ F ′(Umax ∪ V )→ F (Umax ∪ V )
d(Umax∪V )→ F ′′(Umax ∪ V ).

Let lUmax be a lifting of σ|Umax ∈ F ′′(Umax) to F (Umax) (ie an element such that d(Umax)(lUmax) = σ|Umax ).
Let lV be a lifting of σ|V . The element (lUmax − lV )Umax∩V lies by construction in ker(d(Umax ∩ V )). Let
e ∈ F ′(X) such that

d′(Umax ∩ V )(e|Umax∩V ) = (lUmax
− lV )Umax∩V

This exists because the mapping F ′(X) → F (Umax ∩ V ) is surjective, since F ′ is assumed flasque. Now
replace lUmax

by lUmax
− d′(Umax)(e|Umax

). We now have elements lUmax
∈ F (Umax) and lV ∈ F (V ) lifting

σ|Umax
and σ|V respectively and such that (lUmax

− lV )Umax∩V = 0. By the sheaf property of F , there is thus
an element l ∈ F (Umax

⋃
V ) such that l|Umax

= lUmax
and l|V = lV and thus d(Umax ∩ V )(l) = σ|Umax∪V .
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This contradicts the maximality of Umax and thus we must have X = Umax, which concludes the proof of
(a).

(b): Let U, V ∈ Top(X) with U ⊆ V . Consider the commutative diagram

0 // F ′(V ) //

(1)

��

F (V ) //

(2)

��

F ′′(V ) //

(3)

��

0

0 // F ′(U) // F (U) // F ′′(U) // 0

Both rows in this diagram are exact by (a). Furthermore the vertical restriction arrows (1) and (2) are
surjective by assumption. By the five Lemma ([Wei94, 1.3.3, p. 13]), we conclude that (3) is also surjective,
which is what we want to prove.

Lemma 1.21. If I is an injective sheaf on X , then I is flasque.

Proof. Let Z be the sheaf on X defined by

Z(U) = {locally constant maps U → Z}

for U ∈ Top(X). Note that Z(U) is naturally isomorphic to ZConn(U), where Conn(U) is the set of connected
components of U .

Let U0, V0 ∈ Top(X) with U0 ⊆ V0. We define OU0
as the sheaf generated by the presheaf described by the

rule
U ∈ Top(X) 7→ 0 if U 6⊆ U0

U ∈ Top(X) 7→ Z(U) if U ⊆ U0

We have an evident exact sequence
0→ OU0

→ OV0

(for exactness look at the stalks). Thus, if I is an injective sheaf, we have a surjective map

Mor(OV0
, I)→ Mor(OU0

, I)

But there are natural identifications Mor(OV0 , I) ' I(V0) and Mor(OU0 , I) = I(U0) (to see this, first suppose
that U0 and V0 are connected and generalise from there). We thus have a surjection

I(V0)→ I(U0)

which is what we wanted to prove.

Proposition 1.22. If F is flasque then Hk(X,F ) = 0 for all k > 0.

Proof. Suppose that F is flasque. Let F → I be an injection of F into an injective sheaf. Such an injection
exists by Theorem 1.13. Consider the sequence

0→ F → I → I/F → 0 (12)

where I/F is the quotient of I by F . Recall that by Lemma 1.21, the sheaf I is flasque. Now consider the
long exact cohomology sequence (see Theorem 1.3) of (12). We get

0→ F (X)→ I(X)→ (I/F )(X)→ H1(X,F )→ H1(X, I)→ . . . (13)
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Now by construction H1(X, I) = 0. On the other hand by Lemma 1.20 (a), the map I(X) → (I/F )(X) is
surjective. We deduce that H1(X,F ) = 0. Now I/F is also flasque by Lemma 1.20 (b) and Lemma 1.21.
HenceH1(X, I/F ) = 0 as well and looking at the sequence 13 again, we see thatH2(X,F ) = 0. Continuing
in this way, we deduce that for all k > 0, we have Hk(X,F ) = 0.

Complement 1.23. (keeping the notation and assumptions of Proposition 1.22) A similar reasoning show
that if f : X → Y is a continuous map of topological spaces, then Rkf∗(F ) = 0 for all k > 0.

Corollary 1.24 (Leray spectral sequence). Let f : X → Y , g : Y → Z be continuous map between topological
spaces. Let F • be a finite cochain complex of sheaves on X . Then there is an E2 cohomological spectral sequence

Epq2 = Rpg∗(R
qf∗(F

•))⇒ Rp+q(g ◦ f)∗(F
•)

which is functorial in F •.

Proof. Let I• be an injective resolution of F •. Since the Ik are flasque by Lemma 1.21, the sheaves f∗(Ik)

are also flasque. Hence by Exercise 1.5, we have

Rp+qg∗(f∗(I
•)) = Hp+q((g ◦ f)∗(I

•)) = Rp+q(g ◦ f)∗(F
•)

and Theorem 1.4 gives us a spectral sequence

Epq2 = Rpg∗(Hp(f∗(I•))) = Rpg∗(R
qf∗(F

•))→ Rp+qg∗(f∗(I
•)) = Rp+q(g ◦ f)∗(F

•).
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1.4 Exercises

Exercise 1.1 (Yoneda’s lemma). Let C be a category. Let SetsC
opp

be the category of set-valued contravariant
functors from C to Sets. Prove that MorC(•, C) defines a contravariant functor hC : C → Sets for each object C of
C. Prove that h• defines a fully faithful functor C → SetsC

opp

.

Exercise 1.2. Let A and B be two abelian categories. Let L : B → A (resp. R : A → B) be additive functors.
Suppose that L is left adjoint to R (see [Wei94, Appendix A.6]). Then L is right-exact and R is left-exact.

Exercise 1.3. Prove Lemma 1.1.

Exercise 1.4. Prove Lemma 1.2.

Exercise 1.5. Show that Theorem 1.4 implies Theorem 1.3. Let A be an abelian category with enough injectives and
let F : A → B be a left-exact functor to another abelian category. We say that an object A of A is F -acyclic if
RkF (A) = 0 for all k > 0. Show that if A is an object of A and C• is a resolution of A, such that Ck is F -acyclic
for all k ∈ Z, then there is a natural isomorphism RkF (A) ' Hk(C•) for all k ∈ Z.

Exercise 1.6. Prove the assertions after Definition 1.7.

Exercise 1.7. Let φ : F → G be a morphism of sheaves on a topological space X . In the text, we defined the kernel
ker(φ) of φ as the presheaf

U ∈ Top(X) 7→ ker(φ(U))

Prove that ker(φ) is a sheaf.

Exercise 1.8. Prove Proposition 1.10.

Exercise 1.9. Let f : X → Y be a topological space. Prove from the definition that f∗ : Ab(X) → Ab(Y ) is a left
exact functor. Prove that f−1 is an exact functor.

Exercise 1.10. Show that an abelian group G is injective in the category Ab if G is divisible (ie for all n ∈ Z\{0},
the ’multiplication by n’ map G→ G is surjective). Show that the category Ab has enough injectives.

Exercise 1.11. Let C• be a cochain complex of sheaves on a topological space X . Suppose that for all U ∈ Top(X),
the complex C•(U) is exact. Prove that C• is exact.
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2 Schemes. Quasi-coherent sheaves.

A ringed space is a topological space X together with a sheaf of rings OX on X . The ringed space (X,OX)

is said to be locally ringed if the stalks OX,x are local rings for all x ∈ X . In that case we will often write
mx ⊆ OX,x for the maximal ideal and κ(x) := OX,x/mx for the residue field of OX,x.

A morphism of ringed spaces (f, f#) : (X,OX) → (Y,OY ) is a continuous map f : X → Y together with a
morphism of sheaves of rings f# : OY → f∗OX . If (X,OX) and (Y,OY ) are locally ringed, we say that
(f, f#) is local or that it is a morphism of locally ringed spaces if for all x ∈ X , the induced map of stalks
Of(x) → Ox is a local morphism of rings.

Recall that a morphism of local rings φ : R → T is said to be local if φ(mR) ⊆ (mT ). Here mT (resp. mR) is
maximal ideal of T (resp. R).

If (f, f#) : (X,OX) → (Y,OY ) and (g, g#) : (Y,OY ) → (Z,OZ) are morphisms of ringed spaces, the
composition (h, h#) = (g, g#) ◦ (f, f#) : (X,OX) → (Z,OZ) is defined in the following way. We let
h := g ◦ f (in the sense of composition of maps). The morphism of sheaves h# : OZ → h∗(OX) is defined
as the unique morphism h# making the following diagram commutative:

g∗(OY )
g∗(f

#) // g∗(f∗(OX))

OZ

g#

OO

h#
// (g ◦ f)∗(OX) = h∗(OX)

'

OO

2.1 Affine schemes

Let R be a ring. We define Spec(R) as the set of prime ideals of R. If a ⊆ R is an ideal, we define

V (a) := {p ∈ Spec(R) | p ⊇ a}

Lemma 2.1. The symbol V (•) has the following properties:

• V (a) ∪ V (b) = V (a · b);

•
⋂
i∈I V (ai) = V (

∑
i ai);

• V (R) = ∅; V ((0)) = Spec(R).

Proof. This is Exercise 2.2.

An immediate consequence of Lemma 2.1 is that the sets V (a) (a an ideal of R) form the closed sets of a
topology on Spec(R). This topology is called the Zariski topology. The closed points in Spec(R) are precisely
the maximal ideals of R.

Lemma 2.2. Let f ∈ R. The set
Df (R) = Df = {p ∈ Spec(R) | f 6∈ p}

is open in Spec(R). The open sets of Spec(R) of the form Df form a basis for the Zariski topology of Spec(R).
Furthermore, the topology of Spec(R) is quasi-compact.
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The open sets of the form Df are often called basic open sets (in Spec(R)). Recall that a set B of open sets
of a topological space X is said to be a basis for the topology of X if every open set of X can be written as
a union of open sets in B. A topological space X is called quasi-compact if: for every family (Ui∈I) of open
sets in X such that

⋃
i∈I Ui = X there exists a finite subset I0 ⊆ I such that

⋃
i∈I0 Ui = X .

Proof. We shall prove that Df is open. To see this, just notice that the complement of Df in Spec(R) is
precisely V ((f)), where (f) is the ideal generated by f .

We now prove that the open sets of Spec(R) of the formDf form a basis for the Zariski topology of Spec(R).
Let a be an ideal. We have to show that the set

Spec(R)\V (a) := {p ∈ Spec(R) | p 6⊇ a}

is equal to
⋃
i∈I Dr(i) for some index set I and some function r : I → R. Let r : I → a be an enumeration

of a set of generators of a. In view of Lemma 2.1, we have the required equality.

Finally, we show that Spec(R) is quasi-compact. In view of the fact that the open sets of Spec(R) of the
form Df form a basis for the Zariski topology of Spec(R), we only need to show that if

Spec(R) =
⋃
i∈I

Dr(i) (14)

where r : I → R is a some function, then there is a finite subset I0 ⊆ I such that Spec(R) =
⋃
i∈I0 Dr(i).

Now notice that by Lemma 2.1 and the proof of the first statement of the present lemma, the equality (14)
is equivalent to the equality ⋂

i∈I
V ((r(i))) = V ((r(I))) = ∅ (15)

where we have used the short-hand (r(I)) for the ideal generated by all the r(i). Now the equality
V ((r(I))) = ∅ says that no prime ideal contains (r(I)). This is only possible if (r(I)) = R, for other-
wise (r(I)) would be contained in at least one maximal ideal and maximal ideals are prime (see [AM69, I,
Cor. 1.4]). Now choose a finite subset I0 ⊆ I and a map c : I0 → R such that 1 =

∑
i∈I0 c(i) · r(i). We then

have
∑
i∈I0(r(i)) = R and thus

⋂
i∈I0 V ((r(i))) = ∅, which is what we want.

Lemma 2.3. Let a, b be ideals in R. Then V (a) = V (b) if and only if
√
a =
√
b.

Here
√
a is the nilradical of a (see [AM69, p. 5]).

Proof. Exercise 2.3.

In particular, there is a one to one correspondence between radical ideals in R and closed subsets of
Spec(R). If a, b are radical ideals then a ⊆ b if and only if V (a) ⊆ V (b). Recall that an ideal a is called
radical if

√
a = a.

Remark 2.4. Let R be a commutative ring and let a, b be two ideals in R. Then we have

(a ∩ b) · (a ∩ b) ⊆ a · b ⊆ a ∩ b

and thus
√
a · b =

√
a ∩ b. In particular, we have

V (a · b) = V (a ∩ b).

Note that if a and b are radical ideals then a ∩ b is also a radical ideal, whereas a · b might not be.
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We wish to make Spec(R) into a locally ringed space. We define a sheaf of rings on Spec(R) as follows. For
U ∈ Top(Spec(R)), let

OSpec(R)(U) := {s : U →
∐

p∈Spec(R)

Rp | for all p ∈ U we have s(p) ∈ Rp

and for all p ∈ U there is a, r ∈ R and V ∈ Top(U)

such that Dr(R) ⊇ V and s(q) =
a

r
for all q ∈ V } (16)

This formula clearly defines a sheaf on rings on Spec(R).

Proposition 2.5. (a) For all r ∈ R, we have a canonical isomorphism OSpec(R)(Dr(R)) ' Rr.

(b) If t ∈ R and t ∈ (r) then there is a commutative diagram

OSpec(R)(Dr) //

'
��

OSpec(R)(Dt)

'
��

Rr // Rt

where the vertical isomorphisms come from (a).

(c) There is a natural isomorphismOSpec(R),p ' Rp for all p ∈ Spec(R). This isomorphism fits in a commutative
diagram

OSpec(R),p
' // Rp

OSpec(R)(Spec(R))

OO

' // R

OO

Here the vertical morphisms are the natural ones and the lower horizontal one comes from (a).

Proof. (a): there is a map Q : Rr → OSpec(R)(Dr(R)) given by the formula

Q(
v

r
) = map s : Dr →

∐
p∈Spec(R)

Rp such that s(p) is the image of vr in Rp for all p ∈ Dr.

This is the sought canonical map. We wish to show that this map is an isomorphism.

The map Q is injective. The kernel of Q consists of elements v/r ∈ Rr such that the image of v/r in Rp

vanishes for all p ∈ Spec(R) such that r 6∈ p. Now suppose that v/r ∈ ker(Q) and that v/r 6= 0. Let

Ann(v/r) := {z ∈ Rr | z ·
v

r
= 0}

This is an ideal of Rr, called the annihilator of v/r. Since v/r 6= 0, the ideal Ann(v/r) is not equal to Rr. Let
m be a maximal ideal containing Ann(v/r) (see [AM69, Cor. 1.4, p . 4] for this). Then the image of v/r in
Rm does not vanish by construction. Thus v/r must vanish.

The map Q is surjective. Suppose given s ∈ OSpec(R)(Dr). We now that in the neighbourhood of every point
of Dr, the map s is represented by a fraction (in the sense of (16)). Since the sets of the form Dl form a basis
for the topology of Spec(R) and since Dr is quasi-compact (see Remark 2.6 below)), there are r1, . . . rn ∈ R
such that Dri ⊆ Dr for all ri, such that

⋃
iDri = Dr there are a1, . . . an ∈ R such that s is represented

on Dri by ai/ri. Now Dri ∩ Drj = Drirj and thus using the fact that Q is injective, we see that we have
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ai/ri = aj/rj in Rrirj . By the definition of localisation, this means that there is l > 0, which may be taken
to be independent of i, j, such that

(rirj)
lrjai = (rirj)

lriaj

Now using the assumption and Lemma 2.3, we see that there are b1, . . . , bn ∈ R and e > 1 such that

re =
∑
i

bir
l+1
i .

Let v :=
∑
i bir

l
iai. We compute

vrl+1
j =

∑
i

bir
l
ir
l+1
j ai =

∑
i

bir
l+1
i rljaj = rerljaj

so that
v

re
=
aj
rj

in Rrj . In other words, v/re is an element of Dr whose image in OSpec(R)(Dr) is s.

(b): unwind the definitions.

(c): in view of Lemma 2.2, we have a natural isomorphism

lim−→r∈R;r 6∈pOSpec(R)(Dr)

By (a) and (b), this ring is naturally isomorphic to lim−→r∈R;r 6∈pRr, which can be identified with Rp. See
Exercise 2.4.

Suppose now given a morphism of rings φ : R → T . We obtain a continuous map Spec(φ) : Spec(T ) →
Spec(R) by the formula

Spec(φ)(p) := φ−1(p)

Remark 2.6. Notice for r ∈ R, we have Dr(R) = Spec(R → Rr)(Spec(Rr)). This shows that Dr(R) is also
quasi-compact.

Furthermore, we define a morphism of sheaves of rings

φ# : OSpec(R) → Spec(φ)∗(OSpec(T ))

as follows. By the sheaf property, it is sufficient to provide for all r ∈ R maps of rings

OSpec(R)(Dr(R))→ Spec(φ)∗(OSpec(T ))(Dr(R))

which are compatible with the inclusion mapsDt → Dr when t ∈ (r). Now we haveOSpec(R)(Dr(R)) ' Rr
and

Spec(φ)∗(OSpec(T ))(Dr(R)) ' Tφ(r)

by Proposition 2.5(a) and the definition of the direct image sheaf. Furthermore, there is a natural map of
rings Rr → Tφ(r), which is induced by φ. This map is obviously compatible with inclusion maps Dt → Dr

when t ∈ (r). Using Proposition 2.5(b), we conclude that we have indeed obtained for all r ∈ R maps of
rings

OSpec(R)(Dr(R))→ Spec(φ)∗(OSpec(T ))(Dr(R))
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which are compatible with the inclusion maps Dt → Dr when t ∈ (r).

