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Introduction

Commutative algebra is the study of commutative rings, with focus
on the class of finitely generated algebras over fields, i.e., quotients of
polynomial rings K[x1, . . . , xk], where K is a field, and more generally
the class of finitely generated algebras over noetherian rings. This
latter class is the prime object of study of these notes.

Commutative algebra is intimately connected to algebraic geome-
try, but it is also the cornerstone of homological algebra and non-
commutative ring theory; it also plays a prominent role in algebraic
number theory.

All rings in these lectures are associative commutative uni-
tary rings. A ring will be short for an associative commutative uni-
tary ring. Ring homomorphisms will be unitary, i.e, they send the
identity to the identity. The zero ring {0} is allowed.

We assume that the reader is familiar with the content of the part A
course Rings and Modules. In particular, we assume that the following
notions/terminology is known: ring, product of rings, subring, integral
domain (or domain for short), field, homomorphism of rings, module
over a ring, finitely generated module over a ring, ideal, ideal generated
by a set, product of two ideals, intersection of a family of ideals, sum
of a family of ideals, coprime ideals, submodule, intersection of family
of submodules, sum of a family of submodules, submodule generated
by a set, quotient module, direct sum of modules over a ring, homo-
morphisms of modules over a ring, prime ideal, maximal ideal, ring of
polynomials over a ring, zero-divisor, unit, Chinese remainder theorem,
Euclidean division, fraction field of a domain.

Many relevant ideas are reviewed in Sheet 0, which the reader is
warmly encouraged to work through. Its content is examinable!

The basic reference for this course is the book Introduction to Com-
mutative Algebra by M. F. Atiyah and I. G MacDonald. Perseus Books.
We shall refer to this book as [AM]. Note however that certain parts
of Section 7 and Section 9 are not covered by this book.

If in doubt, all the terms (and the associated symbols, which are
standard) in the list above are defined in the first chapter of [AM]. For
(a lot) more material and more explanations on the material presented
here, see the book Commutative Algebra with a View Toward Algebraic
Geometry by D. Eisenbud. Springer, Graduate Texts in Mathematics
150.

Some history. Up to the end of the nineteenth century, one mainly
studied finitely generated algebras over fields given by explicit equa-
tions (i.e., by polynomials generating an ideal I, when the algebra has
the presentation K[x1, . . . , xk]/I). The study of commutative rings in
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abstracto only started in the 1930s and it gathered a lot of momen-
tum in the 1960s, when many geometric techniques became available
through the theory of schemes.

1. Zorn’s lemma and maximal ideals

A partial order on a set S is a relation ⩽ on S such that
• (reflexivity) s ⩽ s for all s ∈ S;
• (transitivity) if s ⩽ t and t ⩽ r for s, t, r ∈ S then s ⩽ r;
• (antisymmetry) if s ⩽ t and t ⩽ s for t, s ∈ S then s = t.

If we also have
• (connexity) for all s, t ∈ S, either s ⩽ t or t ⩽ s,

then the relation ⩽ is said to be a total order on S.
Let T ⊆ S be a subset and let b ∈ S. We say that b is an upper

bound for T if t ⩽ b for all t ∈ T .
An element s ∈ S is said to be a maximal element of S if for all

t ∈ S, we have s ⩽ t if and only if s = t. An element s ∈ S is said to
be a minimal element of S if for all t ∈ S, we have t ⩽ s if and only if
s = t.

Note that if S is partially ordered by the relation ⩽ and T ⊆ S is a
subset, then the relation ⩽ restricts to a partial order on T .

Proposition 1.1 (Zorn’s lemma). Let ⩽ be a partial order on a non-
empty set S. If for every subset T ⊆ S that is totally ordered (with the
restriction of the relation ⩽ to T ) there is an upper bound for T in S,
then there exists a maximal element in S.

Proof. Omitted. See any first course on set theory. Zorn’s lemma is
equivalent to the axiom of choice. □

Let R be a ring. If I ⊆ R is an ideal in R, we shall say that I is
proper if I ̸= R. The ideal I is principal if it can be generated by one
element as an R-module; we write (a) for the principal ideal generated
by a ∈ R.

A classical application of Zorn’s lemma is the following.

Lemma 1.2. Let R be a ring. If I ⊂ R is a proper ideal then at least
one of the maximal ideals of R contains I.

Proof. Let S be the set of all proper ideals containing I. Endow S
with the relation given by inclusion. If T ⊆ S is a totally ordered
subset, then T has the upper bound

⋃
J∈T J (verify that this is an

ideal containing I; it is proper because otherwise we would have 1 ∈ J
for some J ∈ T ). Hence, by Zorn’s lemma, there is a maximal element
m in S. By definition, the ideal m has the property that whenever J
is a proper ideal containing I and m ⊆ J , then m = J . If J is an ideal
of R that does not contain I, then we cannot have m ⊆ J (since m
contains I). We conclude that for any non trivial ideal J of R, we have
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m = J if m ⊆ J . In other words, m is a maximal ideal of R, and it
contains I. □

END OF LECTURE 1

2. The nilradical and the Jacobson radical

If R is a ring, a zero-divisor of R is an element r ∈ R such that there
exists an element r′ ∈ R∖ {0} with r · r′ = 0. If R is not the zero ring,
0 is always a zero-divisor of R.

If M is an R-module and S ⊆M is a subset of M , we write

AnnM(S) = {r ∈ R | rm = 0 for all m ∈ S}.
The set AnnM(S) is an ideal of R (check), called the annihilator of S.

A domain is a non-zero ring R with the property that the set of zero-
divisors of R consists only of 0. (This definition applies also to non-
commutative rings; commutative domains are called integral domains.
Since in these notes all rings are commutative, we will not make a
distinction between these two properties.)

An element r ∈ R is said to be nilpotent if there exists an integer
n ⩾ 1 such that rn = 0, where we recursively define r0 = 1 and
rn+1 = rn · r for n ∈ N.

Definition 2.1. Let R be a ring. The nilradical of R is the set of
nilpotent elements of R.

A ring R is called reduced if its nilradical is {0}.
The nilradical captures the “infinitesimal part” of a ring. In the clas-

sical algebraic geometry of varieties, the coordinate rings were always
assumed to be reduced, and nilradicals did not play a role. Part of the
strength of scheme theory is that it allows the presence of infinitesimal
phenomena.

Proposition 2.2. Let R be a ring. The nilradical of R is the intersec-
tion of all the prime ideals of R.

Proof. Suppose that f ∈ R is a nilpotent element. Let p ⊂ R be
a prime ideal. Some power of f is 0, which is an element of p. In
particular, f + p ∈ A/p is a zero-divisor. Since p is a prime ideal, the
ring A/p is a domain and so f + p = p. In other words, f ∈ p. We
conclude that f is in the intersection of all the prime ideals of R.

Conversely, suppose that f ∈ R is not nilpotent. Let Σ be the set of
proper ideals I of R, such that for all n ⩾ 1 we have fn ̸∈ I. The set
Σ is non-empty, since (0) ∈ Σ. If we endow this set with the relation
of inclusion, we may conclude from Zorn’s lemma that Σ contains a
maximal element M (verify that the assumptions of Zorn’s lemma are
satisfied). We claim that M is a prime ideal.

To prove this, suppose that x, y ∈ R and that x, y ̸∈ M . Note that
the ideal (x)+M strictly contains M and hence cannot belong to Σ (by
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the maximality property of M). Similarly, the ideal (y) +M strictly
contains M and hence cannot belong to Σ. Hence there are integers
nx, ny ⩾ 1 such that fnx ∈ (x)+M and fny ∈ (y)+M . In other words,
fnx = a1x+m1, where a1 ∈ R and m1 ∈M and fny = a2y+m2, where
a2 ∈ R and m2 ∈M . Thus

fnx+ny = a1a2xy +m3

where m3 ∈ M . We thus see that xy ̸∈ M , for otherwise we would
have fnx+ny ∈ M , which is not possible since M ∈ Σ. Since x, y ∈ R
were arbitrary, we conclude that M is a prime ideal.

Since M ∈ Σ, for all n ⩾ 1 we have fn ̸∈ M . In particular we have
f ̸∈M . In other words, we have exhibited a prime ideal in R that does
not contain f . In particular, f does not lies in the intersection of all
the prime ideals of R. □

Corollary 2.3. Let R be a ring. The nilradical of R is an ideal.

Note that this corollary can also easily be proven directly (without
using Proposition 2.2) (exercise).

Here are two explicit examples: the nilradical of a domain is the zero
ideal; the nilradical of C[x]/(xn) is (x).

Let I ⊆ R be an ideal. Let q : R → R/I be the quotient map
and let N be the nilradical of R/I. The radical r(I) of I is defined
to be q−1(N ). From the definitions, we see that the nilradical of R
coincides with the radical r((0)) of the 0 ideal. Abusing language,
we will sometimes write r(R) for the nilradical of R. Again from the
definitions and from Proposition 2.2, we see that the radical of I has
the two equivalent descriptions:

• it is the set of elements f ∈ R such that there exists an integer
n ⩾ 1 satisfying fn ∈ I;

• it is the intersection of the prime ideals of R that contain I.
The operator r(·) has the following elementary properties: let I, J

be ideals of R. Then we have r(r(I)) = r(I) and we have r(I ∩ J) =
r(I) ∩ r(J) (why?).