All in all we have associated with any ring R a locally ringed space (Spec(R),OSpec(R)) and we have
associated with any morphism φ : R → T of rings a morphism of ringed spaces (Spec(φ), φ#), which can
easily be shown to be local using Proposition 2.5(c). We have in fact defined a contravariant functor from
the category of rings to the category of locally rings spaces. We skip the details (which are not difficult to
verify) that the process that we have described is indeed functorial.

Lemma 2.7. The above functor is fully faithful.

Proof. We start with a morphism of locally ringed spaces

(f, f#) : (Spec(T ),OSpec(T ))→ (Spec(R),OSpec(R)).

We are thus given a morphism of sheaves of rings

OSpec(R) → f∗(OSpec(T ))

and thus a morphism of rings

φ : R ' OSpec(R)(Spec(R))→ f∗(OSpec(T ))(Spec(R)) ' T

we shall be done if we can show that (f, f#) = (Spec(φ), φ#). We shall first show that f = Spec(φ). We
need to show that φ−1(p) = f(p) for all p ∈ Spec(T ). Now we know that the morphism of rings

f#
p : OSpec(R),f(p) → OSpec(T ),p

is local (because (f, f#) is a morphism of locally ringed spaces). In view of Proposition 2.5(c), this morphism
fits in a commutative diagram

R

lf(p)

��

φ // T

lp

��
OSpec(R),f(p)

f#
p // OSpec(T ),p

where the vertical maps are the localisation maps. We compute

φ−1(p) = φ−1(l−1
p (mOSpec(T ),p

)) = l−1
f(p(f#,−1

p (mOSpec(T ),p
)) = l−1

f(p)(mOSpec(R),f(p)
) = f(p).

Here we have used the fact that f#
p is local in the third equality. The diagram also shows that f#

p = φp.

Hence, we see that the morphisms of sheaves φ# and f# coincide on the stalks. This shows that there are
equal.

A locally ringed space isomorphic to a space (Spec(R),OSpec(R)) is called affine.

We shall write Aff for the category of affine schemes and CRings for the category of unital commutative
rings.

2.2 Schemes

Definition 2.8. A scheme is a locally ringed space X such that every point x in X has an open neighbourhood U ,
which is isomorphic to an affine scheme as a locally ringed space. A morphism of schemes is a morphism of locally
ringed spaces.
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We shall write Schemes for the category of schemes.

Definition 2.9. A scheme X is locally noetherian it is has an open covering (Ui∈I ∈ Top(X)) such that each Ui is
isomorphic to an affine scheme (Spec(Ri),OSpec(Ri)), where Ri is a noetherian ring.

Recall that a ring is noetherian, if every ideal of R is finitely generated as an R-module. This is equivalent
to the following properties:

• if M is a finitely generated R-module and N is a submodule of M , then N is also finitely generated;

• if I0 ⊆ I1 ⊆ I2 ⊆ . . . is an ascending family of ideals of R, then there is an index i such that

Ii = Ii+1 = Ii+2 = . . .

These equivalences are the object of Exercise 2.5. It is also shown there that the localisation of a noetherian
ring is noetherian.

Proposition 2.10. A scheme X is locally noetherian if and only if for any open subset U of X , which is isomorphic
to an affine scheme (Spec(R),OSpec(R)) as a locally ringed space, the ring R is noetherian.

Proof. By simple logical reductions using Exercise 2.5 and Lemma 2.2, the statement of the theorem can
be shown to be equivalent to the following statement of commutative algebra. Let R be a ring. Let
f1, . . . , fn ∈ R be such that the ideal (f1, . . . fn) generated by the fi is R. If Rfi is noetherian for all i,
then R is noetherian. This is what we shall prove.

So let J ⊆ R be an ideal. Let φi : R→ Rfi be the natural maps. We shall first prove the equality

J =
⋂

i∈{1,...,n}

φ−1
i (φi(J)Rfi) (17)

Here φi(J)Rfi is the ideal in Rfi generated by φi(J). We clearly have

J ⊆
⋂

i∈{1,...,n}

φ−1
i (φi(J)Rfi).

For the reverse inclusion, let b ∈
⋂
i∈{1,...,n} φ

−1
i (φi(J)Rfi). For each index i, let ai ∈ R and mi > 0 be such

that φi(b) = ai/f
mi
i , where ai ∈ J. My may assume wrog that all mi are equal to one m ∈ N. There is then

one k ∈ N such that
fki (fmi b− ai) = 0

for all indices i. Hence fk+m
i b ∈ J for all i. Now from the assumption that (f1, . . . fn) = R and Lemma 2.3,

we see that there are elements ci ∈ R such that∑
i

cif
k+m
i = 1

Thus b ∈ J , establishing the equality (17). Now consider an ascending sequence of ideals

J0 ⊆ J1 ⊆ . . .

of ideals of R. For each index i, we have

φi(J0)Rfi ⊆ φi(J1)Rfi ⊆ . . . (18)
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and since the Rfi are assumed noetherian, the sequence (18) becomes stationary at an index k0, which may
be chosen independently of i. Using (17), we conclude that the sequence (2.2) also becomes stationary at
the index k0.

A scheme X is noetherian if it is quasi-compact as a topological space and locally noetherian.

A topological space T is called noetherian if for any descending sequence

C0 ⊇ C1 ⊇ C2 ⊇ . . .

of closed subsets of T , there is an index i such that

Ci = Ci+1 = Ci+2 = . . .

Lemma 2.11. A noetherian topological space is quasi-compact.

Proof. Exercise 2.17.

We record the following lemma, which is a consequence of the definitions:

Lemma 2.12. A noetherian scheme is noetherian as a topological space.

A scheme X is reduced if for all U ∈ Top(X), the ring OX(U) has no nilpotent elements. A scheme X is
integral, if for all U ∈ Top(X), the ring OX(U) is a domain (also called an integral ring).

Properties of morphisms of schemes.

Let X be a scheme. An open affine covering (Ui∈I) of X is a family of open subsets Ui of X such that

•
⋃
i Ui = X ;

• ifUi is endowed with the structure of locally ringed space coming fromX , thenUi is an affine scheme.

Let (f, f#) : X → Y be a morphism of schemes.

• (f, f#) is quasi-compact if there is an open affine covering (Vi) of Y such that f−1(Vi) is quasi-compact
for all i.

• (f, f#) is locally of finite type if f there is a an open affine covering (Vi) of Y and for each i an open
affine covering (Uij) of f−1(Vi) such thatOX(Uij) is a finitely generatedOY (Vi)-algebra via the mor-
phism (f, f#).

• (f, f#) is of finite type of it is quasi-compact and locally of finite type.

• (f, f#) is a closed immersion if the following conditions are satisfied: the image of f is closed, f is a
homeomorphism of X onto f(X) and the morphism of sheaves f# : OY → f∗OX is surjective. We
then say that X is a closed subscheme of Y via (f, f#) or simply that f(X) is a closed subscheme of Y .

• (f, f#) is an open immersion if f(X) is open, f is a homeomorphism onto its image and the mapping
of stalks f#

y : Oy → (f∗OX)y is an isomorphism for all y ∈ f(X). We then say that X is an open
subscheme of Y via (f, f#) or simply that f(X) is an open subscheme of X .
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• (f, f#) is affine if there is an open affine covering (Vi) of Y such that f−1(Vi) is affine for all i.

The notion of affine morphism, morphism locally of finite type and quasi-compact morphism are indepen-
dent of the affine covering appearing in their definitions: see Exercise 2.6.

We shall often use the short-hand

’f : X → Y is a morphism of schemes’

for

’(f, f#) : X → Y is a morphism of schemes’.

The next Proposition explains how to glue schemes.

Suppose given (Ui) a family of schemes and for each pair of indices ij an open subscheme Uij → Ui

Suppose given isomorphisms φij : Uij
∼→ Uji for all indices i, j, satisfying the properties (1), (2), (3) below.

(1) Uii = Ui;

(2) φij(Uij ∩ Uik) ⊆ Ujk;

(3) φik|Uij∩Uik = φjk ◦ φij |Uij∩Uik as morphisms Uij ∩ Uik → Uk.

for all indices i, j, k.

If the (Ui) are open subschemes of a given scheme X , then we may define

Uij := Ui ∩ Uj

and define the morphisms φij in the obvious way. These φij satisfy (1), (2), (3) by construction. The
following proposition is a converse.

Proposition 2.13. There is up to unique isomorphism a scheme X with the following properties. There are open
immersions ψi : Ui → X such that

⋃
i ψi(Ui) = X and such that ψj ◦ φij = ψi|Uij .

Proof. See Exercise 2.7.

The following lemma records how to glue morphisms.

Lemma 2.14. Let X and Y be schemes. Let (Ui) be a covering of X by open subschemes. For all indices i, j, let
(uij , u

#
ij) : Uij := Ui∩Uj → Ui be the natural open immersion. To give a morphism (f, f#) : X → Y is equivalent

to giving morphisms (fi, f
#
i ) : Ui → Y for all i with the property that (fi, f

#
i ) ◦ (uij , u

#
ij) = (fj , f

#
j ) ◦ (uji, u

#
ji)

for all i, j.

Proof. If a morphism f is given, then the morphisms (fi, f
#
i ) obtained by restricting (f, f#) to Ui will

have the advertised property. On the other hand, suppose given a family of (fi, f
#
i ) : Ui → Y with the

advertised property. We define in the obvious manner a map f : X → Y restricting to the various fi. It
remains to define a morphism of sheaves of rings

OY → f∗OX
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Notice that it is equivalent to give a morphism of sheaves of rings f−1(OY ) → OX (see Proposition 1.11).
Now we have morphisms of sheaves of rings

f−1(OY )|Ui = f−1
i (OY )→ OX

coming from the morphisms (fi, f
#
i ). The fact that for all i, j we have

(fi, f
#
i ) ◦ (uij , u

#
ij) = (fj , f

#
j ) ◦ (uji, u

#
ji)

implies that the morphisms f−1(OY )|Ui → OX glue to give a global morphism of sheaves f−1(OY ) →
OX in the sense of Complement 1.18 (we encourage the reader to write out the relevant commutative
diagrams).

Lemma 2.15. Let X,Y be schemes. The functor Top(X)→ Sets such

U ∈ Top(X) 7→ Mor(U, Y )

is a sheaf.

Proof. This is Exercise 2.18.

Fibre products of schemes.

Let C be a category. Let (Ci) (i = 1, . . . , n) be a finite family of objects in C. Recall that the product (resp.
coproduct)

C1 × · · · × Cn =
∏
i

Ci

(resp.
C1

∐
C2

∐
· · ·
∐

Cn =
∐
i

Ci)

of the Ci (it it exists) is an object P of C together with arrows πi : P → Ci (resp. πi : Ci → P ), characterised
by the following property. If P ′ is another object together with arrows π′i : P ′ → Ci (resp. π′i : Ci → P ′),
then there is a unique arrow u : P ′ → P (resp. u : P → P ′) such that πi ◦ u = π′i (resp. u ◦ πi = π′i)
for all i. By its very definition, the product P is unique up to unique isomorphism. Notice also that the
coproduct of the Ci is just the product of the Ci viewed as objects of the category Copp opposite to C. See
[Wei94, Appendix A.5, p. 428] for all this.

If C is an object of C, we shall write C/C for the following category. The objects of C/C are morphisms
D → C in C. A morphism from φ : D → C to λ : E → C is a morphism µ : D → E such that λ ◦ µ = φ.

The morphism µ, viewed as a morphism in C, is often called a C-morphism. The category C/C is called the
category of C-objects (associated with C and C).

One often writes D ×C E for the product of D → C and E → C in C/C (if it exists). It is sometimes called
the fibre product of D and E over C.

Proposition 2.16. Let S be a scheme. Finite products exist in Schemes/S.

Proof. Sketch. It is sufficient to prove the result for n = 2. So suppose that we are given schemes X1, X2, S

and morphisms X1 → S, X2 → S. Suppose first that X1, X2 and S are all affine schemes. Let Spec(B1) =
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X1, Spec(B2) = X2, S = Spec(A).The tensor product of A-algebras B1 ⊗A B2 (see [AM69, p. 30]) is by
definition a coproduct in the category of A-algebras. In view of Lemma 2.7, we see that

X := (Spec(B1 ⊗A B1),OSpec(B1⊗AB1))

together with the scheme morphisms coming from the ring morphisms

B1
b1 7→b1⊗1→ B1 ⊗A B2

and
B2

b1 7→1⊗b2→ B1 ⊗A B2

is a product in the full subcategory of Schemes/S consisting of affine schemes.

We shall show that X is in fact a product in the category Schemes/S. Suppose given another S-scheme
X ′ → S and S-morphisms π′1 : X ′ → X1 and π′2 : X ′ → X2. Let (Ui) be an open affine covering of X ′.
By restriction Ui also comes with two morphisms Ui → X1 and Ui → X2 and since X is a product in the
category of S-schemes, which are affine, we get a unique morphism ρi : Ui → X , such that ρi composed
with X → X1 (resp. X → X2) is Ui → X1 (Ui → X2). On Ui ∩ Uj , the morphisms ρi and ρj coincide by
unicity and thus the morphisms glue to a S-morphism ρ : X ′ → X (use Lemma 2.14). This shows that X
is a product in the full category Schemes/S.

In general the fibre product X1 ×S X2 is constructed as follows. Take affine coverings (Ui) of X1 (resp.
(Vj) of X2). The schemes Ui ×S Vj come with natural glueing data satisfying the properties stated before
Proposition 2.13 and we may glue them together using Proposition 2.13. See [Har77, Th. II.3.3, p. 87] for
the details.

Suppose that X → T and S → T are scheme morphisms. The scheme X ×T S together with the natural
morphismX×T S → S is often called the base-change ofX → T to S. One also writesXS instead ofX×T S.

Lemma 2.17. Let (X,OX) be a scheme and let R be a ring. Show that there is a canonical morphism of schemes

(g, g#) : (X,OX)→ (Spec(Γ(X,OX)),OSpec(Γ(X,OX)))

and that every morphism from (X,OX) to an affine scheme factors uniquely through (g, g#).

Proof. See Exercise 2.14.

2.3 Sheaves of modules

Let X be a ringed space. An OX -module or sheaf in OX -modules is an abelian sheaf F , together with a
OX(U)-module structure on F (U) for every open set U ⊆ X , subject to obvious compatibility properties
with respect to inclusions U → V of open sets in X . A morphism of OX -modules F → G is a morphism of
abelian sheaves compatible with the OX -module structure in an obvious sense. The OX -modules form an
additive category ModOX (X), which is abelian. The proof is similar to the proof that Ab(X) is abelian and
will be skipped. We leave it as an exercise to prove the following fact: a sequence in ModOX (X) is exact if
and only if the corresponding sequence in Ab(X) (obtained by forgetting the module structures) is exact.
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Let F and G be OX -modules on X . The tensor product F ⊗OX G is the sheaf generated by the presheaf on
X given by the formula

U 7→ F (U)⊗OX(U) G(U)

This sheaf has a unique structure of OX -module, such that the map

F (U)⊗OX(U) G(U)→ (F ⊗OX G)(U)

is a map of OX(U)-modules for every U ∈ Top(X) (details left to the reader).

Suppose f : X ′ → X ′′ is a continuous map of topological spaces and that X ′′ is ringed by the sheaf of
rings OX′′ . Let F be a sheaf in OX′′ -modules on X ′′. The abelian sheaf f−1(OX′′) is then endowed with a
canonical structure of sheaf of rings, as can be seen by looking at its definition. Furthermore, the abelian
sheaf f−1(F ) inherits an obvious f−1(OX′′)-module structure from the OX′′ -module structure of F on X ′′

(we invite the reader to go through the details of all this).

Let f : Z → X be a morphism of ringed spaces. Let F be a OX -module. We define

f∗(F ) := f−1(F )⊗f−1(OX) OZ .

Here OZ is viewed as a f−1(OX)-module through the canonical map of sheaves of rings f−1(OX) → OZ .
For each U ∈ Top(Z), the group

f−1(F )(U)⊗f−1(OX) OZ(U)

has a OZ(U)-module structure, which comes from the action of OZ(U) on the second factor. There is a
unique structure of OZ-module on f∗(F ) such that for all U ∈ Top(Z), the map

f−1(F )(U)⊗f−1(OX) OZ(U)→ (f−1(F )⊗f−1(OX) OZ)(U) = f∗(U)

is a map of OZ(U)-modules. The proof is straightforward.

Let now F be a OZ-module. The abelian sheaf f∗(F ) is naturally a sheaf in f∗(OZ)-modules. Via the
morphism of sheaves of rings OZ → f∗(OZ), we may thus view f∗(F ) as a OX -module.

Lemma 2.18. The functor f∗ : ModOX (X)→ ModOZ (Z) is left-adjoint to the functor

f∗ : ModOZ (Z)→ ModOX (X).

Proof. See exercise 2.8.

Quasi-coherent sheaves.

Let R be a ring and let M be an R-module. We define a sheaf M̃ on Spec(R) by the recipe

M̃(U) := {s : U →
∐

p∈Spec(R)

Mp | for all p ∈ U we have s(p) ∈Mp

and for all p ∈ U there is a ∈M , r ∈ R and V ∈ Top(U)

such that Dr(R) ⊇ V ⊇ {p} and s(q) =
a

r
for all q ∈ V } (19)
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(notice that the definition (16) is the case M = R).

The sheaf M̃ carries an obvious OSpec(R)-module structure. Also, if M → N is a morphism of R-modules,
there is an obvious associated morphism of OSpec(R)-modules M̃ → Ñ . We have thus defined a functor
from the category of R-modules to the category of OSpec(R)-modules.

Proposition 2.19. (a) For all r ∈ R, we have a canonical isomorphism M̃(Dr(R))
(∗)
' Mr. If we endow

M̃(Dr(R)) with its natural OSpec(R)(Dr(R))-module structure and Mr with its natural Rr-module struc-
ture, then the isomorphism (∗) is compatible with these module structures via the isomorphism of 2.5(a).

(b) If t ∈ R and t ∈ (r) then there is a commutative diagram

M̃(Dr(R)) //

'
��

M̃(Dt(R))

'
��

Mr
// Mt

where the vertical isomorphisms come from (a). The horizontal morphisms are compatible with the various
module structures in an obvious way.

(c) There is a natural isomorphism M̃p ' Mp for all p ∈ Spec(R). This isomorphism fits in a commutative
diagram

M̃p
' // Mp

M̃(Spec(R))

OO

' // M

OO

Here the vertical morphisms are the natural ones and the lower horizontal one comes from (a).

Proof. The proof of this Proposition is similar to the proof of Proposition 2.5. We skip the details.

Corollary 2.20. The functor •̃ from the category of R-modules to the category of OSpec(R)-modules is fully faithful
and exact.

Proof. See Exercise 2.9.

Let now X be a scheme.

Definition 2.21. Let F be a sheaf on OX -modules. The sheaf F is said to be quasi-coherent (resp. coherent) if there

is an open affine covering (Ui) of X , such that F |Ui ' F̃ (Ui) (resp. F |Ui ' F̃ (Ui) and F (Ui) is a finitely generated
OX(Ui)-module).

The full subcategory of Mod(X), which are quasi-coherent, will be denoted Qcoh(X).

Lemma 2.22. Let φ : R → T be a morphism of rings. Let M be a T -module. Then there is a natural isomorphism
of OSpec(R)-modules Spec(φ)∗(M̃) ' M̃0, where M0 is M viewed as an R-module via φ.

Proof. Notice that for all r ∈ R, there a natural isomorphisms of Rr-modules

Spec(φ)∗(M̃)(Dr(R)) = M̃(Spec(φ)−1(Dr(R)) = M̃(Dφ(r)(T )) 'Mφ(r) 'M0,r,
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which are compatible with restrictions Dr(R) ⊇ Dr′(R) for r′ ∈ (r). This follows from Proposition 2.19 (b)
and Exercise 2.10. Now the lemma follows from the fact that the sets Dr(R) form a basis for the topology
of Spec(R) and the fact that Spec(φ)∗(M̃) and M̃0 are both sheaves.

Proposition 2.23. The definition of a quasi-coherent (resp. coherent) sheaf is independent of the open affine covering
appearing in its definition.

Proof. Let X be a scheme. Let F be a quasi-coherent sheaf on X . Let U ⊆ X . We claim first that F |U is also
quasi-coherent. To show this, let (Ui = Spec(Ri)) be an open affine covering of X such that F |Ui ' M̃i for
some Ri-module Mi. For each i, let (Uij) be a covering of U ∩Ui by open subsets of Ui of the form Dfj (Ri).
Then by Proposition 2.19 (b), we have F |Uij ' M̃i,fj on Dfj (Ri) = Spec(Ri,fj ). Since the family of all the
(Uij) form an open affine covering of U , this proves the claim.

Let now (Ui) and (Vj) be two affine coverings of X . The conclusion of the Proposition is that a sheaf F
in OX -modules is quasi-coherent with respect to (Ui) if and only if it is quasi-coherent with respect to
(Vj). Using the above claim and looking for each i at the covering (Ui ∩ Vj) of Ui, we see that to prove the
Proposition, is it sufficient to prove the proposition in the situation where the covering (Ui) consists of a
single affine scheme. In other words, it is sufficient to prove that if X = Spec(R) is affine and F is quasi-
coherent on X with respect to an open affine covering (λj : Vj = Spec(Tj) → X) of X , then F ' M̃ for
some R-module M (in other words, F is in the essential image of the functor •̃). Each Vj can be covered by
open subsets of the formDfkj (R). Hence we may assume that Vj = Spec(Rfj ) for some fj ∈ R and that the
covering (Vj) is finite. Notice that in this situation any finite intersection of Vj is also affine. Now consider
the Cech complex associated with the covering (Vj) of X . By Lemma 2.22 and the previous remark, the
terms of this complex are allOX -modules, which are in the essential image of the functor •̃. Looking at the
two first terms of the Cech complex, we see that it exhibits F as the kernel of a morphism between two
sheaves, which are in the essential image of •̃. We conclude by appealing to Corollary 2.20.

Lemma 2.24. Let R be a noetherian ring and let M be an R-module. Let a be an ideal of R. There is an isomorphism

M̃(Spec(R)\V (a)) ' lim−→nHomR(an,M),

which is natural in M .

Proof. (partial) Let f1, . . . , fk ∈ a be a set of generators of a (such a set exists because R is noetherian).
Define

an := (fn1 , . . . , f
n
k )

For any n > 0, there is a natural map

HomR(an,M)→ HomR(an,M)

and we leave it to the reader to show that these maps induce an isomorphism

lim−→nHomR(an,M) ' lim−→nHomR(an,M)

Note that by Lemma 2.1, we have
Spec(R)\V (a) =

⋃
i

Dfi
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Now let βn0 ∈ HomR(an0 ,M) be a representative of an element β ∈ lim−→nHomR(an,M). For each i, let

βn0
(fn0
i )/fn0

i ∈ M̃(Dfi) = Mfi .

We assert that this element only depends on β and that the βn0
(fn0
i )/fn0

i glue to give an element M̃(Spec(R)\V (a)).

We first prove the first assertion. Let n1 > n0 and suppose that βn1
∈ HomR(an1

,M) also represents β. We
compute

βn0(fn0
i )/fn0

i = βn0(fn0
i · f

n1−n0
i )/fn0+n1−n0

i = βn1(fn1
i )/fn1

i

whence the assertion.

Now to the second assertion. By the sheaf property, in order to glue the βn0
(fn0
i )/fn0

i into an element
M̃(Spec(R)\V (a)), we have to prove that the image of βn0

(fn0
i )/fn0

i in Mfifj is equal to the image of
βn0

(fn0
j )/fn0

j in Mfifj . We compute

image of βn0
(fn0
j )/fn0

j in Mfifj = βn0
(fn0
j · f

n0
i )/(fn0

j · f
n0
i ) = image of βn0

(fn0
i )/fn0

i in Mfifj

proving the second assertion.

We have thus defined a map ι : lim−→nHomR(an,M) → M̃(Spec(R)\V (a)) and it can be verified easily that
this map is a map of abelian groups and that it is natural in M . To conclude the proof of the lemma, it
suffices to show that ι is an isomorphism.

For any n, let anM be the submodule of elements in M , whose annihilator contains an.

Assume first that anM = 0 for all n.

We shall provide an map λ : M̃(Spec(R)\V (a))→ lim−→nHomR(an,M) inverse to ι.

Consider a family of mi/f
l
i ∈ Mfi such that the image of mi/f

l
i in Mfifj is equal to the image of mj/f

l
j in

Mfifj for all i, j. This is a concrete description of an element s ∈ M̃(Spec(R)\V (a)). This implies that for
all i, j we have

(fifj)
l0f ljmi = (fifj)

l0f limj (20)

for some l0 > 0, which we may wrog assume independent of i, j.

We define λ(s) as the element of lim−→nHomR(an,M) represented by the morphism

λl+l0(s) : al+l0 →M

of R-modules, which is defined by the formula

(λl+l0(s))
(∑

i

bif
l+l0
i ) =

∑
i

bimif
l0
i .

This is well-defined, for if
∑
i bif

l+l0
i = 0 then for all j, we have

(λl+l0(s))
(∑

i

bif
l+l0
i

)
f l+l0j = (

∑
i

bimif
l0
i )f l+l0j = (

∑
i

bif
l+l0
i )f l0j mj = 0

by the equations (20) and thus (λl+l0(s))
(∑

i bif
l+l0
i

)
= 0 since anM = 0. It is straightforward to verify

that λ ◦ ι = Id and ι ◦ λ = Id. For the general case where anM 6= 0 for some n, we refer to [Har77, Lemma
II.3.2 and after].
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Let X be a scheme. A subsheaf of OX is called a sheaf of ideals on X . Let J be a quasi-coherent sheaf of
ideals on X .

Proposition 2.25. There exists a closed immersion (z, z#) : Z → X such that J = ker(z#). This immersion is
unique up to unique isomorphism over X .

Proof. See Exercise 2.11.

Permanence properties of quasi-coherent sheaves.

Let X be a ringed space and let (Fi) be a family of OX -modules on X . We write
⊕

i Fi for the sheaf
generated by the presheaf in OX -modules on X sending U ∈ Top(X) to

⊕
i Fi(U).

Let I be an index set. A family ofOX -modules may be viewed as a functor I → Mod(X), where I is viewed
as a category with no arrows. The category of these functors is often denoted by Mod(X)I . The direct sum⊕

i(•) and the product
∏
i(•) can be viewed as functors Mod(X)I → Mod(X).

Lemma 2.26. For any object (Fi) of Mod(X)I and any object G in Mod(X), there is a canonical isomorphism

Mor(
⊕
i

Fi, G) '
∏
i

Mor(Fi, G)

which is natural in (Fi) and G.

Proof. See Exercise 2.12.

In categorical terms, Lemma 2.26 says that the direct sum is a categorical coproduct in the category Mod(X).

Lemma 2.27. Let X be a scheme and let (Fi) be a family of quasi-coherent sheaves on X . Then
⊕

i Fi is quasi-
coherent.

Proof. Let R be a ring and (Mi) be a family of R-modules. If r ∈ R, there is a functorial isomorphism
(
⊕

iMi)r '
⊕

iMi,r (look at the definition of localisation in [AM69, chap. III]). The Lemma follows from
this and Proposition 2.19.

Remark 2.28. A formal consequence of the last two lemmata is the following fact. Let R be a ring and let
(Mi) be a family of R-modules. Then there is a functorial isomorphism of OSpec(R)-modules

˜
(
⊕
i

Mi) '
⊕
i

M̃i

Proposition 2.29. Let φ : R → T be a morphism of rings and let M be an R-module. Then Spec(φ)∗(M̃) is a
quasi-coherent sheaf.

Proof. First notice the following fact. Let (X,OX) := (Spec(R),OSpec(R)). Let G be a OX -module. Then G
is quasi-coherent if and only if there exist index sets I and J and exact sequence of OX -modules⊕

i∈I
OX →

⊕
j∈J
OX → G→ 0 (21)
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To see this, suppose that a OX -module G has a presentation (21).Then by Corollary 2.20 and Remark 2.28
above, we conclude that G is quasi-coherent. On the other hand, if G = M̃ for some R-module then we
may choose a surjection u :

⊕
j∈J R→M and a surjection

⊕
i∈I R→ ker(u). Applying the functor •̃, while

taking into account Remark 2.28, we obtain a presentation (21).

Let (Y,OY ) := (Spec(T ),OSpec(T )). In view of the above fact and the fact that Spec(φ)∗ is right exact, we
see that we are reduced to prove that there is an isomorphism

f∗(
⊕
i

OX) '
⊕
i

OY (22)

To show this, first notice that there is an isomorphism f∗(OX) ' OY . For this notice that by Lemma 2.18,
we have canonical isomorphisms for any OY -module

MorMod(Y )(f
∗(OX), G) ' MorMod(X)(OX , f∗(G)) ' f∗(G)(X) ' G(Y ) ' MorMod(Y )(OY , G)

and thus f∗(OX) and OY represent the same covariant functor. We conclude by appealing to Yoneda’s
lemma. To prove that there is an isomorphism (22), we notice that there are functorial isomorphisms

MorMod(Y )(f
∗(
⊕
i

OX), G) ' MorMod(X)(
⊕
i

OX , f∗(G))

'
∏
i

MorMod(X)(OX , f∗(G)) =
∏
i

f∗(G)(X) =
∏
i

G(Y )

where we have used Lemma 2.26. Thus, we have functorial isomorphisms

MorMod(Y )(
⊕
i

f∗(OX), G) ' MorMod(Y )(
⊕
i

OY , G) =
∏
i

G(Y )

and thus again
⊕

iOY and f∗(
⊕

iOX) represent the same covariant functor and must thus be isomorphic.

Corollary 2.30. In the situation of Proposition 2.29, there is a functorial isomorphism

Spec(φ)∗(M̃) ' M̃ ⊗R T .

Proof. If we combine Proposition 2.29 with Lemma 2.18, Lemma 2.20 and Lemma 2.22, we obtain by re-
striction a pair of adjoint functors f∗ : Qcoh(X) → Qcoh(Y ) and f∗ : Qcoh(Y ) → Qcoh(X) (we abused
the notation slightly). Now by Proposition 2.23, the category Qcoh(Y ) is equivalent to the category of T -
modules (and similarly for X). Furthermore, by Lemma 2.22, in terms of T -modules, the functor f∗ send
a T -module on the same module, viewed as an R-module via φ. Hence the conclusion of the corollary
follows from the fact that there is a functorial isomorphism

MorR(N,M) ' MorT (N ⊗R T,M)

for any R-module N and T -module M . The proof of this fact is left as an exercise (see Exercise 2.13).

Corollary 2.31. Let f : X → Y be a morphism of schemes. Let F be quasi-coherent sheaf on Y . Then f∗(F ) is also
quasi-coherent.

Proposition 2.32. Let f : X → Y be a morphism of schemes. Suppose that X is noetherian. Let F be a quasi-
coherent OX -module. Then f∗(F ) is also quasi-coherent.
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Proof. We may assume wrog that Y is affine. Let (Ui) be a finite open affine cover of X (this exists because
X is quasi-compact) and for all i, j let Uijk be a finite open affine cover of Ui ∩ Uj indexed by k (this exists
by Lemma 2.12). Looking at the beginning of the Cech complex and using the fact that f∗ is left exact as a
functor from ModOX (X) to ModOY (Y ), we see that there is an exact sequence

0→ f∗(F )→
⊕
i

f∗(F |Ui)→
⊕
i,j,k

f∗(F |Uijk)

From this and Corollary 2.20, we see that is sufficient to prove Proposition 2.32 under the assumption that
X is also affine. In this case, it follows from Lemma 2.22.

Relative cohomology of quasi-coherent sheaves.

Let f : X → Y be a morphism of ringed spaces. Let F be an OX -module. It is proven in Exercise 2.1
that Mod(X) has enough injectives and that the injective objects of Mod(X) are flasque. Thus, taking into
account Proposition 1.22 and Exercise 1.5, the abelian sheaves Rkf∗(F ) are naturally OY -modules, which
can be obtained by computing the derived functors of the direct image functor Mod(X)→ Mod(Y ).

Complement 2.33. Let the terminology of Corollary 1.24 hold. Suppose that X , Y and Z are ringed spaces
and that f , g are morphisms of ringed spaces. Suppose that F • is a bounded sequence of OX -modules.
Then the Leray spectral sequence respects the various OZ-module structures. This follows immediately
from the previous remarks.

Proposition 2.34. Let f : X → Y be a morphism of schemes. Let F be a quasi-coherent sheaf on X . Suppose that
X is noetherian. Then the OY -module Rkf∗(F ) is also quasi-coherent.

Proof. Let (ji : Ui → X) be a finite open affine cover of X (recall that X is quasi-compact by definition,
because it is noetherian). By the sheaf property, we have an exact sequence

0→ F →
⊕
i

ji,∗(F |Ui).

On the other hand the quasi-coherent OUi -module F |Ui can be embedded in the OUi -module associated
with an injective Γ(Ui,OUi)-module Ii. Now theOUi -module Ĩi is flasque by Lemma 2.24. Hence the sheaf⊕

i ji,∗(Ĩi) is also flasque and composing morphisms we obtain an exact sequence

0→ F →
⊕
i

ji,∗(Ii)

Repeating this process with the sheaf
⊕

i ji,∗(Ii)/F (which is quasi-coherent by Corollary 2.20) and contin-
uing this way we obtain a sequence

0→ F → F 0 → F 1 → . . .

where all the F k are quasi-coherent and flasque. By Exercise 1.5 and Complement 1.23, we see that

Rkf∗(F ) ' Hk(f∗(F•))

andHk(f∗(F•)) is quasi-coherent by Proposition 2.32 and Corollary 2.20.

37



2.4 Cohomological characterisation of affine schemes.

Proposition 2.35. LetX be a noetherian affine scheme and let F be a quasi-coherent sheaf onX . ThenHk(X,F ) =

0 for all k > 0.

Proof. Suppose X = Spec(R). If I is an injective R-module, it follows from Lemma 2.24 that the sheaf Ĩ is
flasque. The proposition follows from this, Proposition 1.22, Exercise 1.13 and Corollary 2.20.

Lemma 2.36. Let X ' (Spec(R),OSpec(R)) be an affine scheme and let F be a quasi-coherent sheaf on X . Let
f ∈ R and let s0 ∈ F (X) and s1 ∈ F (Df (R)).

(a) If s0|Df (R) = 0 then for some n > 0, we have fn · s0 = 0.

(b) For some n > 0, we have fn · s1 ∈ F (Df (R)→ X)(F (X)).

Proof. Let F ' M̃ for someR-moduleM (see Proposition 2.23). Identify s0 with the corresponding element
of M ' F (X). The condition that s0|Df (R) = 0 corresponds to the condition that the image of s0 in Mf

vanishes (use Proposition 2.19 (b) and Corollary 2.20 or simply the definition of M̃ ) . By the definition of
localisation, the image of s0 in Mf vanishes if and only if there is n > 0 such that fn · s0 = 0 in M . This
proves (a) under the above assumption. The proof of (b) under the same assumption is similar.