An ideal that coincides with its own radical is called a radical ideal.

Definition 2.4. Let R be a ring. The Jacobson radical of R is the
intersection of all the maximal ideals of R.

(Recall from Sheet 0 that all maximal ideals are prime.) By defini-
tion, the Jacobson radical of R contains the nilradical of R.

Let I ⊆ R be a non trivial ideal. Let q : R → R/I be the quotient
map and let J be the Jacobson radical of R/I. The Jacobson radical
of I is defined to be q−1(J ). By definition, this coincides with the
intersection of all the maximal ideals containing I. Again by definition,
the Jacobson radical of I contains the radical of I.
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Proposition 2.5 (Nakayama’s lemma). Let R be a ring. Let M be a
finitely generated R-module. Let I be an ideal of R that is contained in
the Jacobson radical of R. Suppose that IM = M (i.e., every m ∈ M
is a finite sum of elements of the form a · n, where a ∈ I and n ∈M).
Then M ≃ 0.

Proof. Suppose that M ̸≃ 0. Let x1, . . . , xs be a set of generators of
M and suppose that s is minimal (i.e., every set of generators for M
has at least s elements); note that s ⩾ 1. By assumption, there are
elements a1, . . . , as ∈ I such that

xs = a1x1 + · · ·+ asxs.

Rewriting yields
(1− as)xs = a1x1 + · · ·+ as−1xs−1.

Now the element 1−as is a unit. Indeed, if 1−as were not a unit then
it would be contained in a maximal ideal m of R (apply Lemma 1.2)
and by assumption as ∈ m so that we would have 1 ∈ m, which is a
contradiction. Hence

xs = ((1− as)
−1a1)x1 + · · ·+ ((1− as)

−1as−1)xs−1

contradicting the minimality of s. Hence M ≃ 0. □

The ring R is local if it has a single maximal ideal m. Note that in
this case, every element of R∖m is a unit (because otherwise, any such
element would be contained in a non trivial maximal ideal of R, which
would not coincide with m – see Lemma 1.2).

For a local ring, the Jacobson radical of the ring and the maximal
ideal coincide.

Corollary 2.6. Let R be a local ring with maximal ideal m. Let M
be a finitely generated R-module. Let x1, . . . , xs ∈ M be elements of
M and suppose that x1 + mM, . . . , xs + mM ∈ M/mM generate the
R/m-module M/mM . Then the elements x1, . . . , xs generate M .

Proof. Let M ′ ⊆ M be the submodule generated by x1, . . . , xs. By
assumption, we have M ′ + mM = M , and so m(M/M ′) = M/M ′. By
Nakayama’s lemma, we thus have M/M ′ ≃ (0), i.e., M =M ′. □

Corollary 2.7. Let R be a local ring with maximal ideal m. Let M,N
be finitely generated R-modules and let ϕ : M → N be a homomorphism
of R-modules. Suppose that the induced homomorphism

M/mM → N/mN

is surjective. Then ϕ is surjective.

Proof. Let x1, . . . , xs be generators of M . By assumption, the ele-
ments ϕ(x1) + m, . . . , ϕ(xs) + m generate N/mN . Hence the elements
ϕ(x1), . . . , ϕ(xs) generate N by Corollary 2.6. In particular, ϕ is sur-
jective. □
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Definition 2.8. A ring R is called a Jacobson ring if for all the proper
ideals I of R, the Jacobson radical of I coincides with the radical of I.

From the definition, we see that any quotient of a Jacobson ring is
also Jacobson.

We will study Jacobson rings in Section 9 below. It is easy to see
that the ring Z is Jacobson, and that any field is Jacobson. So is K[x],
if K is a field, and in fact so is any finitely generated algebra over
a Jacobson ring (see Theorem 9.5 below). On the other hand, a local
domain is never Jacobson unless it is a field (why?). So for instance the
ring of p-adic integers Zp (where p is a prime number) is not Jacobson.

END OF LECTURE 2

3. The spectrum of a ring

Let R be a ring. We shall write Spec(R) (the spectrum of R) for the
set of prime ideals of R. For an ideal I of R, we define

V (I) = {p ∈ Spec(R) | I ⊆ p}.

Lemma 3.1. The function V (·) has the following properties:
• V (I) ∪ V (J) = V (I · J);
•
⋂
I∈I V (I) = V (

∑
I∈I I);

• V (R) = ∅; V ((0)) = Spec(R).

Proof. Straightforward. Left to the reader. □

An immediate consequence of Lemma 3.1 is that the sets V (I) (where
I is an ideal of R) form the closed sets of a topology on Spec(R). This
topology is called the Zariski topology. The closed points in Spec(R)
are precisely the maximal ideals of R.

From the definitions, we see that if R is a Jacobson ring, then the
closed points are dense in any closed set of Spec(R). This is not true
for a general ring (exercise).

If ϕ : R → T is a homomorphism of rings, there is a map
Spec(ϕ) : Spec(T ) → Spec(R), p 7→ ϕ−1(p)

(check that this is well defined). If I is an ideal in R and J is the
ideal generated in T by ϕ(I), we clearly have Spec(ϕ)−1(V (I)) = V (J),
and hence Spec(ϕ) is a continuous map for the Zariski topologies on
source and target. Notice also that if ψ : T → P is another ring homo-
morphism, then we have from the definition that Spec(ϕ) ◦ Spec(ψ) =
Spec(ψ ◦ ϕ).

Lemma 3.2. Let ϕ : R → T be a surjective homomorphism of rings.
Then Spec(ϕ) is injective and the image of Spec(ϕ) is V (ker(ϕ)).

Proof. To see that Spec(ϕ) is injective, note that if p ∈ Spec(T ), then
p = ϕ(ϕ−1(p)), since ϕ is surjective, so distinct elements of Spec(T )
have distinct images in Spec(R).
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For the second statement, note first that the image of Spec(ϕ) is
clearly contained in V (ker(ϕ)). On the other hand if p is a prime ideal
containing ker(ϕ) (i.e., p ∈ V (ker(ϕ))), then ϕ(p) is an ideal of T and
ϕ−1(ϕ(p)) = p. Indeed, ϕ(p) is an ideal of T since ϕ is surjective.
Furthermore, we clearly have ϕ−1(ϕ(p)) ⊇ p and if r ∈ ϕ−1(ϕ(p)) then
there exists r′ ∈ p such that ϕ(r) = ϕ(r′), so that ϕ(r − r′) = 0. Since
p contains the kernel of ϕ, we thus see that r ∈ p. In other words
ϕ−1(ϕ(p)) = p. Finally, ϕ(p) is a prime ideal of T . Indeed, suppose
that x, y ∈ T and xy ∈ ϕ(p). Let x′, y′ ∈ R such that ϕ(x′) = x and
ϕ(y′) = y. Then x′y′ ∈ ϕ−1(ϕ(p)) = p and so either x′ ∈ p or y′ ∈ p,
since p is prime. Hence either x ∈ ϕ(p) or y′ ∈ ϕ(p). All in all, we have
shown that Spec(ϕ)(ϕ(p)) = p for every p ∈ V (ker(ϕ)), as required. □

Remark 3.3. We shall see after Corollary 7.12 below that Spec(ϕ) is ac-
tually a homeomorphism onto its image (exercise: prove this directly).

Lemma 3.4. Let f ∈ R. The set

Df (R) = {p ∈ Spec(R) | f ̸∈ p}

is open in Spec(R). The open sets of Spec(R) of the form Df (R) form
a basis for the Zariski topology of Spec(R). Furthermore, the topology
of Spec(R) is compact.

The open sets of the form Df (R) are often called basic open sets (in
Spec(R)). Recall that a set B of open sets of a topological space X is
said to be a basis for the topology of X if every open set of X can be
written as a union of open sets in B. A topological space X is compact
if for every set U of open sets in X such that

⋃
U∈U U = X there exists

a finite subset U0 of U such that
⋃
U∈U0

U = X. In other words, every
open cover admits a finite subcover.�

Some authors follow Bourbaki and refer to the property above as
being quasi-compact, and reserve the term “compact” for what we would
call “compact and Hausdorff”. We will stick to the notation in which
compact spaces need not be Hausdorff.