Let X be a scheme and f ∈ Γ(X,OX). We define

Xf := {x ∈ X | fx 6∈ maximal ideal of OX,x}

If X = Spec(R), then Xf = Df (R), which is open in X . From this, one can see that Xf is open for any
scheme X .

Lemma 2.37. LetX be a noetherian scheme and let f ∈ Γ(X,OX). Then there is a natural isomorphism Γ(X,OX)f
∼→

Γ(Xf ,OXf ).

Proof. There is a natural restriction map Γ(X,OX)→ Γ(Xf ,OXf ).Now notice that f |Xf is a unit in the ring
Γ(Xf ,OXf ). This follows from the local description of Xf given above, which shows that f |Uf is a unit for
any open affine subscheme U ⊆ X . Hence the map Γ(X,OX) → Γ(Xf ,OXf ) extends uniquely to a map
ρX,f : Γ(X,OX)f → Γ(Xf ,OXf ). Now take a finite open affine covering (Ui) of X and choose a finite open
affine covering Uijk of each Ui ∩ Uj . All this is possible by the noetherian hypothesis. Let t ∈ Γ(Xf ,OXf ).
By Lemma 2.36 (b), for each i, there is an n > 0 such that the element fn · t|Ui∩Xf is the restriction of
some element λi ∈ Γ(Ui,OUi). This n can be taken independent of i, since there is only a finite number
of indices. Furthermore, for each triple of indices i, j, k, the restriction of λi − λj to Uijk is annihilated by
some power of f , by Lemma 2.36 (a). Hence, for a sufficiently large k, the restriction of fk · λi − fk · λj
to Ui ∩ Uj will vanish and hence by the sheaf property, the fk · λi glue to an element λ ∈ Γ(X,OX) such
that ρX,f (λ) = fk+n · t. This proves that ρX,f is surjective. The proof of injectivity is similar and will be
skipped.

Complement 2.38. Suppose that a scheme X has a finite open affine covering (Ui) such that that all the
intersections Ui ∩Uj have finite open affine coverings. Then the proof shows that Lemma 2.37 holds for X ,
even without the noetherian hypothesis.
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Corollary 2.39. Let X be a noetherian scheme and let f1, . . . , fn ∈ Γ(X,OX) be such that (f1, . . . , fn) =

Γ(X,OX). If the open subschemes Xfi are all affine, then X is affine.

Proof. We have for all i a commutative diagram

X
α // Spec(Γ(X,OX))

Xfi

⊆

ff OO

where the straight vertical arrow comes from Lemma 2.37 and the horizontal one comes from Lemma
2.17. The verification of the commutativity of the diagram can be proven by reduction to the case where
X is affine and is left to the reader. Since the morphisms Xf → Spec(Γ(X,OX)) are open immersions
by Lemma 2.37, we see that the restriction of the morphism α to the image of Xfi in Spec(Γ(X,OX)) is
an isomorphism. Since the images of the Xfi cover Spec(Γ(X,OX)) by assumption, we see that α is an
isomorphism.

Lemma 2.40. Let X be a scheme and let C0 ⊆ X be a closed subset. Then there is a quasi-coherent ideal IC0 in X ,
such that the image of the closed immersion C → X associated by Lemma 2.25 with IC0

is C0 and such that C is
reduced. The quasi-coherent ideal IC0

is uniquely determined by these requirements.

Proof. Exercise 2.16.

One often writes C0,red → X for the closed immersion whose existence is asserted in the lemma.

Remark 2.41. (important!) The closed immersion X0,red → X is surjective (prove this!) and is thus a
homeomorphism.

Theorem 2.42 (Serre). Let X be a noetherian scheme and suppose that for all coherent sheaves F on X , we have
H1(X,F ) = 0 for all k > 0. Then X is an affine scheme.

Proof. Let P be a closed point in X . This exists by Exercise 2.15. Let U be an open affine neighbourhood of
P and let Y be the complement of U in X . We view P , Y and P ∪ Y as reduced closed subschemes of X ,
via Lemma 2.40. Let IP , IY and IP∪Y be the corresponding quasi-coherent sheaves of ideals. Note that we
have canonically OP (P ) ' κ(P ) and that this isomorphism describes the sheaf OP entirely.

By construction, we have an exact sequence

0→ IY ∪P → IY → κ(P )→ 0

where κ(P ) denotes the direct image of OP by the closed immersion P → X . Applying Theorem 1.3 to
this sequence and to the functor Γ(X, •), we obtain an exact sequence

Γ(X, IY )→ Γ(X,κ(P ))→ H1(X, IY ∪P )

and since by assumption H1(X, IY ∪P ) = 0, we get a surjection Γ(X, IY ) → Γ(X,κ(P )). Let f ∈ Γ(X, IY )

be such that the image of f in Γ(X,κ(P )) ' κ(P ) is 1. We view f as an element of Γ(X,OX) via the natural
inclusion Γ(X, IY )→ Γ(X,OX).

By construction, we have that P ∈ Xf and also that Xf ⊆ U . In particular, Xf is affine, because it corre-
sponds to a basic open set in U . If X 6= Xf , we now repeat this reasoning for a closed point P2 in X\Xf
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(this is possible because X\Xf is quasi-compact, since X is noetherian) and obtain an affine neighbour-
hood U2 of P2 and f2 ∈ Γ(X,OX) such that P2 ∈ Xf2 andXf2 is affine and we repeat it for P3 ∈ X\Xf∪Xf2

etc. The sequence of the Xfi must stop after a finite number of steps, and thus cover X , because X is a
noetherian topological space (by Lemma 2.12).

We can thus exhibit a finite sequence f1, . . . , fn ∈ Γ(X,OX) such thatXfi is affine for all i and such that the
Xfi cover X . By Lemma 2.39, we shall be able to conclude if we can show that the fi generate Γ(X,OX).

To see this, consider the morphism of sheaves

n⊕
i=1

OX → OX

sending local sections (s1, . . . , sn) to
∑
i fi · si. This morphism is surjective, because the Xfi cover X

(check this surjectivity locally and use Lemma 2.1). Applying Theorem 1.3, Corollary 2.20 and using the
assumptions we obtain a surjection

n⊕
i=1

Γ(X,OX)→ Γ(X,OX).

In other words, the fi generate Γ(X,OX).

2.5 Exercises

Exercise 2.1. Let X be a ringed space. Prove that Mod(X) has enough injectives. Prove that injective objects in
Mod(X) are flasque as abelian sheaves.

Exercise 2.2. Prove Lemma 2.1.

Exercise 2.3. Prove Lemma 2.3.

Exercise 2.4. Let R be a ring and p a prime ideal of R. Show that there is a natural isomorphism

lim−→r∈R;r 6∈pRr ' Rp

Here the arrows in the inductive system are defined as follows. If r′ is a multiple of r then the arrow is the natural
map Rr → Rr′ . Otherwise there is no arrow.

Exercise 2.5. (see the beginning of Subsection 2.2) Let R be a ring. Show that R is noetherian if and only if the
submodules of any finitely generated R-module M are all finitely generated as well. Show that R is noetherian if
and only if any ascending sequence of ideals of R becomes stationary after a finite number of steps. Show that a
localisation of a noetherian ring is noetherian.

Exercise 2.6. Show that if a morphism is affine (resp. locally of finite type, resp. quasi-compact) with respect to a
certain open affine covering then it is affine (resp. locally of finite type, resp. quasi-compact) with respect to any open
affine covering.

Exercise 2.7. Prove Proposition 2.13. Hint: proceed as in the proof of Proposition 1.17.

Exercise 2.8. Prove Lemma 2.18.

Exercise 2.9. Prove Corollary 2.20.
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Exercise 2.10. Let φ : R→ T be a morphism of rings and let M be a T -module. Let S ⊆ R be a multiplicative set.
Let M0 be M viewed as an R-module. Then there is a natural isomorphism of RS-modules M0,S ' Mφ(S) and this
morphism is compatible with inclusions of S′ ⊆ S of multiplicative sets.

Exercise 2.11. Prove Proposition 2.25.

Exercise 2.12. Prove Lemma 2.26. Hint: Consider the case of X =(a point) first.

Exercise 2.13. Let φ : R→ T be a morphism of rings. Let N be an R-module and M a T -module. Show that there
is a functorial isomorphism

MorR(N,M) ' MorT (N ⊗R T,M)

where in the expression MorR(N,M), M is viewed as an R-module via φ.

Exercise 2.14. Prove Lemma 2.17.

Exercise 2.15. Let X be a quasi-compact scheme. Prove that X has a closed point.

Exercise 2.16. Prove Lemma 2.40.

Exercise 2.17. Prove that a noetherian topological space is quasi-compact.

Exercise 2.18. Prove Lemma 2.15.

Exercise 2.19. Let φ : R → T be a morphism of rings. Prove that the corresponding morphism of schemes
(Spec(φ), φ#) : (Spec(T ),OSpec(T ))→ (Spec(R),OSpec(R)) is a closed immersion if and only if φ is surjective.

Exercise 2.20. Show that the composition of two closed immersions is a closed immersion. Same for morphisms of
finite type (resp. morphisms locally of finite type, resp. open immersions, quasi-compact morphisms).

Exercise 2.21. Show that a scheme is integral if and only it has a covering by open affine scheme SpecRi, where Ri
is a domain. Show that a scheme is reduced if and only it has a covering by open affine scheme SpecRi, where Ri has
no non vanishing nilpotent elements.

3 Projective spaces

3.1 Affine spaces

Let r > 0. Consider the functor Ar from Schemes to Sets, which associates with a scheme S the set of
morphisms

φ :

r⊕
k=1

OS → OS

Lemma 3.1. Let X be a scheme. The restriction of the functor Ar to Top(X) is a sheaf of sets.

Proof. See Exercise 3.6.

Lemma 3.2. Let X,S be schemes. Let hS : Schemes→ Sets be the functor Mor(•, S). Then the restriction of hS
to Top(X) is a sheaf of sets.

Proof. This is a formal consequence of Proposition 2.13.
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Proposition-Definition 3.3. Ar is representable by the scheme

Ar := Spec(Z[X1, . . . , Xr])

called the affine space of relative dimension r.

Proof. In view of Lemmata 3.1 and 3.2, it is sufficient to construct an isomorphism between the restriction
of the functor hAr to Aff and the restriction of the functor Ar to Aff . In the language of rings, we would like
to provide a natural isomorphism between the following two functors. The restriction hAr |Aff of hAr to Aff

in the language of rings is the functor

R 7→ MorCRings(Z[X1, . . . , Xr], R)

and the restriction Ar|Aff of the functor Ar to Aff in the language of rings is the functor

R 7→ MorSets({1, . . . , r}, R)

Now there is a natural transformation between hAr |Aff and Ar|Aff , which for every ringRmaps MorCRings(Z[X1, . . . , Xr], R)

to MorSets({1, . . . , r}, R), by sending

φ ∈ MorCRings(Z[X1, . . . , Xr], R)

to
φ(X•).

This map is an isomorphism by the definition of polynomials (see [Lan02, II, par. 3, p. 97]).

Let R be a ring and let X → Spec(R) be a scheme over R. From the definitions, we see that to say that X
is locally of finite type over R is the same as to say that there is an open covering (Ui) of X by affine open
subschemes such that for each i, there is an r(i) ∈ N and a commutative diagram

Ui //

((

Ar(i)R := Ar(i) ×Spec(Z) Spec(R)

��
Spec(R)

where the vertical morphisms are the natural ones and the horizontal morphism is a closed immersion.
These closed immersions are in general unrelated to each other and one may wonder what kind of com-
patibilities could be required. Projective spaces propose an answer to this question.

3.2 Projective spaces

Let r > 0. Consider the functor Pr from Schemes to Sets, which associates with a scheme S the set of
isomorphism classes of surjective morphisms

φ :

r⊕
k=0

OS → L

whereL is locally free of rank 1 (see Exercise 3.7 for this notion). Here a surjective morphism φ :
⊕r

k=0OS →
L is said to be isomorphic to a surjective morphism ψ :

⊕r
k=0OS →M if there is an isomorphism ι : L '

M such that ι ◦ φ = ψ.

A sheaf, which is locally free of rank one, is often called a line bundle.
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Theorem 3.4. The functor Pr is representable by a scheme Pr, which is integral and of finite type over Spec(Z).

In particular Pr is noetherian. The scheme Pr is called projective space of relative dimension r.

Proof. Let K be the fraction field of the ring Z[X0, . . . , Xr]. Let i, j, k ∈ {0, . . . , r}. Define

Ri := Z[
X0

Xi
, . . . ,

Xr

Xi
] ⊆ K

and
Rij := R

i,
Xj
Xi

⊆ K.

Here the notation Z[X0

Xi
, . . . , XrXi ] refers to the subring of K generated by the elements X0

Xi
, . . . , XrXi . Notice

that there is isomorphism between Ri and the abstract polynomial ring Z[Y0, . . . Ŷi, . . . Yr] (where •̂means
that the corresponding term is omitted), because Xi/Xi = 1.

Notice also that we have morphisms of Ri-algebras

Rij ⊗Ri Rik ' Ri,XjXi ·
Xk
Xi

⊆→ K.

This morphism intertwines the natural Rij-(resp. Rik)algebra structure of the first term with the Rij-
(resp. Rik)algebra of the second term arising from the inclusion Rij ⊆ R

i,
Xj
Xi
·XkXi

(resp. Rik ⊆ R
i,
Xj
Xi
·XkXi

).

Furthermore, it is easy to verify that we have the following set-theoretic relations between subsets of K:

Ri = Rii, Rij = Rji, Ri ⊆ Rij , Rjk ⊆ Ri,XjXi ·
Xk
Xi

In view of these identities and the fact that any diagram of inclusions of subrings of K commutes, we see
that the schemes Ui = Spec(Ri) and Uij = Spec(Rij) together with the open immersions Uij → Ui and
the isomorphisms Uij ' Uji coming from the corresponding inclusions of rings, define glueing data for
schemes as described before Proposition 2.13. We thus obtain a scheme Pr, which is integral and of finite
type over Z by construction.

The scheme Pr carries a canonical line bundle O(1), which can be described using the following glueing
data. Declare O(1)|Ui = OUi and let φij ∈ Γ(Uij ,OUij ) = Rij be given by Xi/Xj . We verify that φii = 1,
φij = φ−1

ji and that
Xj

Xk
· Xi

Xj
=
Xi

Xk

in R
i,
Xj
Xi
·XkXi

, so that the φij satisfy the conditions given before Proposition 1.17. We thus obtain an abelian

sheaf on Pr. The φij are compatible with the OPr -module structure of O(1) on each Ui and so we see that
O(1) is a OPr -module. Now Pr is by construction covered by the Ui, the Ui are affine and O(1)|Ui is quasi-
coherent (since it is trivial). Hence O(1) is a quasi-coherent sheaf and it is by construction locally free of
rank 1.

For each l = 0, . . . , n, there is a canonical element Xl ∈ Γ(Pr,O(1)), such that

Xl|Ui = Xl/Xi

via the identification O(1)|Ui = OUi . Indeed, by Complement 1.18, this defines an element of Γ(Pr,O(1)),
since

φij((Xl|Ui)|Uj ) = (Xl/Xi) · (Xi/Xj) = Xl/Xj = (Xl|Uj )|Ui .
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Since Xl|Ul is a trivialisation of O(1)|Ul , we see that the collection of the Xl defines a surjection

r⊕
k=0

OPr → O(1)

We shall now show that Pr represents Pr.

Let S be a scheme. If we are given a morphism φ : S → Pr, we obtain by pull-back a surjection

r⊕
k=0

OS → φ∗(O(1)).

This construction provides a map Pr(S)→ Pr(S).

We wish to construct an inverse map Pr(S)→ Pr(S).

So let S be a scheme and let

φ :

r⊕
k=0

OS → L

be a surjection of sheaves, where L is locally free of rank 1. We shall call σ0, . . . , σn the corresponding
elements of Γ(S,L). Let

Sσi := {s ∈ S |σi 6∈ ms · Ls}

The set Sσi is open by the remark before Lemma 2.37 and because L is locally free. By Nakayama’s lemma,
the section σi|Sσi induces an isomorphismOSσi ' L|Sσi . Identifying L|Sσi withOSσi via this isomorphism,
we obtain by restriction a morphism

φSσi :

r⊕
k=0

OSσi → OSσi

whose k-th component is given σk/σi, where it is understood that σk/σi is a function on Sσi such that

(σk/σi) · σi|Sσi = σk|Sσi .

By Proposition 3.3, φSσi induces a morphism fi : Sσi → Ui, such that

(Xk/Xi) ◦ fi = σk/σi

(we abuse the notation here).

Now note that by construction, we have

f−1
i (Uij) = Sσi ∩ Sσj

and similarly
f−1
j (Uji) = Sσi ∩ Sσj .

Let ψij : Uij
∼→ Uji be the canonical isomorphism (which is the identity in the above presentation). We

compare ψij ◦ fi|Sσi∩Sσj and fj |Sσi∩Sσj . We compute

fj |∗Sσi∩Sσj (Xk/Xj) = σk/σj

and

ψij ◦ fi|∗Sσi∩Sσj (Xk/Xj) = ψij ◦ fi|∗Sσi∩Sσj ((Xk/Xi) · (Xj/Xi)
−1) = (σk/σi) · (σj/σi)−1 = σk/σj
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so that ψij ◦ fi|Sσi∩Sσj = fj |Sσi∩Sσj by Proposition-Definition 3.3. Thus by Lemma 2.14 the family (fi) of
morphisms glue to a morphism S → Pr. So we have produced a map Pr(S)→ Pr(S).

We skip the easy verification of the fact that the two maps Pr(S) → Pr(S) and Pr(S)→ Pr(S) are inverse
to each other and functorial in S.