Proof of Lemma 3.4. Set Df = Df (R). Directly from the definitions,
we see that

Spec(R)∖Df (R) = V ((f)),

and hence Df is open for every f .
By definition, all closed sets of Spec(R) are of the form V (I) for

some ideal I. But then clearly⋃
f∈I

Df = {p ∈ Spec(R) : I ̸⊆ p} = Spec(R)∖ V (I),

and so every open subset of Spec(R) is expressible as a union of the
sets of the form Df , as claimed.
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Finally, we show that Spec(R) is compact. In view of the fact that
the sets of the form Df form a basis for the Zariski topology of Spec(R),
we only need to show that if

Spec(R) =
⋃
f∈F

Df

for some F ⊆ R, then there is a finite subset F0 ⊆ F such that
Spec(R) =

⋃
f∈F0

Df .
For every subset S ⊆ R we have

Spec(R)∖
⋃
f∈S

Df =
⋂
f∈S

(Spec(R)∖Df )

=
⋂
f∈S

V ((f))

= V (
∑
f∈S

(f)),

with the last equality following from Lemma 3.1.
Taking S = F , and using the fact that Spec(R) =

⋃
f∈F Df , we

conclude that V (
∑

f∈F(f)) = ∅. This is equivalent to saying that∑
f∈F(f) is not contained in any prime ideal. But every proper ideal

is, since maximal ideals are prime, and therefore
∑

f∈F(f) = R. Hence
we have

1 =
∑
f∈F0

rff

for some rf ∈ R and a finite subset F0 of F , whence it follows that∑
f∈F0

(f) = R.
We now use the previous computation for S = F0 and conclude that

Spec(R)∖
⋃
f∈F0

Df = V (R) = ∅,

which is what we claimed. □

Lemma 3.5. Let I and J be ideals in R. Then V (I) = V (J) if and
only if r(I) = r(J).

Proof. “⇒”: Suppose that for every prime ideal p of R, we have I ⊆ p
if and only if J ⊆ p. Then we have r(I) = r(J) by Proposition 2.2 (see
before Definition 2.4).

“⇐”: This is again a consequence of Proposition 2.2. □

In particular, there is a one-to-one correspondence between radical
ideals in R and closed subsets of Spec(R). The closed subsets corre-
sponding to prime ideals are called irreducible. If I and J are radical
ideals then I ⊆ J if and only if V (I) ⊇ V (J).
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We conclude from Lemmata 3.1, 3.2, and 3.5 that if q : R → R/r((0))
is the quotient map, then Spec(q) is a bijection (and thus a homeomor-
phism – see Remark 3.3). So the Zariski topology “does not see the
nilradical”.

Remark 3.6. Let R be a ring and let I and J be two ideals in R. Then
we have

(I ∩ J) · (I ∩ J) ⊆ I · J ⊆ I ∩ J
and thus r(I · J) = r(I ∩ J). In particular, we have

V (I · J) = V (I ∩ J).
Note that if I and J are radical ideals then I ∩J is also a radical ideal,
whereas I · J might not be.

END OF LECTURE 3

4. Localisation

If R and T are rings, then T is said to be an R-algebra if there is
a homomorphism of rings R → T . Note that this homomorphism is
part of the structure of an R-algebra, and so, strictly speaking, it is
not T which should be called an R-algebra, but the homomorphism
R → T . Note also that an R-algebra T naturally carries a structure
of an R-module. If ϕ1 : R → T1 and ϕ2 : R → T2 are two R-algebras, a
homomorphism of R-algebras is a homomorphism of rings λ : T1 → T2
such that λ ◦ ϕ1 = ϕ2.

An R-algebra ϕ : R → T is said to be finitely generated if there
exists an integer k ⩾ 0 and a surjective homomorphism of R-algebras
R[x1, . . . , xk] → T (where R[x1, . . . , xk] = R if k = 0). Note the
following elementary fact: if R → T (resp. T → W ) is a finitely
generated R-algebra (resp. a finitely generated T -algebra), then the
composed map R → W makes W into a finitely generated R-algebra
(why?).

A subset S ⊆ R is said to be a multiplicative set if 1 ∈ S and if
xy ∈ S whenever x, y ∈ S. (Using fancy language, S is a submonoid of
the multiplicative monoid (R, ·)). A basic example of a multiplicative
set is the set {1, f, f 2, f 3, . . . }, where f ∈ R.

Let S ⊆ R be a multiplicative subset. Consider the set R × S
(cartesian product). We define a relation ∼ on R × S as follows. If
(a, s), (b, t) ∈ R×S then (a, s) ∼ (b, t) if and only if there exists u ∈ S
such that u(ta − sb) = 0. The relation ∼ is an equivalence relation
(verify) and we define the localisation of R at S, denoted RS or RS−1,
to be (R× S)/ ∼, i.e., RS−1 is the set of equivalence classes of R× S
under ∼. If a ∈ R and s ∈ S, we write a/s for the image of (a, s) in
RS−1. We define addition as

+: RS−1 ×RS−1 → RS−1, (a/s, b/t) 7→ (at+ bs)/(st).
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This is well defined (verify). We also define multiplication

· : RS−1 ×RS−1 → RS−1, (a/s, b/t) 7→ (ab)/(ts).

Again, this is well defined. One checks that these two maps provide
RS−1 with the structure of a ring with identity element 1/1. The
0 element in RS−1 is then the element 0/1. There is a natural ring
homomorphism from R to RS, given by the formula r 7→ r/1. By
construction, if r ∈ S, the element r/1 is invertible in R, with inverse
1/r.

We shall see in Lemma 4.1 below that RS−1 is the “minimal exten-
sion” of R making every element of S invertible.

Note that if R is a domain, the fraction field of R is the ring RR∖0.
Note also that if R is a domain, then RS−1 is a domain. Indeed suppose
that R is domain, that 0 ̸∈ S, and that (a/s)(b/t) = 0, where a, b ∈ R
and s, t ∈ S. Then by definition we have u(ab) = 0 for some u ∈ S,
which implies that ab = 0 so that either a = 0 or b = 0, in particular
either a/s = 0/1 or b/t = 0/1. If 0 ∈ S, then RS−1 is the zero ring
(i.e., 1 = 0 in RS−1), which is a domain (check this!). This simply
follows from the fact that if 0 ∈ S then ∼ admits only one equivalence
class.

If M is an R-module, we may carry out a similar construction. We
define a relation ∼ on M × S as follows. If (a, s), (b, t) ∈ M × S then
(a, s) ∼ (b, t) if and only if there exists u ∈ S such that u(ta − sb) =
0. The relation ∼ is again an equivalence relation and we define the
localised module MS−1 (or MS) to be (M × S)/ ∼, i.e., MS−1 is the
set of equivalence classes of M × S under ∼. If a ∈ M and s ∈ S, we
again write a/s for the image of (a, s) in MS−1. We define addition

+: MS−1 ×MS−1 →MS−1, (a/s, b/t) 7→ (at+ bs)/(st)

and scalar multiplication
· : RS−1 ×MS−1 →MS−1(a/s, b/t) 7→ (ab)/(ts).

Again, both are well defined and furnish MS−1 with the structure of an
RS−1-module. The 0 element in MS−1 is then the element 0/1. The
RS−1-module MS−1 carries a natural structure of an R-module via
the natural map R → RS−1 and there is a natural map of R-modules
M →MS−1 given by the formula m 7→ m/1.

Lemma 4.1. Let ϕ : R → R′ be a ring homomorphism. Let S ⊆ R
be a multiplicative subset. Suppose that ϕ(S) consists of units of R′.
Then there is a unique ring homomorphism ϕS : RS → R′ such that
ϕS(r/1) = ϕ(r) for all r ∈ R.

Proof. Define the map ϕS : RS → R′ by the formula ϕS(a/s) = ϕ(a)(ϕ(s))−1

for all a ∈ R and s ∈ S. We show that ϕS is well defined. Suppose
that (a, s) ∼ (b, t). Then

ϕS(b/t) = ϕ(b)(ϕ(t))−1
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and we have u(ta− sb) = 0 for some u ∈ S. Thus

ϕ(u)
(
ϕ(t)ϕ(a)− ϕ(s)ϕ(b)

)
= 0

and since ϕ(u) is a unit in R′, we have ϕ(t)ϕ(a)− ϕ(s)ϕ(b) = 0. Thus
ϕ(t)ϕ(a) = ϕ(s)ϕ(b) and therefore

ϕS(a/s) = ϕ(a)(ϕ(s))−1 = ϕ(b)(ϕ(t))−1 = ϕS(b/t).

Thus ϕS is well defined. We skip the straightforward verification that
ϕS is a ring homomorphism. We have thus proved that there is a ring
homomorphism ϕS : RS → R′ such that ϕS(r/1) = ϕ(r) for all r ∈ R.

We now prove unicity. Suppose that ϕ′
S : RS → R′ is another ring

homomorphism such that ϕ′
S(r/1) = ϕ(r) for all r ∈ R. Then for every

r ∈ R and t ∈ S, we have
ϕ′
S(r/t) = ϕ′

S((r/1)(t/1)
−1)

= ϕ′
S(r/1)ϕ

′
S(t/1)

−1

= ϕS(r)ϕS(t)
−1

= ϕS(r/t)

and thus ϕ′
S coincides with ϕS. □

We also record the following important fact.

Lemma 4.2. Let R be a ring and let f ∈ R. Let S = {1, f, f 2, . . . }.
Then the R-algebra RS is finitely generated.

Proof. Immediate: RS is generated by 1/1 and 1/f as anR-algebra. □

The above result follows also from the following, instructive exercise.