3.3 Ample line bundles

Let S be a noetherian scheme.

A coherent F on S is said to be generated by its global sections or globally generated if there is a surjection

r0⊕
k=1

OS → F

for some r0 ∈ N. The corresponding r0 sections of F are then called generating sections.

Let now L be a line bundle on S.

Definition 3.5. The line bundle L is ample if for any coherent sheaf F on S, there is n0 ∈ N such that F ⊗ L⊗n is
generated by its global sections for all n > n0.

Here L⊗n := L⊗ L⊗ · · · ⊗ L (n-times).

Proposition 3.6. The line bundle L is ample if and only if there is n ∈ N and σ1, . . . , σk ∈ Γ(S,L⊗n) such that

• the schemes Sσi are affine;

• the schemes Sσi cover S.

For the proof, we shall need the following

Lemma 3.7. Let T0 be a noetherian scheme and let M0 be a coherent sheaf on T0. Let L0 be a line bundle on T0. Let
f ∈ Γ(T0, L0) and let s ∈ Γ(T0,f ,M0). Then

(a) there is n(s) ∈ N such that s⊗ f⊗n(s) ∈ Γ(T0,f ,M0 ⊗ Ln(s)
0 ) extends to Γ(T0,M0 ⊗ Ln(s)

0 );

(b) if s ∈ Γ(T0,M0) restricts to 0 in Γ(T0,f ,M0) then there is n(s) ∈ N such that s⊗f⊗n(s) ∈ Γ(T0,M0⊗Ln(s)
0 )

vanishes.

Proof. See Exercise 3.5.

Proof. (of Proposition 3.6) We first prove the implication ”⇐”.

So suppose that there is n ∈ N and σ1, . . . , σk ∈ Γ(S,L⊗n) such that (Sσi) is an open affine covering of S.
Let F be a coherent sheaf on S. For each i, let (τij ∈ Γ(Sσi , F |Sσi ) be a finite family of generating sections of
F |Sσi . Such sections exist because Sσi is affine. By Lemma 3.7, there is n ∈ N such that for all i, the sections
τij ⊗ σ⊗ni |Sσi extend to sections λij ∈ Γ(S, F ⊗ L⊗n). Now notice that the sections τij ⊗ σ⊗ni |Sσi are also
generating sections of F ⊗ L⊗n|Sσi because L|Sσi is by construction trivial. Hence the sections λij (for all
i, j) are generating sections of Γ(S, F ⊗ L⊗n), since the Sσi cover S.
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We now prove the implication ”⇒”.

Let x ∈ S. It is sufficient to show that there is n(x) ∈ N and σx ∈ Γ(S,L⊗n(x)) such that Sσx is affine and
x ∈ Sσx . Let U be an affine neighbourhood of x such that L|U ' OU and let I be the ideal sheaf associated
with S\U by Lemma 2.40. Let ι : (S\U)red → S be the canonical closed immersion. Let n(x) ∈ N be such
that there is σ̄x ∈ Γ(S, I ⊗ L⊗n(x)) with σ̄x 6= 0.

Now consider the sequence of OS-modules

0→ I → OS → ι∗(O(S\U)red)→ 0 (23)

and the sequence
0→ I ⊗ L⊗n(x) → L⊗n(x) → ι∗(O(S\U)red)⊗ L⊗n(x) → 0 (24)

obtained by tensoring (23) by L⊗n(x) (note that this sequence is exact because exactness can be checked
locally and L is locally a trivial sheaf). If we apply the global sections functor Γ(S, •) to (24) we obtain a
map Γ(S, I ⊗ L⊗n(x))→ Γ(S,L⊗n(x)). Let σx be the image of σ̄x by this map. The section σx ∈ Γ(S,L⊗n(x)

vanishes on S\U by construction. Hence Sσx ⊆ U . Furthermore, since by assumption we have LU ' OU ,
the set Sσx ⊆ U is a basic open subset of the affine scheme U is thus also affine.

Corollary 3.8. The line bundle O(1) on Pr is ample.

Proof. LetXi be the usual canonical section ofO(1). The schemes PrXi are by construction the affine scheme
Ui in the standard open affine covering of Pr.

If R is a ring, we shall often write PrR for Pr ×Spec(Z) Spec(R).

Proposition 3.9. Let f : S → Spec(R) be a morphism of finite type to the spectrum of a noetherian ring R. Let L
be an ample line bundle on S. There is n ∈ N and σ0, . . . , σr ∈ Γ(S,L⊗n) such that the σi generate L⊗n and such
that the corresponding morphism

S → PrR

is a closed immersion into an open subset of PrR.

Proof. We may wrog replace L by L⊗n for some n > 1. By Proposition 3.6, we may thus assume that
there is a finite family (σi ∈ Γ(S,L)) such that Sσi is affine and such that the Sσi cover S. For each i, let
σij ∈ Γ(Sσi , L) be a family of sections, such that the functions σij/σi|Sσi generate Γ(Sσi ,OSσi ) as an R-

algebra. For some n > 0, which can be taken independent of i, the sections σ⊗(n−1)
i |Sσi ⊗σij ∈ Γ(Sσi , L

⊗n)

extend to sections τij of L⊗n over S by Lemma 3.7. Now consider the disjoint union Σ of all the σi and all
the τij and choose an arbitrary identification φ : {0, . . . , r} ' Σ. Since the σi already generate L, the set of
sections Σ generates L⊗n and via φ we obtain a Spec(R)-morphism ι : S → PrR. This morphism is obtained
by glueing together the morphisms

ιi : Sσi → Spec(R[
X0

Xφ−1(σi)
, . . .

Xr

Xφ−1(σi)
])

such that ι∗i (
Xk

Xφ−1(σi)
) =

φ(k)|Sσi
σi|Sσi

. Since by construction the functions
φ(k)|Sσi
σi|Sσi

generate Γ(Sσi ,OSσi ) as an

R-algebra, and since Sσi is affine, we see that ιi is a closed immersion. Thus ι is a closed immersion of S
into the union in PrR of all the open affine subschemes Spec(R[ X0

Xφ−1(σi)
, . . . Xr

Xφ−1(σi)
]) (for all i).
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3.4 The cohomology of projective space

In this subsection, we shall investigate the cohomology of the tensor powers of the line bundle O(1) on
projective space. We shall start with some preliminaries.

Tensor products of complexes.

Let R be a ring and let (P •, d•P ) and (Q•, d•Q) be cochain complexes, which are bounded above. We may
then form a double complex (P • ⊗Q•)•,•. By definition, we have

(P • ⊗Q•)p,q := P p ⊗Qq.

The horizontal differentials of (P • ⊗Q•)•,• are given by the formula

d′(ap ⊗ bq) = dpP•(a
p)⊗ bq

and the vertical differentials by the formula

d′′(ap ⊗ bq) = (−1)q · ap ⊗ dqQ•(b
q)

The total complex Tot((P • ⊗ Q•)•,•) is written simply P • ⊗ Q• = (P • ⊗ Q•)• and is called the tensor
product of the complexes P • and Q•. The symbols (P • ⊗Q•)•,• and (P • ⊗Q•)• and are functorial in both
arguments (we skip the verification).

Suppose now that Q• is a complex of flat R-modules. The first page of the first spectral sequence of the
double complex (P • ⊗Q•)p,q is then

EpqI,1(P •, Q•) = Hq(P • ⊗Qp) = Hq(P •)⊗Qp ⇒ Hp+q(P •)

We shall make use of this in the proof of the following lemma.

Lemma 3.10. Let φ : P •1 → P •2 be a quasi-isomorphism of cochain complexes of R-modules, where both complexes
are supposed bounded above. Let C• be another cochain complex of R-modules, which is bounded above. Suppose
that either

• Ck is a flat R-module for all k ∈ Z

• or P k1 and P k2 are flat R-modules for all k ∈ Z.

Then the morphism
φ⊗ C• : P •1 ⊗ C• → P •2 ⊗ C•

is a quasi-isomorphism.

Proof. The morphism φ⊗ C• arises from a morphism of double complexes

(P •1 ⊗ C•)•,• → (P •2 ⊗ C•)•,•

which induces a morphism of spectral sequences

EpqI,1(P •1 , C
•)→ EpqI,1(P •2 , C

•)

Now by assumption this morphism of spectral sequences is an isomorphism on the first page. The lemma
follows.
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The cohomology of finite intersections of basic open sets.

Let R be any ring and let I be a finite totally ordered index set. Let (fi∈I ∈ R) be a family of elements of R
indexed by I . For all p > 0, let

Cp((fi∈I), R) :=
⊕

i0<i1<···<ip

Rfi0 ...fip

and define a morphism of R-modules

dp : Cp((fi∈I), R)→ Cp+1((fi∈I), R)

by the formula ⊕
i0<i1<···<ip

αi0...ip 7→
p+1∑
k=0

(−1)k
⊕

i0<i1<···<ip+1

αi0...îk...ip+1

where αi0...îk...ip+1
is viewed as an element of Rfi0 ...fip+1

. As usual the hat symbol ·̂ signifies that the term
under the hat is omitted. This gives a sequence of R-modules

C0((fi∈I), R)
d0→ C1((fi∈I), R)

d1→ . . . (25)

which is none other than the image under Γ(Spec(R)\V ((fi∈I)), •) of the Cech complex with ordering of
OSpec(R)\V ((fi∈I)) for the covering (Dfi) of Spec(R)\V ((fi∈I)).

We shall write C•aug((fi∈I), R) for the augmented Cech complex

C•aug((fi∈I), R) : 0→ R→ C0((fi∈I), R)
d0→ C1((fi∈I), R)

d1→ . . .

where R sits in degree 0.

Notice the following interesting fact. There is a canonical isomorphism of complexes

⊗i∈IC•aug(fi, R) ' C•aug((fi∈I), R) (26)

Here by C•aug(fi, R) we mean the augmented Cech complex associated with the family with one element
fi. This can be checked by looking at the definitions of the differentials and the objects.

Complement 3.11. Suppose for the time of this complement that R is an Z-graded ring and that the fi
are homogenous for the grading. Looking at the definitions of the maps, we see that the augmented Cech
complex is a complex of graded modules and that the isomorphism (26) respects the grading.

For notational simplicity, write from now on n = #I and identify I with {1, . . . , n} as ordered sets.

We now suppose that R = Z[X1, . . . , Xn] and that fi = Xi.

Lemma 3.12. We haveHk(C•aug((fi∈I), R)) = 0 for all k 6= #I .

Proof. We shall prove this by induction on #I .

The complex C•aug((Xi∈I), R) is exact at 0, since R is a domain, so the statement holds for #I = 1.

In particular, for any index i, the complex C•aug(Xi, R) is quasi-isomorphic to H1(C•aug(Xi, R))[−1], since
C•aug(Xi, R) is a two term complex. Since C•aug((Xi∈I), R) is also a complex of flat R-modules, Lemma 3.10
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implies that

Hk(C•aug((Xi∈I), R))

= Hk(C•aug(X1, R)⊗ C•aug((Xi∈I, i6=1), R)) ' Hk(H1(C•aug(X1, R))[−1]⊗ C•aug((Xi∈I, i6=1), R))

' Hk−1(H1(C•aug(X1, R))⊗ C•aug((Xi∈I, i6=1), R))

' Tor#I−k(H1(C•aug(X1, R)),H#I−1(C•aug((Xi∈I, i6=1), R))).

where we used the inductive hypothesis. We shall now compute

Tor#I−k(H1(C•aug(X1, R)),H#I−1(C•aug((Xi∈I, i6=1), R))).

From the definitions, we see that

H#I−1(C•aug((Xi∈I, i6=1), R)) = RX2···Xn/(
∑

1<i1<i2<···<in−2

RXi1 ···Xin−2
)

and
H1(C•aug(X1, R)) ' R/RX1

Now consider the exact sequence of R-modules

0→ R→ RX1
→ R/RX1

→ 0

We consider the long exact cohomology sequence obtained when applying the right-exact functor

(•)⊗R RX2···Xn/(
∑

1<i1<i2<···<in−2

RXi1 ···Xin−2
)

to this sequence. Since R and RX1 are flat R-modules, we obtain the sequence

0 → Tor1(R/RX1 , RX2···Xn/(
∑

1<i1<i2<···<in−2

RXi1 ···Xin−2
))→ RX2···Xn/(

∑
1<i1<i2<···<in−2

RXi1 ···Xin−2
)

(∗)→ RX1
⊗R RX2···Xn/(

∑
1<i1<i2<···<in−2

RXi1 ···Xin−2
)

→ (R/RX1)⊗R RX2···Xn/(
∑

1<i1<i2<···<in−2

RXi1 ···Xin−2
)→ 0

and also that
Torl(R/RX1

, RX2···Xn/(
∑

1<i1<i2<···<in−2

RXi1 ···Xin−2
)) = 0

for l > 1. We shall now show that the map (∗) is injective. For this, it is sufficient to show that if

e ∈ RX2...Xn/(
∑

1<i1<i2<···<in−2

RXi1 ···Xin−2
)

and e ·Xk
1 = 0 for some k > 0 then e = 0 (see [AM69, Prop. 3.5]). Let

ẽ ∈ RX2...Xn

be a representative of e. If e ·Xk
1 = 0 in RX2...Xn/(

∑
1<i1<i2<···<in−2

RXi1 ···Xin−2
), we have

ẽ ·Xk
1 ∈

∑
1<i1<i2<···<in−2

RXi1 ···Xin−2
(27)
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Now every element of RX2···Xn has a unique expression, up to ordering, as a sum of monomials of the
form X l1

1 · · ·X ln
n , where l1 > 0 and li ∈ Z for i > 1. On the other hand, an element of RX2···Xn is

in
∑

1<i1<i2<···<in−2
RXi1 ···Xin−2

if and only if it has an expression as a sum of monomials of the form
X l1

1 · · ·X ln
n , where l1 > 0, li ∈ Z for i > 1, and for at least one i0 > 1, we have li0 > 0. This condition is sat-

isfied for ẽ if and only if it is satisfied for ẽ·Xk
1 and thus we conclude that ẽ ∈

∑
1<i1<i2<···<in−2

RXi1 ···Xin−2
,

which is what we wanted to show.

From the injectivity of (∗), we deduce that

Tor1(R/RX1
, RX2···Xn/(

∑
1<i1<i2<···<in−2

RXi1 ···Xin−2
)) = 0

and thus the expression

Tor#I−k(H1(C•aug(X1, R)),H#I−1(C•aug((Xi∈I, i6=1), R)))

vanishes if k 6= #I , which is what the lemma asserts.

Complement 3.13. Return to the situation of a general ring R. Suppose that R is a noetherian N-graded
ring. Suppose that the the fi are homogenous elements of R. Suppose also that f1 is not a zero-divisor of
R, that the image of f2 is not a zero divisor in R/(f1), that the image of f3 is not a zero divisor in R/(f1, f2)

etc. Then Lemma 3.12 holds also.

Corollary 3.14. We have Hk(Ar\{0}) = 0 if k 6= r − 1.

The cohomology of projective space.

If O(1) = OPr (1) is the canonical bundle on Pr and n > 0, we shall write O(n) for O(1)⊗n. For n < 0, we
also write

O(n) := Hom(O(−n),OPr ) =: (O(−n))∨

In general, if F is a locally free sheaf on a scheme X (see Exercise 3.7 for this notion), we write

F∨ := Hom(F,OX)

Suppose that L is a locally free sheaf of rank 1 on an integral scheme X . If σ ∈ L(X) and σ 6= 0, then σ

induces a morphism of sheaves
σ∨ : L∨ → OX

whose image is a quasi-coherent sheaf of ideals I by Corollary 2.20. Now by Exercise 3.10, the morphism
σ∨ is a monomorphism and hence identifies I with L∨. If we let ι : Z(σ) → X be the closed subscheme
associated with I by Lemma 2.25, we thus have an exact sequence

0→ L∨ → OX → ι∗(OZ(σ))→ 0

We leave it to the reader to verify the following simple fact. If f : X0 → X is a morphism of schemes, then
there is a morphism g : X0 → Z(σ) such that f = ι ◦ g iff f∗(σ∨) = 0. Furthermore, the morphism g, if it
exists, is then unique. From this we deduce Z(σ) represents the functor Schemes 7→ Sets

S 7→ {f ∈ X(S) | f∗(σ∨) = 0}

The closed subscheme Z(σ) is called the zero-scheme associated with σ.
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Lemma 3.15. Let f : X → Y be an affine morphism of schemes. Suppose that X is noetherian. Then for all
quasi-coherent sheaves F on X , we have Rkf∗(F ) = 0 for all k > 0.

Proof. By Proposition 1.14, we may suppose that Y (and thus X) is affine. Now the lemma follows from
the fact that f∗ : Qcoh(X) → Qcoh(Y ) is an exact functor (by Lemma (2.22)), from the fact that injective
OX(X)-modules are flasque (follows from Lemma 2.24) and from Complement 1.23.

Lemma 3.16. Suppose that X is noetherian and let ι : X → Y be a closed immersion. Then ι is an affine morphism.

Proof. Notice first that ι∗ : Ab(X) → Ab(Y ) is an exact functor, because if x ∈ X , we have natural functo-
rial identifications of stalks ι∗(F )ι(x) = Fx.

To show that ι is affine, we may suppose that Y is affine. Let F be a quasi-coherent sheaf on X and let
I• be a flasque quasi-coherent resolution of F . Then ι∗(I•) is a cochain complex of flasque quasi-coherent
sheaves (use Proposition 2.32 and Lemma 2.24) and it is a resolution of ι∗(F ), since ι∗ is exact by the above
remark. On the other hand, since Y is affine, we have

Hk(Γ(Y, ι∗(I
•))) = Hk(Γ(X, I•)) = Hk(X,F ) = 0

for all k 6= 0 by Proposition 2.35. We conclude by appealing to Theorem 2.42.