Exercise 4.3. Let R be a ring and let f ∈ R. Let S = {1, f, f 2, . . . }.
Then the R-algebra RS is isomorphic to T = R[x]/(fx− 1).

If R is a ring and ϕ : N →M is a homomorphism of R-modules, there
is a unique homomorphism of RS-modules ϕS : NS → MS such that
ϕS(n/1) = ϕ(n)/1 for all n ∈ N . We easily verify that if ψ : M → T is
another homomorphism of R-modules then we have (ψ ◦ϕ)S = ψS ◦ϕS.

Let
· · · →Mi

di→Mi−1
di−1→ · · ·

be a sequence of R-modules such that di−1 ◦ di = 0 for all i ∈ Z. Such
a sequence is called a chain complex of R-modules. We shall say that
the complex is exact if ker(di) = im(di+1) for all i ∈ Z.
Lemma 4.4. Let R be a ring and let S ⊆ R be a multiplicative subset.
Let

· · · →Mi
di→Mi−1

di−1→ · · ·
be an exact chain complex of R-modules. Then the sequence

· · · →Mi,S

di,S→ Mi−1,S

di−1,S→ · · ·
is also exact.
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Proof. Let m/s ∈ Mi,S (with m ∈ Mi and s ∈ S) and suppose that
di,S(m/s) = 0. Then di,S(m/1) = di(m)/1 = 0, so u · di(m) = 0 for
some u ∈ S. But then di(um) = 0, forcing

um ∈ im di+1

by exactness of the first sequence. Hence there is an element p ∈Mi+1

such that di+1(p) = um, and hence we have di+1,S(p/(us)) = m/s. This
concludes the proof. □

The above is a very important result, summarised by the slogan
“localisation is flat”. It has a non-commutative analogue, and is of
great significance in homological algebra.

END OF LECTURE 4

Lemma 4.5. Let ϕ : R → T be a ring homomorphism. Let S ⊆ R be a
multiplicative subset. By Lemma 4.1, there is a unique homomorphism
of rings ϕ′ : RS → Tϕ(S) such that ϕ′(r/1) = ϕ(r)/1. We may thus view
Tϕ(S) as an RS-module and T as an R-module. There is then a unique
isomorphism of RS-modules µ : TS ≃ Tϕ(S) such that µ(a/1) = a/1 for
all a ∈ T and we have µ ◦ ϕS = ϕ′.

Proof. Define µ(a/s) = a/ϕ(s) for every a ∈ T and s ∈ S. This is well
defined. Indeed, suppose that a/s = b/t. Then there is u ∈ S such
that

u · (a · t− b · s) = 0.

The action of r ∈ R on T coincides with multiplication by ϕ(r), and so
ϕ(u)(ϕ(a)t− ϕ(b)s) = 0, yielding a/ϕ(s) = b/ϕ(t), which shows that µ
is well defined.

From the definitions, we see that µ is a map of RS-modules. We also
see from the definition that µ is surjective. To see that µ is injective,
suppose that µ(a/s) = 0/1 for some a ∈ T and s ∈ S. Then there is
an element u ∈ S such that ϕ(u)a = 0. Hence u · a = 0 in T , and so
a/1 = 0 in TS, implying a/s = 0. Thus µ is bijective.

The identity µ ◦ ϕS = ϕ′ follows from the fact that µ, ϕS and ϕ′ are
homomorphisms of RS-modules and from the fact that µ ◦ ϕS(1/1) =
ϕ′(1/1). □

Let R be a ring and let p be a prime ideal in R. Then the set R∖ p
is a multiplicative subset. Indeed, 1 ̸∈ p as otherwise p would be equal
to R, and if x, y ̸∈ p then xy ̸∈ p, since p is prime. We shall use
the shorthand Rp for RR∖p and if M is an R-module, we shall use the
shorthand Mp for MR∖p. This notation is unambiguous, since p is never
a multiplicative subset, as it does not contain 1.

If ϕ : M → N is a homomorphism of R-modules, we shall write ϕp

for ϕR∖p :Mp → Np.
If ϕ : U → R is a homomorphism of rings and p is a prime ideal of

R, then ϕ naturally induces a homomorphism of rings Uϕ−1(p) → Rp,
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since ϕ(U ∖ ϕ−1(p)) ⊆ R ∖ p. This homomorphism is sometimes also
denoted ϕp.

If an ideal I of R, the identity map id : R → R restricts to the R-
module homomorphism id |I : I → R. If S is a multiplicative subset of
R, we obtain (id |I)S : IS → RS, a homomorphism of RS-modules.

Lemma 4.6. Let R be a ring and let S ⊆ R be a multiplicative subset.
Let λ : R → RS be the natural ring homomorphism. Then the prime
ideals of RS are in one-to-one correspondence with the prime ideals p of
R such that p∩S = ∅. If q is a prime ideal of RS then the corresponding
ideal of R is λ−1(q). If p is a prime ideal of R such that p∩S = ∅ then
the corresponding prime ideal of RS is (id |p)S(pS) ⊆ RS. Furthermore,
(id |p)S is then the ideal generated by λ(p) in RS.

Note that in view of Lemma 4.5, if we localise R at S when R is
viewed as an R-module or as a ring, we get the same RS-module.

Proof. We first prove that if I is any ideal of R, then (id |I)S(IS) is
the ideal generated by λ(I) in RS. For this, notice that by definition
(id |I)S(IS) consists of all the element a/s ∈ RS, where a ∈ I and s ∈ S.
Hence (id |I)S(IS) is an ideal of RS, which contains λ(I). Furthermore,
since a/s = (a/1)(1/s), any element a/s as above is contained in the
ideal generated by λ(I) in RS. Hence (id |I)S(IS) is the ideal generated
by λ(I) in RS.

To prove the lemma, we thus only have to show the following:
(1) If J is a proper ideal of RS then λ−1(J) ∩ S = ∅.
(2) If J is an ideal of RS, the ideal generated by λ(λ−1(J)) in RS

is J .
(3) If p is a prime ideal ofR such that p∩S = ∅, then λ−1(ιp,S(pS)) =

p.
(4) If p is a prime ideal of R such that p ∩ S = ∅ then ιp,S(pS) is a

prime ideal of RS.
(5) If q is a prime ideal of RS then λ−1(q) is a prime ideal.

A more general form of (5) was left to the reader after Lemma 3.1, so
we skip its proof.

We prove (1). If λ−1(J) ∩ S ̸= ∅ then (by definition) there exists
s ∈ λ−1(J) such that s ∈ S. But then λ(s) = s/1 ∈ J and s/1 is a
unit, hence J = RS.

To prove (2), notice first that λ(λ−1(J)) ⊆ J . Furthermore, if
a/s ∈ J

then as before a/1 = (a/s)(s/1) also lies in J and hence a/1 ∈ λ(λ−1(J)).
Since a/s = (a/1)(1/s) we thus see that a/s lies in the ideal generated
by λ(λ−1(J)). Since a/s was arbitrary, J is thus the ideal generated
by λ(λ−1(J)).

To prove (3) note that since (id |p)S(pS) is the ideal generated by
λ(p) in RS, we clearly have p ⊆ λ−1((id |p)S(pS)). Now suppose that
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a ∈ λ−1((id |p)S(pS)). Then by definition a/1 = b/s for some b ∈ p
and some s ∈ S. Again by definition, this means that for some t ∈ S,
we have t(sa − b) = 0, i.e., tsa = tb. Since tb ∈ p and ts ̸∈ p (by
assumption), we deduce from the fact that p is prime that a ∈ p, as
required.

To prove (4), consider the exact sequence of R-modules

0 → p → R
q→ R/p → 0

where q is the quotient map. Applying Lemma 4.4, we see that the
sequence of RS-modules

0 → pS → RS
qS→ (R/p)S → 0

is also exact. Furthermore, by Lemma 4.5, we see that (R/p)S is iso-
morphic as an RS-module with the ring (R/p)q(S) and that we have
an isomorphism of rings RS/pS ≃ (R/p)q(S). Now since S ∩ p = ∅, we
see that 0 ̸∈ q(S). Since R/p is a non-zero domain by assumption, we
deduce that (R/p)q(S) is also a non-zero domain (see beginning of this
section). We conclude that pS is a prime ideal. □

Note the following rewording of part of Lemma 4.6: Spec(λ)(Spec(RS))
consists of the prime ideals in Spec(R) that do not meet S. In partic-
ular, in the notation of Lemma 3.4,

Spec(λ)(Spec(RS)) = Df (R)

if S = {1, f, f 2, f 3, . . . }.
Still keeping the notation of Lemma 4.6, we also note the following.

If q ∈ Spec(RS) then λ induces a natural homomorphism of rings
Rλ−1(q) → (RS)q (see before Lemma 4.6). This homomorphism is an
isomorphism. We leave the proof of this statement as an exercise.