Complement 3.17. Let X be a noetherian scheme and suppose that X a finite open covering (Ui) such that
any finite intersection of the Ui is affine. Let F be a quasi-coherent sheaf on X . Then we have canonically

Hk(Γ(X,C•((Ui), F ))) ' Hk(X,F )

This follows from the existence of the Leray spectral sequence (see Corollary 1.24 and Complement 2.33)
and from Lemma 3.15.

Proposition 3.18. LetA be a noetherian ring. Then for all n, k ∈ Z,Hk(PrA,O(n)) is a finitely generatedA-module.
Furthermore, we have

H0(PrA,O) ' A

and
Hk(PrA,O(n)) = 0

for all k > 1 and all n > 0.

Proof. First note that for any of the canonical sectionsXi = Xi⊗A1 ∈ Γ(PrA,O(1)), the zero schemeZ(Xi∈I)

is canonically isomorphic to Pr−1
A . Indeed, for any scheme over Spec(A) we have

PrA(S) = {isomorphism classes of surjective morphisms φ :

r⊕
k=0

OS → L}

and the Z(Xi∈I) thus represents the functor Schemes/Spec(A) 7→ Sets

S 7→ {isomorphism classes of surjective morphisms φ = ⊕kφk :

r⊕
k=0

OS → L such that φi = 0}

which is isomorphic to the functor Pr−1
A (•).
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Thus we have an exact sequence

0→ O(−1)→ OPr → ι∗(OPr−1)→ 0

and tensoring this sequence with O(k) (k ∈ Z), we obtain a sequence

0→ O(k − 1)→ O(k)→ ι∗(OPr−1(k))→ 0 (28)

Note that ι∗(OPr−1(k)) ' ι∗(OPr−1) ⊗ O(k). This follows from Exercise 3.1 (which is easy to prove in the
special case of a closed immersion). Now consider the long exact sequence associated with the sequence
(28):

0 → H0(PrA,O(k − 1))→ H0(PrA,O(k))→ H0(Pr−1
A , ι∗(O(k)))

→ H1(PrA,O(k − 1))→ H1(PrA,O(k))→ H1(Pr−1
A , ι∗(O(k)))→ . . .

Now remember that closed immersions are affine by Lemma 3.16 and thus by Lemma 3.15 and Corollary
1.24 (or by a direct reasoning), we have canonically

Hi(PrA, ι∗(O(k))) ' Hi(Pr−1
A ,O(k)))

Thus by a double induction on r and k, we see that it is sufficient to prove that H0(PrA,O) = A and
Hk(PrA,O) = 0 for all k > 0. This is what we shall now do.

We apply Complement 3.11 to the ring R = A[X0, . . . Xr] with its natural grading and to the family of the
fi = Xi. We obtain a graded complex

0→ R→
⊕
i0

RXi0 →
⊕
i0<i1

RXi0Xi1 → . . .

and by Lemma 3.12 this complex is exact in degrees 6= r + 1. If we take the part of homogenous degree 0

of this resolution, we get a sequence

0→ A→
⊕
i0

A[
X0

Xi0

, . . . ,
Xr

Xi0

]→
⊕
i0<i1

A[
X0

Xi0

, . . . ,
Xr

Xi0

]Xi1
Xi0

→ . . . (29)

The sequence (29) is by construction the image under Γ(PrA, •) of the Cech complex forOPrA associated with
the standard covering of PrA (see the proof of Theorem 3.4). Now the objects of the Cech complex are all
Γ(PrA, •)-acyclic sheaves, because all the intersections of the open sets in the standard open covering are
affine (use Lemma 3.16, Corollary 1.24 and Proposition 2.35). We have thus shown that Γ(PrA,OPrA) ' A

and that Hk(PrA,OPrA) = 0 for all k 6= d.

We shall now compute Hd(PrA,OPrA). Examining the complex (29), we see that

Hd(PrA,OPrA) ' A[X0, . . . Xr]
[0]
X0...Xr

/
( r∑
k=0

A[X0, . . . , X̂k, . . . Xr]
[0]

X0...X̂k...Xr

)
The ring A[X0, . . . Xr]

[0]
X0...Xr

is generated as an A-module by expressions of the form
∏r
k=0X

lk
k where

lk ∈ Z and
∑r
k=0 lk = 0. Now we have

r∏
k=0

X lk
k ∈

r∑
k=0

A[X0, . . . , X̂k, . . . Xr]
[0]

X0...X̂k...Xr
(30)

if and only if there is k0 ∈ {0, . . . , r} such that lk0 > 0. But there must be such a k0 for otherwise we
couldn’t have

∑r
k=0 lk = 0. Thus (30) always holds and we have Hd(PrA,OPrA) = 0.
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Corollary 3.19. The scheme Pr is not affine.

Proof. If Pr were affine, then we would have Pr ' Spec(Z), according to the theorem.

3.5 Cohomological properties of strongly projective morphisms

A morphism of schemes f : X → S is called strongly projective (this is called projective by Hartshorne) if
there is a factorisation f = p ◦ ι, where ι : X → PrS is a closed immersion and p : PrS → S is the natural
projection morphism.

Theorem 3.20. Let f : X → S be a strongly projective morphism. Suppose that S is a noetherian scheme. Let F be
a coherent sheaf on X. Then for all k > 0, the sheaf Rkf∗(F ) is coherent.

Proof. We may assume that S = Spec(R), where R is a noetherian ring.

We first show the statement in the case where f is a closed immersion. In that case, since f is then affine (by
Lemma 3.16), we may also assume that X = Spec(T ) is affine. We then have Rkf∗(F ) = 0 for all k > 0 by
Lemma 3.15 and thus we only have to show that f∗(F ) is coherent. We know that f∗(F ) is quasi-coherent
by Proposition 2.32 and thus we only have to show that f∗(F )(S) is a finitely generated R-module. This is
a consequence of Lemma 2.22.

By Complement 2.33, we may thus suppose that X = PrS and that f is the natural projection. Abusing
language, we denote by O(1) the pull-back of the universal line bundle on Pr by the projection PrS → Pr.
Notice that O(1) is also an ample line bundle. This follows from Proposition 3.6 and Exercises 3.2, 3.3 and
3.4.

Let n0 be such that F ⊗O(n0) := F (n0) is globally generated. Noticing that

O(n0)⊗O(−n0) ' OPrS ,

we obtain a surjection
⊕f

k=0O(−n0)→ F for some f . Denoting by K the kernel of this morphism, we get
an exact sequence

0→ K →
f⊕
k=0

O(−n0)→ F → 0 (31)

Note that K is also a coherent sheaf, because PrS is a noetherian scheme. Notice also that we may compute
to cohomology of F using the Cech complex with ordering associated with the standard open covering
of PrS . See Complement 3.17. The terms of this complex vanish in degrees > r. Thus we know that
Rkf∗(F ) = 0 for all k > r. Now looking at the long exact cohomology for f∗ of (31) we obtain a surjection

Rrf∗(

f⊕
k=0

O(−n0))→ Rrf∗(F )

Thus we see that Rrf∗(F ) is coherent, since Rrf∗(⊕fk=0O(−n0)) is coherent by Proposition 3.18. Since F
was arbitrary, we deduce that Rrf∗(K) is also coherent. The long exact cohomology sequence again now
shows that we have an exact sequence

Rr−1f∗(

f⊕
k=0

O(−n0))→ Rr−1f∗(F )→ Rrf∗(K)
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and thus Rr−1f∗(F ) is also coherent. Thus Rr−1f∗(K) is also coherent and we may continue this way to
show that Rkf∗(F ) is coherent for all k.

Theorem 3.21 (Serre). Let f : X → Spec(A) be a strongly projective morphism, where A is a noetherian ring. Let
L be an ample line bundle. Let F be a coherent sheaf on X. Then there is n0 > 0 such that Rkf∗(F ⊗ L⊗n) = 0 for
all n > n0 and all k > 0.

Proof. We may wrog replace L by one of its tensor powers. Hence, by Proposition 3.9, we may assume that
there is a closed immersion ι : X → PrA over Spec(A) of X into some PrA, such that ι∗(OPrA(1)) = L. As in
the proof of Theorem 3.20, we may thus suppose that X = PrA for some r > 0. Remember also that PrA has
a finite covering (Ui) (the standard covering) by open affine schemes, such that every intersection of the Ui
is affine. Thus by Complement 7, there exists k0 such that we haveHk(PrA, Q) = 0 for all k > k0. In fact, we
may take k0 = r. Let n0 be sufficiently large so that F ⊗ L⊗n0 is generated by its global sections. In other
words, we have an exact sequence

0→ K →
r0⊕
i=1

O → F (n0)→ 0 (32)

Looking at the long exact cohomology sequence of (32), we get a surjection

Hk0(PrA,
r0⊕
i=1

O)→ Hk0(PrA, F (n0)).

and thus Hk0(PrA, F (n0)) = 0 by Proposition 3.18. Now take n1 so that K(n1) is also globally generated.
Then we also have Hk0(PrA,K(n1)) = 0. Looking at the long exact cohomology sequence of the sequence

0→ K(n1)→
r0⊕
i=1

O(n1)→ F (n0 + n1)→ 0 (33)

we get a surjection

Hk0−1(PrA,
r0⊕
i=1

O(n1))→ Hk0−1(PrA, F (n0 + n1))

and again by Proposition 3.18 we see that Hk0−1(PrA, F (n0 + n1)) = 0, unless k0 − 1 = 0. Continuing this
way, we conclude that F (n) has no cohomology in positive degrees for n sufficiently large.

3.6 Cohomological characterisation of ample line bundles

The following theorem is the converse of Theorem 3.21.

Theorem 3.22. Let X be a noetherian scheme. Let L be a line bundle on X . Suppose that for all coherent sheaves F
on X , there is n0 > 0 such that Hk(X,F ⊗ L⊗n) = 0 for all n > n0 and all k > 0. Then L is ample.

Proof. The proof is similar to the proof of Theorem 2.42.

So let P be a closed point in X . This exists by Exercise 2.15. Let U be an open affine neighbourhood of P
such that L|U ' OU and let Y be the complement of U in X . We view P , Y and P ∪ Y as reduced closed
subschemes of X , via Lemma 2.40. Let IP , IY and IP∪Y be the corresponding quasi-coherent sheaves of

54



ideals. Note that we have canonically OP (P ) ' κ(P ) and that this isomorphism describes the sheaf OP
entirely.

By construction, we have an exact sequence

0→ IY ∪P → IY → κ(P )→ 0 (34)

where κ(P ) denotes the direct image of OP by the closed immersion P → X . Now choose n0 sufficiently
large so that H1(X, IY ∪P ⊗ L⊗n0) = 0. Applying Theorem 1.3 to the sequence (34) tensored by L⊗n0 and
to the functor Γ(X, •), we obtain an exact sequence

Γ(X, IY ⊗ L⊗n0)→ Γ(X,κ(P ))→ H1(X, IY ∪P ⊗ L⊗n0)

where we have identified non-canonically κ(P ) with κ(P ) ⊗ L⊗n0 . Since by assumption H1(X, IY ∪P ⊗
L⊗n0) = 0, we get a surjection Γ(X, IY ⊗ L⊗n0) → Γ(X,κ(P )). Let f ∈ Γ(X, IY ⊗ L⊗n0) be such that the
image of f in Γ(X,κ(P )) ' κ(P ) is 1. We view f as an element of Γ(X,L⊗n0) via the natural inclusion

Γ(X, IY ⊗ L⊗n0)→ Γ(X,L⊗n0).

By construction, we have that P ∈ Xf and also that Xf ⊆ U . In particular, Xf is affine, because it corre-
sponds to a basic open set in U , since L|U is trivial. If X 6= Xf , we now repeat this reasoning for a closed
point P2 in X\Xf (this is possible because X\Xf is quasi-compact, since X is noetherian) and obtain an
affine neighbourhood U2 of P2 and f2 ∈ Γ(X,OX) such that P2 ∈ Xf2 and Xf2 is affine and we repeat it for
P3 ∈ X\Xf ∪Xf2 etc. The sequence of the Xfi must stop after a finite number of steps, and thus cover X ,
because X is a noetherian topological space (by Lemma 2.12).

We can thus exhibit a finite sequence f = f0 ∈ Γ(X,L⊗n0), . . . , fl ∈ Γ(X,L⊗nl) such that Xfi is affine for
all i and such that the Xfi cover X . Replacing some of the fi by tensor powers fi ⊗ fi ⊗ · · · ⊗ fi we may
assume that all the ni are equal. We can then conclude by Proposition 3.6.

3.7 Exercises

Exercise 3.1 (Projection formula). Let f : X → Y be morphism of schemes, where X is noetherian. Let F be a
quasi-coherent sheaf on X and let M be a locally free sheaf (see Exercise 3.7 below) on Y . Prove that there is for all
k > 0 a canonical isomorphism

Rkf∗(F ⊗ f∗(M)) ' Rkf∗(F )⊗M

which is natural in F and M .

Exercise 3.2. Let f : X → S be a morphism of schemes with the property (P), where (P) is one the following:

• affine;

• an open immersion;

• a closed immersion;

• locally of finite type;

• quasi-compact.
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Let g : S′ → S be a morphism of schemes and let f ′ : XS′ = X ×S S′ → S′ be the morphism obtained from f by
base-change. Show that f ′ also has property (P). We say that property (P) is invariant under base-change.

Exercise 3.3. Let f : X → S be a morphism of schemes. Let g : S′ → S be a morphism of schemes and let
f ′ : XS′ = X ×S S′ → S′ be the morphism obtained from f by base-change. Suppose that f is a closed immersion
or that f is an open immersion. Prove that Image(f ′) = g−1(Image(f)).

Exercise 3.4. Let M be line bundle on a scheme S and let σ ∈ Γ(S,M). Let g : S′ → S be a morphism of schemes.
Show that g−1(Sσ) = S′g∗(σ).

Exercise 3.5. Prove Lemma 3.7. [Hint: proceed as in the proof of Lemma 2.37.]

Exercise 3.6. Let (T,OT ) be a ringed space. Let F,G beOT -modules. Show that the presheaf on T , which associates
with U ∈ Top(T ) the abelian group MorOU (F |U , G|U ) is a sheaf and that it has a natural structure of OT -module.
This sheaf is denoted byHom(F,G).

Exercise 3.7. Let S be a scheme. Let F be a coherent sheaf on S. The sheaf F is called locally free if for every s ∈ S,
there an open neighbourhood U of S, a natural number r and an isomorphism F |U ' ⊕rUk=1OU . Show that for a
given s and U as above, the natural number r with the above property is unique, if it exists. Show that if F is locally
free, then the number r depends on s only and that it is a locally constant function on S.

Exercise 3.8. Let r > 2. Prove that ArC\{0} is not affine.

Exercise 3.9. Show that there is a canonical isomorphism

Γ(Pr,O(k)) ' Z[X0, . . . , Xr]
[k]

where Z[X0, . . . , Xr]
[k] is the set of elements of Z[X0, . . . , Xr], which are homogenous of degree k.

Exercise 3.10. Let X be an integral scheme and let φ : F → G be a morphism of coherent locally free sheaves on
X . LetU be an open affine subscheme of X . Suppose that φ(U) : F (U) → G(U) is injective. Prove that φ is a
monomorphism.

Exercise 3.11. Let X be a noetherian scheme and let Xred be the reduced closed subscheme of X associated with the
closed subset X of X . Show that Xred is affine if and only if X is affine.

4 Flat morphisms

Let f : X → Y be a morphism of schemes.

Definition 4.1. Let F be a OX -module. We say that F is flat over Y at x ∈ X if the stalk Fx is flat as a OY,f(x)-
module via the natural morphism of rings OY,f(x) → OX,x. We say that F is flat over Y if F is flat at every x ∈ X .

Recall that a module M over a ring R is flat if the functor •⊗M from R-modules to R-modules sending an
R-module N to N ⊗M is an exact functor. See [AM69, Prop. 2.19].

Let Spec(B) → Spec(A) be a morphism schemes and F a quasi-coherent sheaf on Spec(B). Let M be the
B-module associated with F . Then F is flat over Spec(A) if and only if M is flat as an A-module: see
Exercise 4.1.
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Any base-change of a flat morphism is flat: Exercise 4.3.

We also recall without proof the following basic result:

Theorem 4.2. Let A be a local ring and let M be a finite A-module. Then the following conditions on M are
equivalent.

• M is flat over A;

• M is free over A.

Proof. See Theorem 7.10 in Commutative Ring Theory by H. Matsumura (Cambridge University Press).

A consequence of this theorem is that a coherent sheaf F on a noetherian scheme X is flat over X if and
only if it is locally free (show this!).

4.1 Cohomology and flat base change

Theorem 4.3. Let f : X → Y be a morphism of schemes. Suppose that Y is noetherian and affine and suppose that
X has a finite open covering (Ui) of X such that any finite intersection of the Ui is affine. Let F be a quasi-coherent
sheaf on X . Then for any cartesian diagram

X ′
r //

f ′

��

X

f

��
Y ′

b // Y

where Y ′ is a noetherian and affine and b is flat, there is a canonical isomorphism of quasi-coherent sheaves

b∗(Rlf∗(F )) ' Rlf ′∗(r∗(F )).

Proof. Consider the complex L• := f∗(C
•((Ui), F )). By construction we have

Hl(b∗(L•)) ' Rlf ′∗(r∗(F )).

Now since b is flat, we see thatHl(b∗(L•)) ' b∗(Hl(L•)), in other words we have b∗(Rlf∗(F )) ' Rlf ′∗(r∗(F )).

4.2 The semicontinuity theorem

Theorem 4.4. Let f : X → Y be a morphism of schemes. Suppose that Y is noetherian and affine and suppose that
X has a finite open covering (Ui) of X such that any finite intersection of the Ui is affine.

Let F be a quasi-coherent sheaf on X and suppose that

• the sheaf F is flat over Y ;

• for all l > 0, the quasi-coherent sheaf Rlf∗(F ) is coherent.
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Then there is a finite cochain complex of coherent locally free modules (K•) on Y with the following property. For
any cartesian diagram

X ′
r //

f ′

��

X

f

��
Y ′

b // Y

where Y ′ is a noetherian and affine, there is a canonical isomorphism of quasi-coherent sheaves

Hl(b∗(K•)) ' Rlf ′∗(r∗F )

Note that the assumptions of the theorem will be verified if f is a strongly projective morphism, F is flat
over Y and Y is noetherian and affine.

Before, we begin with the proof, we shall prove some preliminary results in commutative algebra.

Lemma 4.5. Let R be a noetherian ring. Let

0→ C0 → C1 → · · · → Cn → 0

be a finite cochain complex of R-modules. Suppose that Hi(C•) is finitely generated for all i > 0. Then there is a
finite cochain complex of R-modules

0→ L0 → L1 → · · · → Ln → 0

such that

• L• is quasi-isomorphic to C•;

• Li is free for all i > 0;

• Li is finitely generated for all i > 0.

Furthermore, Ci is flat for all i > 0 then we may find a cochain complex L• with the above properties such that L0 is
flat.

Proof. Suppose given a commutative diagram (∗)

Lm+1
dm+1
L //

φm+1

��

Lm+2
dm+2
L //

φm+2

��

. . . // Ln //

φn

��

0

0 // C0
d0C // . . . // Cm+1

dm+1
C // Cm+2

dm+2
C // . . . // Cn // 0

such that

• Lm+1 → · · · → Ln is a cochain complex;

• φi induces an isomorphismHi(L•) ' Hi(C•) for all i > m+ 1;

• φm+1 induces a surjection ker(dm+1
L )→ Hm+1(C•);

• for all i > m+ 1, Li is free.
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We shall show that we can extend this diagram to a diagram with the same properties with m in place of
m+ 1. Let

Bm+1 := ker(ker(dm+1
L )→ Hm+1(C•))

and let ∂′m : L′m → Bm+1 be a surjection, where L′m is a finitely generated free R-module. Note that Bm+1

is finitely generated by the noetherian hypothesis. Similarly let L′′m be a finitely generated free R-module
and let

L′′m → ker(dmC )

be a map of R-modules, inducing a surjection L′′m → Hm(C•). Let

φ′′m : L′′m → Cm

be the induced map. Consider the diagram

L′m
∂′m // Lm+1

φm+1

��
Cm

dmC // Cm+1

and let φ′m : L′m → Cm be any map making this diagram commutative. This makes sense, because by
construction we have φm+1 ◦ ∂′m ⊆ Image(dmC ).

Finally define
Lm := L′m ⊕ L′′m

and
φm := φ′m ⊕ φ′′m , dmL := ∂′m ⊕ 0.

With these definitions, we have completed the extension of our diagram (∗) from m + 1 to m. Since a
diagram (∗) clearly exists for m > n (just set Li = 0 for all i), we see that by induction, the diagram (∗)
exists for m = −1. Now replace L0 by L0/(ker(φ0) ∩ ker(d0

L)). The complex L• now has all the requested
properties.

We suppose now that all the Ci are flat. We wish to show that L0 is also flat.

To see this, notice that for any R-module M , we have the two spectral sequences

EpqII = Tor−p(Hq(L•),M)⇒ Tor−p−q(L
•,M)

and
EpqI = Tor−q(L

p,M)⇒ Tor−p−q(L
•,M)

and similarly for C• (see Theorem 1.4). From this and the fact that these spectral sequences are functorial
in L•, we conclude that

• Tor−r(L
•,M) ' Tor−r(C

•,M) for all r ∈ Z;

• Tor−r(C
•,M) = Hr(C• ⊗M) for all r ∈ Z;

• Tor−r(L
•,M) ' Tor−r(L

0,M) for all r < 0.

and thus that Torr(L
0,M) = 0 for all r > 0. Since M was arbitrary, we conclude that L0 is flat.
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In the next lemmata, Nakayama’s lemma will play a big role. We recall one of its formulations:

Lemma 4.6 (Nakayama’s lemma). Let R be a local ring with maximal ideal m. Let M be a finite R-module. Let
b1, . . . , bk ∈ M be pairwise distinct elements. Then the set {b1, . . . , bk} is a set of generators of M of minimal
cardinality if and only if the image of {b1, . . . , bk} in M/mM is a basis of M/mM as a R/m-vector space.

See [AM69, p. 21] for the proof.

If R is a ring and L• is a cochain complex of R-modules. Let p ∈ Spec(R). We denote by L•p the complex
on Rp obtained by localisation and we write L•(p) for the complex L•p ⊗Rp

Rp/pRp, which is a complex of
κ(p) := Rp/pRp-vector spaces.

Lemma 4.7. Let R be a noetherian ring. Let M be a finitely generated R-module. Then the function dimκ(p)(M(p))

is upper semicontinuous on Spec(R), ie for all n ∈ Z, the set

{p ∈ Spec(R) | dimκ(p)(M(p)) > n}

is closed. If R is reduced and dimκ(p)(M(p)) is constant then M is locally free.

Proof. Let
Rt → Rs →M → 0

be an exact sequence. Such a sequence exists becauseM is finitely generated and because of the noetherian
hypothesis. Let p ∈ Spec(R). Let (φij)16i6s;16i6t be a s × t matrix representing the map Rt → Rs in
the standard bases. For each l > 1, let f1l, . . . fkll be the set of all the minors of order l of (φij) (these are
polynomials in the φij). We then have

{p ∈ Spec(R) | dimκ(p)(M(p)) > n} = {p ∈ Spec(R) | s− rk((φij(p))) > n}

= {p ∈ Spec(R) | rk((φij(p))) 6 s− n} = {p ∈ Spec(R) | ∀l > s− n, r > 1 : flr ∈ p}

= ∩l>s−n ∩klr=1 V ((flr))

proving the first assertion in the lemma.

For the second assertion, let p ∈ Spec(R) and let γ1, . . . , γr be a basis of M(p). We have to show that M̃
is locally free in a neighborhood of p. Lift this basis to a set a1/b1, . . . , ar/br ∈ Mp, where b1, . . . br ∈ R\p.
We may and do replace R by Rb1···br , since Rb1···br corresponds to a basic open set of R. Consider now the
exact sequence of R-modules

0→ K → Rr
φ→M → C → 0 (35)

where φ((x1, . . . , xr)) =
∑
i xi ·

ai
bi

. Now by constructionC(p) = 0 and by Nakayama’s lemma, we conclude
thatCp = 0. SinceC is a finitely generatedR-module, this means that there exists b ∈ R\p such that b·C = 0

and thus replacing again R by Rb, we obtain a sequence of R-modules

0→ K → Rr
φ→M → 0

NowK is a finitely generatedR-module as well, sinceR is noetherian and we choose a surjectionRt → K.
This yields another exact sequence of R-modules

Rt
λ→ Rr

φ→M → 0
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Now by the assumption that dimκ(q)(M(q)) = r for all q ∈ Spec(R), we see that for all q ∈ Spec(R), the
map φ(q) is an isomorphism and thus λ(q) = 0 for all q ∈ Spec(R). Now the map λ can be described by a
matrix (ψij ∈ R) and we have just shown that for all i, j and all q ∈ Spec(R), we have ψij(q) = 0. In other
words, for any pair of indices i, j, the elements ψij is in the nilradical of R. But the nilradical of R is 0 by
assumption and thus λ = 0. We conclude that φ is an isomorphism and thus M is free.

Lemma 4.8. Let R be a reduced noetherian ring. Let

0→ L0 d0→ L1 d1→ · · · → Ln → 0

be a finite cochain complex of finitely generated free R-modules. Suppose that the function on Spec(R)

p 7→ dimκ(p)(H
i(L•(p)))

is constant. Then Hi(L•) is free and there is a natural isomorphism

Hi(L•)(p) ' Hi(L•(p))

for all p ∈ Spec(R).

Proof. Consider the following portion of the L•:

Li−1 di−1

→ Li
di→ Li+1.

By assumption, the function of p ∈ Spec(R) given by

nullity(di(p))− rk(di−1(p))

is constant. By the rank nullity formula, we now that

nullity(di(p)) = dimR(Li)− rk(di(p))

and thus the quantity rk(di(p)) + rk(di−1(p)) is constant on Spec(R). Remember that by Lemma 4.7, the
quantity −rk(di(p)) is upper semicontinuous. On the other hand, since rk(di(p)) + rk(di−1(p)) is constant,
the quantity rk(di(p)) is also upper semicontinuous. Hence rk(di(p)) is continuous, or in other words
locally constant. Similarly rk(di−1(p)) is locally constant.

Now consider the sequence

Li−1 di−1

→ Li → Li/Li−1 → 0

where Li/Li−1 := Li/Image(di−1). Reducing mod p, we obtain a sequence

Li−1(p)
di−1(p)→ Li(p)→ (Li/Li−1)(p)→ 0

and since rk(di−1(p)) is locally constant, we see that rk((Li/Li−1)(p)) is also locally constant and we con-
clude from Lemma 4.7 that Li/Li−1 is locally free. Similarly, Li+1/Li is locally free.

Lastly, consider the sequence

0→ Hi(L•)→ Li/Li−1 → Li+1 → Li+1/Li → 0
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where the differentials are the obvious ones. This sequence is by construction exact. Since Li/Li−1, Li+1

and Li+1/Li are locally free, we see thatHi(L•) is also locally free (show this!) and that the sequence

0→ Hi(L•)(p)→ (Li/Li−1)(p)→ Li+1(p)→ (Li+1/Li)(p)→ 0

is also exact. Now the analogous sequence

0→ Hi(L•(p))→ Li(p)/Li−1(p)→ Li+1(p)→ Li+1(p)/Li(p)→ 0

is also exact and we have
Li(p)/Li−1(p) = (Li/Li−1)(p)

and
Li+1(p)/Li(p) = (Li+1/Li)(p).

This gives a canonical isomorphismHi(L•)(p) ' Hi(L•(p)).

Lemma 4.9. Let R be a noetherian ring. Let

0→ L0 → L1 → · · · → Ln → 0

be a finite cochain complex of finitely generated free R-modules. Then the function on Spec(R)

p 7→
∑
i>0

(−1)i dimκ(p)(H
i(L•(p)))

is locally constant on R.

Proof. Notice that∑
i>0

(−1)i dimκ(p)(H
i(L•(p))) =

∑
i>0

(−1)i dimκ(p)(L
•(p)) =

∑
i>0

(−1)irk(L•)

We leave it to the reader as an exercise to check this (hint: lift bases). The lemma follows from this.

We can now turn to the proof of the semicontinuity theorem.

Proof. (of Theorem 4.4) Consider the complex L• := f∗(C
•((Ui), F )). Then Li are flat and quasi-coherent,

L• is a finite complex and by construction for any cartesian diagram as in the statement of Theorem 4.4,
we have

Hl(b∗(L•)) ' Rlf ′∗(r∗F ).

Hence we only have to show that there exists a complex of coherent locally free modules K•, which is
quasi-isomorphic to L•. This complex will have all the required properties by Lemma 3.10. To conclude,
apply Lemma 4.5.

Corollary 4.10. Let f : X → Y be a strongly projective morphism. Suppose that Y is noetherian. Let F be a
coherent sheaf on X and suppose that F is flat over Y . Then the function

y 7→
∑
i>0

(−1)i dimκ(y)(H
i(Xy, Fy))

is locally constant on Y .
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Proof. Apply Lemma 4.9 to the complex K• provided by the semicontinuity theorem.

Corollary 4.11. Let f : X → Y be a strongly projective morphism. Suppose that Y is noetherian and reduced. Let
F be a coherent sheaf on X and suppose that F is flat over Y . Suppose that the function

y 7→ dimκ(y)(H
i(Xy, Fy))

is locally constant on Y . Then Rif∗(F ) is locally free.

Proof. Apply Lemma 4.8 to the complex K• provided by the semicontinuity theorem.

4.3 Hilbert polynomials

Let r > 0 and let K be a field. Let F be a coherent sheaf on PrK . For all n ∈ Z, we write

χF (n) :=
∑
i>0

(−1)i dimK H
i(X,F ⊗O(n))

Proposition 4.12. The function χF (•) is a polynomial with rational coefficients.

The polynomial χF (•) is called the Hilbert polynomial of F.

Proof. If G is a quasi-coherent sheaf on a locally noetherian scheme, we shall write SS(G) for the closed
subscheme associated with the annihilator Ann(G) (see Exercise 4.5).

Notice first that the statement clearly holds if F is the zero sheaf.

By noetherian induction (see 4.8), we may thus suppose that the Proposition holds if SS(F ) 6= X .

Now consider the sequence
0→ O(−1)→ O → Z(X0)→ 0

associated with the section X0 of O(1). Tensoring this sequence with F , we obtain a sequence

L• : 0→ K → F (−1)→ F → F ⊗ Z(X0)→ 0 (36)

where K sits in degree 0. If we consider the spectral sequence

Epq2 = Hq(PrK , Lp)⇒ Hp+q(PrK , L•)

we see that ∑
p,q

(−1)p+q dimK(Hq(PrK , Lp)) =
∑
k

(−1)k dimK(Hk(PrK , L•))

Now notice that ∑
p,q

(−1)p+q dimK(Hq(PrK , Lp)) =
∑
k

(−1)kχLk(0)

and that Hk(PrK , L•) = 0 for all k, since the sequence (36) is exact. Making the same computation for the
sequence (36) tensored with O(n), we conclude that∑

k

(−1)kχLk(•) = 0
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The same reasoning clearly applies for any bounded sequence of coherent sheaves on PrK in lieu of L•.

Now notice that
K|PrK,X0

= F ⊗ Z(X0)|PrK,X0
= 0

and so SS(K) 6= X and SS(F ⊗ Z(X0)) 6= X . By noetherian induction, we see that the function χF (n) −
χF (n− 1) is a polynomial in n. Let P (n) := χF (n)− χF (n− 1). We have

χF (n) = χF (0) +

n∑
k=1

P (k)

Now notice that for all i > 0, the function
∑n
k=1 k

i is a polynomial in n with rational coefficients (we have∑n
k=1 k

0 = n,
∑n
k=1 k = n(n+ 1)/2 etc.). Thus χF (n) is a polynomial in n with rational coefficients.

Complement 4.13. We record the following fact, which was established in the proof of Proposition 4.12. If

0→ F ′ → F → F ′′ → 0

is an exact sequence of coherent sheaves on PrK , then we have

χF (n) = χF ′(n) + χF ′′(n)

for all n ∈ Z.

Example 4.1. We have

χOPr
K

(n) =

(
n+ r

n

)
We leave the verification of this formula as an exercise for the reader (hint: use Exercise 3.9).

Proposition 4.14. Let S be a connected locally noetherian scheme, let r > 0 and let ι : X → PrS be a closed
subscheme of PrS . Suppose that X is flat over Spec(A). Then the Hilbert polynomial of ικ(s) : Xκ(s) → Prκ(s) does
not depend on p ∈ S.

Here the immersion ικ(s) : Xκ(s) → Prκ(s) is obtained by base-change from ι : X → PrS via the natural
morphism Spec(κ(s))→ S.

Proof. Follows from Corollary 4.10.

4.4 exercises

Exercise 4.1. Let Spec(B) → Spec(A) be a morphism schemes and F a quasi-coherent sheaf on Spec(B). Let M
be the B-module associated with F . Show that F is flat over Spec(A) if and only if M is flat as an A-module.

Exercise 4.2. A map of sets S → T is quasi-finite if for all t ∈ T , the set f−1(t) is finite. Let f : X → Y be an
affine and strongly projective morphism of schemes. Assume that Y is noetherian. Show that f is quasi-finite.

Exercise 4.3. Let f : X → Y be a morphism of schemes and let F be a quasi-coherent sheaf on X . Suppose that F
is flat over Y . Let
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X ′
r //

f ′

��

X

f

��
Y ′

b // Y

be a cartesian diagram. Show that r∗(F ) is flat over Y ′.

Exercise 4.4. Let X be a locally noetherian scheme. Let F,G be quasi-coherent sheaves on X . Suppose that F is
coherent. Show that the OX -module Hom(F,G) is quasi-coherent. Show that Hom(F,G) is coherent if F and G
are coherent.

Exercise 4.5 (Annihilators). Let R be a ring and let M be an R-module. Define

Ann(M) := {r ∈ R | r ·M = 0}

Show that Ann(M) is an ideal in R.

Let now F be a OX -module on a ringed space X. Show that multiplication by scalars induces an arrow

m : OX → Hom(F, F )

Suppose now that X is a locally noetherian scheme and that F is quasi-coherent. Show that ker(m) is a coherent
sheaf of ideals. Let U be an open affine subscheme of X . Show that the ideal of Γ(U,OX) corresponding to ker(m)|U
is the annihilator of Γ(U,F |U ). We write Ann(F ) := ker(m).

Exercise 4.6. Let X be a locally noetherian scheme and let F be a quasi-coherent sheaf. Let ι : Z ↪→ X be the closed
subscheme of X associated with Ann(F ). Show that the natural morphism F → ι∗(ι

∗(F )) is an isomorphism.