Second proof of Proposition 2.2 using localisations. LetR be a ring. Let
r ∈ R be an element that is not nilpotent. To prove Proposition 2.2,
we need to show that there is a prime ideal p of R such that r ̸∈ p. Let
S = {1, r, r2, . . . } be the multiplicative set generated by r. The ring RS

is not the zero ring because r/1 ̸= 0/1 (because r is not nilpotent). Let
q be a prime ideal of RS (this exists by Lemma 1.2). By Lemma 4.6,
the ideal q corresponds to a prime ideal p of R such that r ̸∈ p so it
has the required properties. □

Lemma 4.7. Let R be a ring and let p ⊆ R be a prime ideal. Then the
ring Rp is a local ring. If m is the maximal ideal of Rp and λ : R → Rp

is the natural homomorphism of rings, then λ−1(m) = p.

Proof. By Lemma 4.6, the prime ideals of Rp correspond to the prime
ideals of R which do not meet R ∖ p, i.e., to the prime ideals of R
which are contained in p. This correspondence preserves the inclusion
relation, so every prime ideal of Rp is contained in the prime ideal
corresponding to p. Now let I be a maximal ideal of Rp. Since I is
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contained in the prime ideal corresponding to p, it must coincide with
this ideal by maximality. So the prime ideal m corresponding to p is
maximal and it is the only maximal ideal of Rp. By Lemma 4.6, we
have λ−1(m) = p. □

END OF LECTURE 5

5. Primary decomposition

In this section, we study a generalisation of the decomposition of
integers into products of prime numbers. In a geometric context (i.e.,
for affine varieties over algebraically closed fields) this generalisation
also provides the classical decomposition of a subvariety into a disjoint
union of irreducible subvarieties. Applied to the ring of polynomials
in one variable over a field, it yields the decomposition of a monic
polynomial into a product of irreducible monic polynomials.

The main result is Theorem 5.8 below.
Let R be a ring.

Proposition 5.1. (1) Let p1, . . . , pk be prime ideals of R. Let I
be an ideal of R. Suppose that I ⊆

⋃k
i=1 pi. Then there is

i0 ∈ {1, . . . , k} such that I ⊆ pi0.
(2) Let I1, . . . , Ik be ideals of R and let p be a prime ideal of R.

Suppose that p ⊇
⋂k
i=1 Ii. Then there is i0 ∈ {1, . . . , k} such

that
p ⊇ Ii0 .

If p =
⋂k
i=1 Ii, then there is an i0 ∈ {1, . . . , k} such that p = Ii0.

Proof. We prove both items in turn.
(1) By induction on k. The case k = 1 holds tautologically. For

general k, if for some j we have I ⊆
⋃
i ̸=j pi then we are done

by the inductive hypothesis. Otherwise, there are elements
x1, . . . , xk ∈ I such that for each i ∈ {1, . . . , k} we have xi ∈ pi
and xi ̸∈ pj if j ̸= i. Now consider the element

y =
k∑
j=1

x1x2 · · ·xj−1xj+1 · · ·xk

where we set x0 = xk+1 = 1. Note that for each j ∈ {1, . . . , k}
we have x1x2 · · ·xj−1xj+1 · · · xk ∈ pi for all i ̸= j. Now let
i ∈ {1, . . . , k} be such that y ∈ pi. Then

y −
∑
j ̸=i

x1x2 · · ·xj−1xj+1 · · ·xk ∈ pi

and thus
x1x2 · · ·xi−1xi+1 · · ·xk ∈ pi.

Since pi is prime, one of x1, x2, . . . , xi−1, xi+1, . . . , xk must lie in
pi, which is a contradiction.
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(2) We prove the first statement. Suppose that the conclusion does
not hold. Then for each i ∈ {1, . . . , k}, there is an element
xi ∈ Ii such that xi ̸∈ p. But x1x2 · · ·xk ∈

⋂k
i=1 Ii ⊆ p and since

p is prime, one of the xi must lie in p, which is a contradiction.
The second statement follows from the first, since

⋂k
i=1 Ii ⊆

Ii0 . □

Remark 5.2. The proof of Proposition 5.1 shows that in (1), the con-
dition that the ideals pi are prime is superfluous if k ⩽ 2.

Definition 5.3. An ideal I of R is primary if it is proper and all the
zero-divisors of R/I are nilpotent.

In other words, I is primary if the following holds: if xy ∈ I and
x, y ̸∈ I then xl ∈ I and yn ∈ I for some l, n > 1 (in other words,
x, y ∈ r(I)). From the definition, we see that every prime ideal is
primary.

The ideals (pn) of Z are primary if p is prime and n > 0.

Lemma 5.4. Suppose that I is a primary ideal of R. Then r(I) is a
prime ideal.

Proof. Let x, y ∈ R and suppose that xy ∈ r(I). Then there is n > 0
such that xnyn ∈ I and thus xn ∈ I, or yn ∈ I, or xln ∈ I and ynk ∈ I
for some l, k > 1. Hence x or y lies in r(I). □

The previous lemma justifies the following terminology.
If p is a prime ideal and I is a primary ideal, we say that I is p-

primary if r(I) = p.
Note that if the radical of an ideal is prime, it does not imply that

this ideal is primary. For counterexamples, see [AM], beginning of
Chapter 4.

We have however the following result:

Lemma 5.5. Let J be an ideal of R. Suppose that r(J) is a maximal
ideal. Then J is primary.

Proof. (suggested by Hanming Liu; see also Q3 of Sheet 1). From the
assumptions, we see that the nilradical r(R/J) of R/J is maximal.
Hence R/J is a local ring, because any maximal ideal of R/J contains
r(R/J) by Proposition 2.2 and hence must coincide with it. Hence any
element of R/J is either a unit or is nilpotent. In particular, all the
zero divisors of R/J are nilpotent, in particular J is primary. □

Alternative proof. Here is another proof, which does not use Proposi-
tion 2.2. Let x, y ∈ R and suppose that xy ∈ J and that x, y ̸∈ J . Since
xy ∈ r(J) and since r(J) is prime, we have either x ∈ r(J) or y ∈ r(J).
Suppose without restriction of generality that y ∈ r(J). Then yn ∈ J
for some n > 1. Suppose for contradiction that x ̸∈ r(J). Then there
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exists x′ ∈ R such that xx′ − 1 ∈ r(J) by the maximality of r(J). In
other words, there is l > 0 such that

(xx′ − 1)l = (−1)l +
l∑

i=1

(
l

i

)
(−1)l−i(xx′)i ∈ J.

Then we have

y(−1)l +
l∑

i=1

(
l

i

)
(−1)l−i(yx)xi−1(x′)i ∈ J

and since
∑l

i=1

(
l
i

)
(−1)l−i(yx)xi−1(x′)i ∈ J we conclude that y ∈ J , a

contradiction. So we must have x ∈ r(J). All in all, we have x, y ∈ r(J),
which is what we wanted to prove. □

From the previous lemma, we see that powers of maximal ideals are
primary ideals.

If I, J ⊆ R are ideals in R, we shall write
(I : J) = {r ∈ R | rJ ⊆ I}.

From the definitions, we see that (I : J) is also an ideal and that
((0) : J) = Ann(J). If x, y ∈ R, we shall often write (I : x) for
(I : (x)), (x : I) for ((x), I) and (x : y) for ((x) : (y)). Note that if M
is another ideal of R, we have (I :M)∩ (J :M) = (I ∩ J :M) (why?).

Lemma 5.6. Let p be a prime ideal and let I be a p-primary ideal. Let
x ∈ R.

(i) If x ∈ I then (I : x) = R.
(ii) If x ̸∈ I then r(I : x) = p.
(iii) If x ̸∈ p then (I : x) = I.

Proof. (i) and (iii) follow directly from the definitions. We prove (ii).
Suppose that y ∈ r(I : x). By definition, this means that for some
n > 0, we have xyn ∈ I. As x ̸∈ I, we see that yln ∈ I for some
l > 0 and so y ∈ r(I) = p. Hence r(I : x) ⊆ p. Now we have
I ⊆ r(I : x) ⊆ p. Applying the operator r(·), we see that we have
p = r(I) ⊆ r(r(I : x)) = r(I : x) ⊆ r(p) = p and so r(I : x) = p. □

Lemma 5.7. Let p be a prime ideal and let J1 . . . , Jk be p-primary
ideals. Then J =

⋂k
i=1 Ji is also p-primary.

Proof. We compute

r(J) =
k⋂
i=1

r(Ji) = p.

In particular, J is p-primary if it is primary. We verify that J is
primary. Suppose that xy ∈ J and that x, y ̸∈ J . Then then there are
i, j ∈ {1 . . . , k} such that x ̸∈ Ji and y ̸∈ Jj. Hence there are l, t > 0
such that yl ∈ Ji and xt ∈ Jj. In other words,

x ∈ r(Jj) = r(J) = r(Ji) ∋ y,
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and so J is primary. □

We shall say that an ideal I of R is decomposable if there exists a
finite collection J1 . . . , Jk of primary ideals in R such that I =

⋂k
i=1 Ji.