Exercise 4.7 (noetherian induction for topological spaces). Let T be a noetherian topological space. Let P (•)
be a property of closed subsets of T . Suppose that P (empty set) holds and that for all closed subsets C of T , the
statement

if P (C ′) holds for all closed subsets C ′
6=
↪→ C then P (C) holds

is verified. Then P (T ) holds.

Exercise 4.8 (noetherian induction for schemes). Let T be a noetherian scheme. Let P (•) be a property of closed
subschemes of T . Suppose that P (empty scheme) holds and that for all closed subschemes C of T , the statement

if P (C ′) holds for all closed subschemes C ′
6=
↪→ C then P (C) holds

is verified. Then P (T ) holds.

5 Further results on the Zariski topology

5.1 Irreducible components

Definition 5.1. Let T be a topological space. We say that T is irreducible if every non empty open subset of T is
dense in T .

Equivalently, T is irreducible iff no proper closed subset of T contains an open subset of T or if there is no
pair of disjoint non empty open subsets in T . Notice that every open subset of an irreducible topological
space is irreducible.
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Lemma 5.2. If A is a ring then Spec(A) is irreducible if and only if A/
√

(0) is an integral ring.

Proof. Since irreducibility concerns Spec(A) only as a topological space, we may wrog replaceA byA/
√

(0),
since the corresponding morphism Spec(A/

√
(0))→ Spec(A) is a homeomorphism (because it is a surjec-

tive closed immersion). Thus we may assume that
√

(0) = (0) or in other words that A has no non-
vanishing nilpotent elements.

Suppose first that Spec(A) is irreducible and suppose that A were not integral. Then there is f, g ∈ A, with
f, g 6= 0 and f · g = 0. The open subsets Df (A) and Dg(A) are then disjoint and non-empty. To see this,
suppose that for some p ∈ Spec(A) we have f 6∈ p, ie p ∈ Df (A). Since f · g = 0 ∈ p, we thus have g ∈ p,

since p is prime. Hence p 6∈ Dg(A). Thus we have Df (A) ∩Dg(A) = ∅. and thus Spec(A) is not irreducible,
contradicting the assumption.

Now suppose that A is integral. If A is not irreducible, there are two non empty disjoint open subsets in
Spec(A). Reducing their sizes, we may assume that they are basic open set Df (A) and Dg(A) for some
f, g ∈ A with f, g 6= 0. From the disjointness, we conclude that for every p ∈ Spec(A), we have either f ∈ p

or g ∈ p. In particular for every p ∈ Spec(A), we have f · g ∈ p. This implies that f · g is in the nilradical of
A, which is zero by assumption so f · g = 0, a contradiction. So A must be irreducible.

Corollary 5.3. Let A be a ring. Let I ⊆ A be an ideal. Then V (I) is irreducible if and only if
√
I is a prime ideal.

Lemma 5.4. Let T be a noetherian topological space. There is a finite sequenceC1, . . . Ck of closed irreducible subsets
of T such that

•
⋃
i Ci = T ;

• for all indices i, we have Ci 6⊆ ∪j 6=iCj .

This sequence is unique up to permutation of the indices.

Proof. See Exercise 5.1.

Complement 5.5. If we apply Lemma 5.4 and Corollary 5.3 to Spec(A), where A is a noetherian ring, we
obtain the following statement. There is a finite sequence p1, . . . pk of prime ideals in A such that

•
⋂
i pi =

√
0;

• for all indices i, we have pi 6⊇ ∩j 6=ipj .

This sequence is unique up to permutation of the indices. These ideals are called the minimal prime ideals
of A.

In particular, if I is an ideal in a noetherian ring A, there is a finite sequence p1, . . . pk of prime ideals in A
such that

•
⋂
i pi =

√
I ;

• for all indices i, we have pi 6⊇ ∩j 6=ipj .

This sequence is unique up to permutation of the indices.
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The following lemma points out a specific property of irreducible closed subsets of schemes.

Lemma 5.6 (generic points). Let S be a scheme. Let C ⊆ S be an irreducible closed subset. There is a unique point
η ∈ C such that the Zariski closure η̄ is C.

The point η is called the generic point of C.

Proof. We may wrog replace S by the reduced closed subscheme of S obtained from C (see Remark 2.41).
We thus have to show that if S is an irreducible scheme then it has a unique generic point η. Since this
question concerns only the topology of S, we way also suppose that S is reduced.

Now suppose to begin with that S = Spec(A) is affine. Then Lemma 5.2 shows that A is a domain. Now
p ∈ Spec(A) be a prime ideal. The Zariski closure of p is a closed set V (a) for some ideal a ⊆ A such that

• a is a radical ideal;

• p ∈ V (a);

• if p ∈ V (c) for some radical ideal c then V (c) ⊇ V (a).

Translated into the language of ideals, this gives:

• a is a radical ideal;

• a ⊆ p;

• if c ⊆ p, where c is a radical ideal, then c ⊆ a.

From this we deduce that a = p or in other words that the Zariski closure of p ∈ Spec(A) is V (p). Now
notice that (0) ∈ Spec(R) has the property that V ((0)) = Spec(R) so Spec(R) has at least one generic point.
On the other hand, if V (p) = Spec(R) for some prime ideal p ∈ Spec(R), then

√
p = p =

√
(0) = (0) (since

R is a domain) so that the generic point is unique. This proves the lemma when S is affine.

In general, let (Ui) be an open affine covering of S. Each Ui is reduced and irreducible and thus by the
above there is a unique ηi ∈ Ui such that η̄i ∩Ui = Ui. Let i, j be any pair of indices and let Vk ⊆ Ui ∩Uj be
a non-empty open affine subset (note that Ui∩Uj 6= ∅ because S is irreducible). Notice that by construction
ηi, ηj ∈ Vk and η̄i ∩ Vk = η̄j ∩ Vk = Vk. On the other hand Vk also has a unique generic point by the above
so ηi = ηj . Hence all the ηi are equal to one η ∈ S. We conclude that⋃

i

(η̄ ∩ Ui) = η̄ ∩
⋃
i

Ui = S

and thus η is a generic point of S. To see that it is unique let η′ be another generic point of S. Let U ⊆ S be
an open affine subscheme. Then η, η′ ∈ U and η and η′ are also generic points of U . Hence η = η′ by the
above.

5.2 Constructibility

Definition 5.7. Let T be a noetherian topological space. A subset E ⊆ T is called constructible if E is a finite union
of locally closed subsets.
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The class of constructible sets is the smallest subclass of the power set of T , which contains the open subsets
of T and is closed under finite unions and complementation (prove this!).

5.3 Chevalley’s theorem

Theorem 5.8 (Chevalley-Tarski). Let f : X → Y be a morphism of finite type. Suppose that Y is noetherian. Let
E ⊆ X be a constructible subset of X . Then f(E) is a constructible subset of Y .

To prove Theorem 5.8, we shall need some preliminary results in commutative algebra.

Theorem 5.9 (Noether’s normalisation lemma). Let K be a field and let A be a finitely generated K-algebra.
Then there is a natural number n ∈ N and a map of K-algebras

φ : K[T1, . . . Tn]→ A

such that φ is injective and finite.

Note that the map φ endows A with a K[T1, . . . Tn]-algebra structure. By definition, φ is finite if A is a
finitely generated K[T1, . . . Tn]-module.

Proof. See [AM69, p. 69].

Theorem 5.10 (Going up theorem; [AM69, Th. 5.11]). Let φ : A → B be a morphism of rings and suppose that
φ is injective and finite. Then Spec(φ) : Spec(B)→ Spec(A) is surjective.

To prove Theorem 5.10, we shall need the following lemmata.

Lemma 5.11. Let k be a domain let M be a finite k-module. Let φ : M →M be a map of k-modules. Then is n ∈ N
and P (t) = tn + an−1 · tn−1 + · · ·+ a0 with ai ∈ k such that P (φ) = 0.

Proof. (of lemma 5.11) Let h ∈ N and let s : kh → M be a surjective map of k-modules. Let φ̃ : kh → kh be
any map of k-modules such that s ◦ φ̃ = φ ◦ s. Then there is n ∈ N and P (t) = tn + an−1 · tn−1 + · · · + a0

with ai ∈ k such that P (φ̃) = 0 (by Cayley-Hamilton). Thus

P (φ) ◦ s = s ◦ P (φ̃) = 0

and since s is surjective, we see that P (φ) = 0.

Complement 5.12. Lemma 5.11 is also true without the assumption that k is a domain. This follows from
the generalised Cayley-Hamilton theorem. See Theorem 2.1 in Commutative Algebra by H. Matsumura for
this.

Lemma 5.13. Suppose that λ : k → B0 is an injective and finite map of domains. Then B0 is a field if and only if k
is a field.

Proof. (of Lemma 5.13). Suppose that k is a field. By induction on the number of generators of B0 as a
k-module, we may suppose that B0 is generated by one element b0 ∈ B0 over k. Let k[t] → B0 be the
k-algebra map sending t on b0. The kernel of this map is a prime ideal, since B0 is integral. Since prime
ideals in k[t] are maximal, we conclude that B0 is a field.
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No suppose that B0 is a field. We want to show that k is a field. Let x ∈ k∗. We only have to show that the
inverse x−1 ∈ B0 lies in k. Let ex : B0 → B0 be the map such that ex(z) = z/x for all z ∈ B0. By Lemma
5.11, there is a polynomial P (t) = tn + an−1 · tn−1 + · · · + a0 ∈ k[t] such that P (ex) = 0. In particular, we
have P (ex)(1) = P (1/x) = 0. Thus we have xn−1 · P (1/x) = 0, ie

x−1 + an−1x+ · · ·+ a0 · xn−1 = 0

which implies that x−1 ∈ k.

Proof. (of Theorem 5.10) Let p ∈ Spec(A). The localised map φp : Ap → Bp is also finite and injective. Here
Bp is the localisation of B viewed as an A-module. It is easily checked that Bp is naturally isomorphic to
the localisation Bφ(A\p) of the ring B at the multiplicative set φ(A\p) and that via this isomorphism the
map φp is a map of rings. Furthermore, there is a commutative diagram

Spec(Bp) //

Spec(φp)

��

Spec(B)

Spec(φ)

��
Spec(Ap) // Spec(A)

Since p is the image of the maximal ideal m of Ap under the map Spec(Ap) → Spec(A), it is sufficient to
show that there is a prime ideal q in Bp so that φ−1

p (q) = m. Let q be any maximal ideal of Bp. We have
an injective and finite map Ap/φ

−1
p (q) → Bp/q. By assumption, the ring Bp/q is a field and by Lemma

5.13, the ring Ap/φ
−1
p (q) is also field, ie φ−1

p (q) is a maximal ideal in Ap. Since Ap is a local ring, we have
p = φ−1

p (q).

Lemma 5.14. Let φ : A → B be an injective map of rings. Suppose that φ makes B into a finitely generated
A-algebra. Suppose that A is a domain. Then the following two conditions are equivalent:

(a) B is a finite A-module;

(b) if b1, . . . bk is a set of generators of B as an A-algebra, there is for each i a monic polynomial Pbi(t) ∈ A[t] such
that Pbi(bi) = 0.

Proof. (a)⇒(b). Apply Lemma 5.11 to the multiplication by b map (•) · b : B → B.

(b)⇒(a). Any element of B can be expressed as a polynomial in the bi with coefficients in A. On the other
hand, by assumption, for each bi some power blii is a A-linear combination of powers bli with l < li. Hence
every element of B can be expressed as a linear combination of the elements

b1, . . . , b
l1−1
1 , b2, . . . , b

l2−1
2 , . . . bk, . . . , b

lk−1
k .

Lemma 5.15. Let φ : A0 → B0 be an injective morphism of rings. Suppose that A0 and B0 are integral rings
and suppose that B0 is finitely generated as an A0-algebra. Then there is n ∈ N, s ∈ A0 and a finite and injective
homomorphism of A0-algebras

A0,s[t1, . . . , tn]→ B0,s

Here A0,s is (as usual) the localisation of A0 at the multiplicative set generated by s and B0,s is the localisation of B0

at the multiplicative set generated by φ(s).
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Proof. Let K be the fraction field of A0. Consider the map

φK : K → B0 ⊗A0
K ' B0,φ(A∗0)

given by the formula φK(a/b) = 1 ⊗ a/b. The map φK is also injective and B0 ⊗A0
K is a domain and a

finitely generated K-algebra. A similar reasoning was already made in the proof of Theorem 5.10 and we
leave the details of the verification of these facts to the reader. By Noether’s normalisation lemma 5.9, there
is an injective and finite map of K-algebras

λ : K[t1, . . . , tn]→ B0,φ(A∗0)

For i ∈ {1, . . . , n}, let bi/ai := λ(ti), where bi ∈ B0 and ai ∈ A∗0. Let s0 be a multiple of a1 · a2 · · · an. Let

λ0 : A0,s0 [t1, . . . , tn]→ B0,φ(s0)

be the morphism of A0,s0 -algebras sending ti to bi/ai. The map λ0 is injective because A0 is a domain and
λ is injective. Let now c1/d1, . . . ck/dk ∈ B0,φ(s0) be a set of generators of B0,φ(s0) as a A0,s0 -algebra. By
Lemma 5.14, for each of the ci/di there is a monic polynomial Pi(t) with coefficients in K[t1, . . . , tn], such
that P (ci/di) = 0 in B0,φ(A∗0). We may suppose wrog that the product of all the denominators appearing
in the coefficients of all the Pi divides s0. We conclude from Lemma 5.14 that B0,φ(s0) is a finite A0,s0 -
algebra.

Proof. (of the theorem of Chevalley-Tarski).

Step I. We shall first prove the following statement. If f(E) is Zariski dense in Y then f(E) contains a non
empty open subset of Y .

We shall prove this statement. First, by noetherian induction, we may assume that Ē = X and assume that
the statement holds if Ē 6= X .

Suppose that f(E) is Zariski dense in Y . We may assume wrog that X is irreducible. To see this, suppose
that X has several irreducible components X1, . . . Xr. We then have

f(X1 ∩ E) ∪ · · · ∪ f(Xr ∩ E) ⊇ f(E)

and thus for one of the sets f(Xi ∩ E) we must have f(Xi ∩ E) = Y . We may thus replace X by Xi and E
by E ∩Xi. We may also assume that Y is irreducible (the argument is similar).

We may also suppose that X and Y are reduced, since the statement to be proven is topological.

My may wrog replace Y by one of its open affine subschemes V and X by X×Y V , so we may assume that
Y is affine.

Let now U ⊆ X be a non empty open affine subscheme. Either f(U ∩ E) is Zariski dense in Y or
f((X\U) ∩ E) is Zariski dense in Y . In the latter case, the assertion follows from the noetherian induc-
tive hypothesis so we may assume that f(U ∩ E) is Zariski dense in Y and thus replace X by U . Now
by definition, E is a finite union of locally closed subsets and one of these closed subsets, say E0, must be
dense in X . In particular, E0 contain an affine open subset U0 of X and as before, we may replace X by U0

so that we now have E = X . By Lemma 5.2, we may thus assume that X = Spec(B) and Y = Spec(A),
where A and B are integral rings. Let φ : A→ B be the corresponding maps of rings. We deduce from the
fact that f(X) is dense in Y that φ is injective (we ask the reader to prove this in Exercise 5.2).
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So we are now reduced to show that that if φ : A→ B is an injective map of rings, which makesB a finitely
generated A-algebra, then Spec(φ)(Spec(B)) ⊆ Spec(A) contains an open subset of Spec(A).

Now recall that by Lemma 5.15, there is n ∈ N, s ∈ A and a finite and injective homomorphism of A0-
algebras

As[t1, . . . , tn]→ Bs

Here As is (as usual) the localisation of A at the multiplicative set generated by s and Bs is the localisation
ofB at the multiplicative set generated by φ(s). We may wrog replaceA byAs andB byBs, since Spec(As)

is a basic open subset of Spec(A). In this situation, Theorem 5.10 implies that Spec(φ) is surjective and we
have proven the statement and completed Step I.

Step II. By noetherian induction, we may assume that the Zariski closure of f(E) is Y (use Exercise 3.3 and
4.7) and that the intersection of f(E) with any proper closed subset of Y is constructible. Let U ⊆ f(E)

be the non empty open subset of Y whose existence is predicted by Step I. We know that f(E) ∩ (Y \U)

is constructible by the noetherian inductive hypothesis and thus f(E) is the union of two constructible
subsets of Y and is thus constructible.

5.4 exercises

Exercise 5.1. Prove Lemma 5.4.

Exercise 5.2. Let φ : A → B be a morphism of integral rings. Suppose that Spec(φ) : Spec(B) → Spec(A) has
dense image. Show that φ is injective.

Exercise 5.3. Let (X,OX) be a noetherian scheme. Let (Xred,OXred
) ↪→ (X,OX) be the closed reduced subscheme

of (X,OX) associated with the closed subset X . Show that (X,OX) is affine if and only if (Xred,OXred
) is affine.

Exercise 5.4. Let f : X → Y be a strongly projective morphism. Suppose that Y is noetherian. Let F be a coherent
sheaf over X and suppose that F is flat over Y . Suppose also that for some k > 0 and some y ∈ Y we have
Hk(Xκ(y), F |Xκ(y)) = 0. Prove that the coherent sheaf Rkf∗(F ) vanishes in a neighbourhood of y.

Here are some explanations on the notations. Let Xy := X ×Spec(κ(y)) Y and let ι : Xy → X be the first
projection. We let F |Xκ(y) := ι∗(F ).

Exercise 5.5. Let X be a noetherian scheme and let L,M be line bundles on X .

• Suppose that L is ample. Show that for sufficiently large n > 0, the line bundle L⊗n ⊗M is ample.

• Suppose that L and M are ample. Show that the line bundle L⊗M is ample.
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