Such a sequence is called a primary decomposition of I. A primary
decomposition as above is called minimal if

(a) all the radicals r(Ji) are distinct;
(b) for all i ∈ {1, . . . , k} we have Ji ̸⊇

⋂
j ̸=i Jj.

Note that any primary decomposition can be reduced to a minimal
primary decomposition in the following way:

• first use Lemma 5.7 to replace the sets of primary ideals with
the same radical by their intersection; then (a) is achieved;

• then successively throw away any primary ideal violating (b).
In general, not all ideals are decomposable. We shall see in Section 6

below that all ideals are decomposable if R is noetherian.
END OF LECTURE 6

The following theorem examines what part of primary decomposi-
tions are unique.

Theorem 5.8. Let I be a decomposable ideal. Let J1 . . . , Jk be primary
ideals and let I =

⋂k
i=1 Ji be a minimal primary decomposition of I.

Let pi = r(Ji) (so that pi is a prime ideal). Then the following two sets
of prime ideals coincide:

• the set {pi}i∈{1,...,k};
• the set of prime ideals among those of type r(I : x) with x ∈ R.

Proof. Let x ∈ R. Note that (I : x) =
⋂k
i=1(Ji : x) and r(I : x) =⋂k

i=1 r(Ji : x). Hence by Lemma 5.6, we have

r(I : x) =
⋂

{i |x ̸∈Ji}

pi.

Now suppose that r(I : x) is a prime ideal. Then r(I : x) = pi0 for
some i0 ∈ {1, . . . , k} by Proposition 5.1.

Conversely, for every i0 ∈ {1, . . . , k}, there exists an x ∈ R, such
that x ̸∈ Ji0 and such that x ∈ Ji for all i ̸= i0. This follows from the
minimality of the decomposition. For such an x, we have r(I : x) = pi0
by the above. □

As a consequence of Theorem 5.8, we can associate with any decom-
posable ideal I in R a uniquely defined set of prime ideals. These prime
ideals are said to be associated with I. Note that the intersection of
these prime ideals is the ideal r(I).

Remark 5.9. One can show that every minimal primary decomposition
of a radical ideal consists only of prime ideals. This follows from the
‘2nd uniqueness theorem’. See [AM], p. 54, Cor. 4.11. In particular,
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a decomposable radical ideal has a unique primary decomposition. We
do not prove this in these notes however.
Example 5.10. If n = ±pn1

1 · · · pnk
k ∈ Z, where the pi are distinct

prime numbers, a primary decomposition of (n) is given by

(n) =
k⋂
i=1

(pni).

The set of prime ideals associated to this decomposition is of course
{(p1), . . . , (pk)}.

A more complex example is the ideal (x2, xy) ⊆ C[x, y]. Here

(x2, xy) = (x) ∩ (x, y)2

is a primary decomposition and the associated set of prime ideals is
{(x), (x, y)}. To see that we indeed have (x2, xy) = (x) ∩ (x, y)2 note
that by construction, the ideal (x, y)2 consists of the polynomials of
the form x2P (x, y) + xyQ(x, y) + y2T (x, y). Thus (x)∩ (x, y)2 consists
of the polynomials x2P (x, y) + xyQ(x, y) + y2T (x, y) such that T (x, y)
is divisible by x. Hence (x) ∩ (x, y)2 ⊆ (x2, xy) and clearly we also
have (x2, xy) ⊆ (x) ∩ (x, y)2 so that (x2, xy) = (x) ∩ (x, y)2. To see
that the decomposition is primary, note that C[x, y]/(x) ≃ C[y] and
C[x, y]/(x, y) ≃ C. Thus (x) is prime and (hence primary) and (x, y)
is maximal, so that (x, y)2 is primary by Lemma 5.5.
Lemma 5.11. Let I be a decomposable ideal. Let S be the set of prime
ideals associated with some (and hence any) minimal primary decom-
position of I. Let I be the set of all the prime ideals of R that contain
I. With respect to inclusion, the minimal elements of S coincide with
the minimal elements of I.
Proof. By Theorem 5.8, we have I ⊆ r(I) =

⋂
p∈S p =

⋂
p∈Smin

p, where
Smin denotes the set of minimal elements of S. Hence, Smin ⊆ S ⊆ I.

Let p be a minimal element of I. We have I ⊆ p and hence r(I) ⊆ p,
since p is prime. Hence, by Proposition 5.1, p ⊇ q for some q ∈ Smin.
Then p = q by minimality of p.

Now let p ∈ Smin. Suppose for contradiction that there exists an
element p′ ∈ I such that p′ ⊂ p. We have p′ ⊇ I, so p′ ⊇ q for some
q ∈ Smin by Proposition 5.1. We conclude that q ⊂ p, which contradicts
the minimality of p. □

The elements of Smin are called the isolated or minimal prime ideals
associated with I whereas the elements of S ∖ Smin are called the em-
bedded prime ideals associated with I. This terminology is justified by
algebraic geometry. According to the last lemma, the isolated prime
ideals associated with I are precisely the prime ideals, which are min-
imal among all the prime ideals containing I.

In the second example given before Lemma 5.11, the set Smin consists
only of (x).
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END OF LECTURE 7

6. Noetherian rings

Let R be a ring. We say that R is noetherian if every ideal of R is
finitely generated. In other words, if I ⊆ R is an ideal of R, then there
are elements r1, . . . , rk such that I = (r1, . . . , rk).

Fields and PIDs are noetherian (why?). In particular, Z and C are
noetherian, and so is K[x], for any field K.

We shall see that many of the rings that we usually work with are
noetherian. In fact, any finitely generated algebra over a noetherian
ring is noetherian (see below).

We begin with some generalities.

Lemma 6.1. The ring R is noetherian if and only if whenever I1 ⊆
I2 ⊆ . . . is an ascending sequence of ideals, there exists k ⩾ 1 such that
Ik = Ik+i =

⋃∞
t=1 It for all i ⩾ 0.

Proof. “⇒”. Suppose first that R is noetherian. Let I1 ⊆ I2 ⊆ . . .
be an ascending sequence of ideals. The set

⋃∞
t=1 It is clearly an ideal

(verify) and it is finitely generated by assumption. A given finite set of
generators for

⋃∞
t=1 It lies in Ik for some k ⩾ 1. The conclusion follows.

“⇐”. Conversely, suppose that whenever I1 ⊆ I2 ⊆ . . . is an ascend-
ing sequence of ideals, there exists a k ⩾ 1 such that Ik = Ik+i =

⋃∞
t=1 It

for all i ⩾ 0. Let J ⊆ R be an ideal. We need to show that J is finitely
generated. For contradiction, suppose that J is not finitely generated.
Define a sequence r1, r2 · · · ∈ J by the following inductive procedure.
Let r1 ∈ J be arbitrary. Suppose that r1, . . . , ri ∈ J is given and
let ri+1 ∈ J\(r1, . . . , ri). Note that J\(r1, . . . , ri) ̸= ∅ for otherwise J
would be finitely generated. We then have an ascending sequence

(r1) ⊂ (r1, r2) ⊂ (r1, r2, r3) ⊂ . . .

which contradicts our assumptions. So J is finitely generated. □

Noetherianity passes to quotients, see Sheet 2.

Lemma 6.2. Let R be a noetherian ring and let S ⊆ R be a multi-
plicative subset. Then the ring RS is noetherian.

Proof. Let λ : R → RS be the natural ring homomorphism. In the
proof of Lemma 4.6, we showed that for any ideal I of RS, the ideal
generated by λ(λ−1(I)) is I (see (2) in the proof). The image of any
finite set of generators of λ−1(I) under λ is thus a finite set of generators
for I. □

Lemma 6.3. Let R be a noetherian ring. Let M be a finitely generated
R-module. Then any submodule of M is also finitely generated.

Proof. By assumption there is a surjective map of R-modules q : Rn →
M for some n ⩾ 0. To prove that a submodule N ⊆ M is finitely
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generated, it is sufficient to prove that q−1(N) is finitely generated.
Hence we may assume that M = Rn. We now prove the statement
by induction on n. The case n = 1 is verified by assumption. Let
ϕ : Rn → R be the projection on the first factor. Let N ⊆ Rn be a
submodule. We then have an exact sequence

0 → N ∩Rn−1 → N → ϕ(N) → 0

whereRn−1 is viewed as a submodule ofRn via the map (r1, . . . , rn−1) 7→
(r1, . . . , rn−1, 0). Now ϕ(N) is finitely generated since ϕ(N) is an ideal
in R and N ∩ Rn−1 is finitely generated by the inductive hypothe-
sis. Let a1, . . . , ak ∈ N ∩ Rn−1 be generators of N ∩ Rn−1 and let
b1, . . . , bl ∈ ϕ(N) be generators of ϕ(N). Let b′1, . . . , b′l ∈ Rn be such
that ϕ(b′i) = bi for all i ∈ {1, . . . , l}. Then the set {a1, . . . , ak, b′1, . . . , b′l}
generates N (verify). □

Lemma 6.4. Let R be a noetherian ring. If I ⊆ R is an ideal, then
there is an integer t ⩾ 1 such that r(I)t ⊆ I. In particular, some power
of the nilradical of R is the 0 ideal.

Proof. By assumption, we have r(I) = (a1 . . . , ak) for some a1, . . . , ak ∈
R. By assumption again, there is an integer n ⩾ 1 such that ani ∈ I
for all i ∈ {1, . . . , k}. Let t = k(n− 1)+ 1. Then r(I)t ⊆ (an1 . . . , a

n
k) ⊆

I. □

For a non-zero polynomial P (x) =
∑n

i=0 aix
i with an ̸= 0, we refer

to an as the leading term.

Proposition 6.5 (Euclidean division). Let R be a ring. Let P (x), T (x) ∈
R[x]. If T (x) is not the zero polynomial and its leading coefficient is a
unit of R, then there exist unique polynomials Q(x), J(x) ∈ R[x] such
that

P (x) = Q(x)T (x) + J(x)

and deg(J(x)) < deg(T (x)) (here we set the degree of the zero polyno-
mial to be −∞).

The following theorem is one of the main justifications for the intro-
duction of the noetherian condition.

Theorem 6.6 (Hilbert basis theorem). Suppose that R is noetherian.
Then the polynomial ring R[x] is also noetherian.

Proof. Let I ⊆ R[x] be an ideal. The leading coefficients of the non-zero
polynomials in I form an ideal J of R (check). Since R is noetherian,
J has a finite set of generators, say a1, . . . , ak. For each i ∈ {1, . . . , k},
choose fi ∈ I such that fi(x) − aix

ni has degree lower than ni. Let
n = maxi ni. Let I ′ = (f1(x), . . . , fk(x)) ⊆ I be the ideal generated
by the polynomials fi(x). Let M consists of the polynomials in I of
degree less than n.
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Now let f(x) ba a polynomial in I ∖ (I ′ +M) of smallest possible
degree m, and take a ∈ R such that f − axm has degree lower than m.
Suppose that m ⩾ n. By construction, we have a = r1a1 + · · · + rkak
for some r1, . . . , rk ∈ R.

Suppose that m ⩾ n. The polynomial

f(x)− r1f1(x)x
m−n1 − · · · − rkfk(x)x

m−nk

is then of degree less than m (the leading terms cancel) and it also lies
in I. By minimality of m, this polynomial also lies in I ′+M , and hence
f(x) ∈ I ′ +M . This is a contradiction, and we conclude that m < n,
and so f(x) ∈ M . This is another contradiction. The final conclusion
is that I =M + I ′.

Now M is an R-submodule of the R-module consisting of all poly-
nomials of degree less than n, and is thus finitely generated (as an
R-module) by Lemma 6.3. If we let g1(x), . . . , gt(x) ∈ M be a set of
generators, then the set g1(x), . . . , gt(x), f1(x), . . . , fk(x) is clearly a set
of generators of I (as an ideal). □

Some history. The German mathematician Paul Gordan, who was
active at the beginning of the 20th century, was the first to ask explicitly
(to my knowledge) whether Theorem 6.6 is true and considered this to
be a central question of a then very popular subject, called Invariant
Theory (which we do not have the time to describe here). As the name
of the theorem suggests, David Hilbert found the above simple proof.
Paul Gordan had presumably tried to tackle the problem directly, by
devising an algorithm that would provide a finite set of generators
for an ideal given by an infinite set of generators and did not think of
applying the abstract methods, which are used in Hilbert’s proof (which
is the above proof). The proof of Hilbert’s basis theorem is one of the
starting points of modern commutative algebra. Paul Gordan is said to
have quipped on seeing Hilbert’s proof that “Das is nicht Mathematik,
das ist Theologie!” (This is not mathematics, this is theology!). There
are nowadays more “effective” proofs of Hilbert’s basis theorem, using
so-called Groebner bases.

From Theorem 6.6, we deduce that R[x1, . . . , xk] is noetherian for
any k ⩾ 0. From this and passing to a quotient, we deduce that every
finitely generated algebra over a noetherian ring is noetherian.

The following simple but remarkable result will be used later to give
a simple proof of the so-called weak Nullstellensatz. It also has several
other applications (see exercises).

Theorem 6.7 (Artin–Tate). Let T be a ring and let R, S ⊆ T be
subrings. Suppose that R ⊆ S and that R is noetherian. Suppose that
T is finitely generated as an R-algebra and that T is finitely generated
as an S-module. Then S is finitely generated as an R-algebra.
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Proof. Let r1, . . . , rk be generators of T as an R-algebra. Let t1, . . . , tl
be generators of T as an S-module. By assumption, for any a ∈
{1, . . . , k}, we can write

ra =
l∑

j=1

sjatj

where sj ∈ S. Similarly, for any b, d ∈ {1, . . . , k}, we can write

tbtd =
l∑

j=1

sjbdtj

where sjbd ∈ S. Let S0 be the R-subalgebra of S generated by all
the elements sja and sjbd. Since every element of T can be written as
an R-linear combination of products of some ra (with a ∈ {1, . . . , k}),
we see using the two formulae above that T is finitely generated as
an S0-module, with generators t1, . . . , tl. Furthermore, S0 is a finitely
generated R-algebra by construction. The R-algebra S is naturally
an S0-algebra, in particular an S0-module, and it is an S0-submodule
of T . Since R is noetherian, S0 is also noetherian, being a quotient
of a polynomial ring over R, and since S is a submodule of a finitely
generated S0-module, S is also finitely generated as an S0-module by
Lemma 6.3. In particular S is a finitely generated S0-algebra, and since
S0 is finitely generated over R, so is S. □

Finally, we consider primary decompositions in noetherian rings.

Proposition 6.8 (Lasker–Noether). Let R be a noetherian ring. Then
every ideal of R is decomposable.

Proof. If I is an ideal of R, we shall say that I is irreducible if whenever
I1, I2 are ideals of R and I = I1 ∩ I2, we have either I = I1 or I = I2.

Claim. Let J ⊆ R be an ideal. Then there are irreducible ideals
J1, . . . , Jk such that J =

⋂k
i=1 Jk.

We prove the claim. Let us say that an ideal is decomposable by
irreducible ideals (short: dic) if it is a finite intersection of irreducible
ideals. Suppose that J is not dic (otherwise we are done). In particular,
J is not irreducible and thus there are ideals M and N such that
M ∩N = J and such that J ⊂ M and J ⊂ N . Since J is not dic, we
see that N or M are not dic. Suppose without restriction of generality
that M is not dic. Repeating the same reasoning for M and continuing
we obtain a sequence of non dic ideals

J ⊂M ⊂M1 ⊂M2 ⊂ . . .

This contradicts Lemma 6.1. Thus J is dic.
Claim. An irreducible ideal is primary.
We prove the claim. Let J be an irreducible ideal and suppose that

J is not primary. Then there is an element x ∈ R/J , which is a zero
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divisor and is not nilpotent. Let q : R → R/J be the quotient map.
Consider the ascending sequence

Ann(x) ⊆ Ann(x2) ⊆ Ann(x3) ⊆ . . .

This sequence must stop by Lemma 6.1 and by passing to quotients.
So let us suppose that

Ann(xk) = Ann(xk+1) = Ann(xk+2) = . . .

for some k ⩾ 1. Now consider the ideal (xk) ∩ Ann(xk). If λxk ∈
(xk) ∩Ann(xk) for some λ ∈ R/J then we have by definition λx2k = 0
and hence λ ∈ Ann(x2k). Since Ann(x2k) = Ann(xk) we then have
λxk = 0. Thus (xk) ∩ Ann(xk) = (0). On the other hand, note that
(xk) ̸= (0) and Ann(xk) ̸= 0 by construction. Thus we have J =
q−1((xk)) ∩ q−1(Ann(xk)) and q−1((xk)) ̸= J , q−1(Ann(xk))) ̸= J , a
contradiction. Thus J is primary.

The conjunction of both claims obviously proves the statement. □

Remark 6.9. A primary ideal is not necessarily irreducible. See exer-
cises.

Let R be a noetherian ring and let I ⊆ R be a radical ideal. As
explained after Theorem 5.8, a consequence of Proposition 6.8 is that
there is a unique set {q1 . . . , qk} of distinct prime ideals in R such that

• I =
⋂k
i=1 qi;

• for all i ∈ {1, . . . , k} we have qi ̸⊇
⋂
j ̸=i qj.

Furthermore, the set {q1, . . . , qk} is precisely the set of prime ideals
that are minimal among the prime ideals containing I.

In terms of the spectrum of R, V (I) is the union of the closed sets
V (qi). If R is the coordinate ring of an affine variety over an alge-
braically closed field, this decomposition is the classical decomposition
of a closed subvariety into its irreducible components.

In particular, if p1, . . . , pl is the set of minimal prime ideal of R, then
there is a natural injective homomorphism of rings

R/r((0)) ↪→
l∏

i=1

R/pi.

END OF LECTURE 8

7. Integral extensions

The notion of integral extension of rings is a generalisation of the
notion of algebraic extension of fields. We shall see below that an
extension of fields is integral if and only if it is algebraic.

Let B be a ring and let A ⊆ B be a subring. Let b ∈ B. We shall
say that b is integral over A if there is a monic polynomial P (x) =
xn + an−1x

n−1 + · · ·+ a0 ∈ A[x] such that

P (b) = bn + an−1b
n−1 + · · ·+ a0 = 0.
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We shall say that b is algebraic over A if there is a non-zero polynomial
Q(x) ∈ A[x] (not necessarily monic) such that Q(b) = 0. Note that
if A is a field, b is algebraic over A if and only if it is integral over A
(why?) but this is not true in general.

If S ⊆ B is a subset, we write A[S] for the intersection of all the
subrings of B which contain A and S. Note that A[S] is naturally an
A-algebra.

Abusing notation slightly, we shall write A[b] for A[{b}] and more
generally A[b1, . . . , bk] for A[{b1, . . . , bk}]. Note that we have the ex-
plicit description

A[b1, . . . , bk] = {Q(b1, . . . , bk) | Q(x1, . . . , xk) ∈ A[x1, . . . , xk]}
and that we have

A[b1, . . . , bk] = A[b1][b2] . . . [bk]

(why?).

Proposition 7.1. Let R be a ring and let M be a finitely generated
R-module. Let ϕ : M → M be a homomorphism of R-modules. Then
there exists a monic polynomial Q(x) ∈ R[x] such that Q(ϕ) = 0.

Proof. By assumption, there is a surjective homomorphism ofR-modules
λ : Rn →M for some n ⩾ 0. Let b1, . . . , bn be the natural basis of Rn.
For each bi, choose an element vi ∈ Rn such that λ(vi) = ϕ(λ(bi)).
Define a homomorphism of R-modules ϕ̃ : Rn → Rn by the formula
ϕ̃(bi) = vi. By construction, we have λ ◦ ϕ̃ = ϕ ◦ λ and thus we have
λ ◦ ϕ̃n = ϕn ◦ λ for all n ⩾ 0. Hence it is sufficient to find a monic
polynomial Q(x) ∈ R[x] such that Q(ϕ̃) = 0. Hence we might assume
that M = Rn.

The homomorphism ϕ is now described by an n × n-matrix C ∈
Matn×n(R). We need to find a monic polynomial Q(x) ∈ R[x] such
that Q(C) = 0.

Let
h : Z[x11, x21, . . . , x21, x22, . . . , xnn] → R

be a ring homomorphism sending xij to cij. Let

D ∈ Matn×n(Z[x11, x21, . . . , x21, x22, . . . , xnn])
be a matrix, whose image under h is C. If we can exhibit a monic poly-
nomial T (x) ∈ (Z[x11, x21, . . . , x21, x22, . . . , xnn])[x] such that T (D) = 0
then the monic polynomial Q(x), whose coefficients are the images of
the coefficients of T (x) under h, will have the property that Q(C) = 0.
So we may assume that R = Z[x11, x21, . . . , x21, x22, . . . , xnn].

Let K be the fraction field of R. The natural homomorphism of rings
R → K is then injective, since R = Z[x11, x21, . . . , x21, x22, . . . , xnn] is
a domain. Hence we may view R as a subring of K. By the Cayley-
Hamilton theorem, the polynomial Q(x) = det(x · idn×n−C) ∈ K[x] is
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monic and it has the property that Q(C) = 0, when C is viewed as an
element of Matn×n(K). Since Q(x) is a polynomial in the coefficients
of C, it has coefficients in R. It thus has the required properties. □

Proposition 7.2. Let A be a subring of the ring B. Let b ∈ B and let
C be a subring of B containing A and b.

(1) If the element b ∈ B is integral over A then the A-algebra A[b]
is finitely generated as an A-module.

(2) If C is finitely generated as an A-module then b is integral.

Proof. We prove both statements in turn.
(1) If b is integral over A, we have

bn = −an−1b
n−1 − · · · − a1b− a0

for some ai ∈ A (where i ∈ {0, . . . , n − 1}). Hence bn+k is
in the A-submodule of B generated by 1, b, b2, . . . , bn−1 for all
k ⩾ 0. In particular A[b] is generated by 1, b, b2, . . . , bn−1 as an
A-module.

(2) Let [b] : C → C be the homomorphism of A-modules such that
[b](v) = b · v for all v ∈ C. By Proposition 7.1, there a polyno-
mialQ(x) = xn+an−1x

n−1+· · ·+a0 ∈ A[x] such thatQ([b]) = 0.
Hence Q([b])(1) = bn + an−1b

n−1 + · · · + a0 = 0. In particular,
b is integral over A. □

The following lemma and its proof is a generalisation of the tower
law (see the part B course on Galois Theory or the part A course on
Rings and Modules).

Lemma 7.3. Let ϕ : R → T be a homomorphism of rings and let N be
a T -module. If T is finitely generated as an R-module and N is finitely
generated as a T -module, then N is finitely generated as an R-module.

Proof. Let t1, . . . , tk ∈ T be generators of T as an R-module and let
l1, . . . ls be generators of N as a T -module. Then the elements tilj are
generators of N as an R-module. □

Corollary 7.4 (of Proposition 7.2). Let A be a subring of B. Let
b1, . . . , bk ∈ B be integral over A. Then the subring A[b1, . . . , bk] is
finitely generated as an A-module.

Proof. By Proposition 7.2 (i), A[b1] is finitely generated as anA-module,
A[b1, b2] = A[b1][b2] is finitely generated as aA[b1]-module, A[b1, b2, b3] =
A[b1][b2][b3] is finitely generated as a A[b1, b2]-module etc. Hence by
Lemma 7.3, A[b1, . . . , bk] is finitely generated as a A-module. □

Corollary 7.5 (of Corollary 7.4 and Proposition 7.2). Let A be a sub-
ring of the ring B. The subset of elements of B, which are integral
over A, is a subring of B.
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Proof. Let b, c ∈ B. Then b + c, bc ∈ A[b, c] and A[b, c] is a finitely
generated A-module by Corollary 7.4. Hence b + c and bc are integral
over A by Proposition 7.2 (ii). □

Let ϕ : A → B be a ring homomorphism (in other words B is an
A-algebra). We shall say that B is integral over A (or an integral A-
algebra) if all the elements of B are integral over the ring ϕ(A). We
shall say that B is finite over A (or a finite A-algebra) if B is a finitely
generated ϕ(A)-module. Proposition 7.2 and Corollary 7.4 show that
B is a finite A-algebra if and only if B is a finitely generated integral
A-algebra.

If A is a subring of a ring B, the set of elements of B, which are
integral over A, is called the integral closure of A in B. This set is a
subring of B by Corollary 7.5. If A is a domain and K is the fraction
field of K, we say that A is integrally closed if the integral closure of
A in K is A.

Example 7.6. The domains Z and K[x] are integrally closed, if K is
a field. Fields are obviously integrally closed. The integral closure of
Z in Q(i) is the ring of Gaussian integers Z[i] (see exercises).

Lemma 7.7. Let A ⊆ B ⊆ C, where A is a subring of B and B is a
subring of C. If B is integral over A and C is integral over B, then C
is integral over A.

Proof. Let c ∈ C. By assumption, we have

cn + bn−1c
n−1 + · · ·+ b0 = 0

for some bi ∈ B. Let B′ = A[b0, . . . , bn−1]. Then c is integral over B′

and so B′[c] is finitely generated as a B′-module by Proposition 7.2 (i).
Hence B′[c] is finitely generated as an A-module by Corollary 7.4 and
Lemma 7.3. Hence c is integral over A by Proposition 7.2 (ii). □

Let A ⊆ B ⊆ C, where A is a subring of B and B is a subring of C.
A consequence of the previous lemma is that the integral closure in C
of the integral closure of A in B is the integral closure of A in C.

Lemma 7.8. Let A be a subring of B. Let S be a multiplicative subset
of A. Suppose that B is integral (resp. finite) over A. Then the natural
ring homomorphism AS → BS makes BS into an integral (resp. finite)
AS-algebra.

Proof. We first prove the integrality statement. Suppose that B is inte-
gral over A. The ring homomorphism AS → BS arises from Lemma 4.1.
It is injective by Lemma 4.4 and Lemma 4.5 (injectivity can also be
established directly).

Let b/s ∈ BS, where b ∈ B and s ∈ S. By assumption we have

bn + an−1b
n−1 + · · ·+ a0 = 0
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for some ai ∈ A. Thus

(b/s)n + (an−1/s)(b/s)
n−1 + (an−2/s

2)(b/s)n−2 + · · ·+ a0/s
n

= (1/sn)(bn + an−1b
n−1 + · · ·+ a0) = 0/1.

In particular, b/s is integral over AS.
We now prove the finiteness statement. Suppose that a1, . . . , ak are

generators for B as an A-module. Then a1/1, . . . , ak/1 ∈ BS are gen-
erators of BS as an AS-module so BS is also finite over AS. □
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Theorem 7.9 (Going-Up Theorem). Let A be a subring of a ring B
and let ϕ : A → B be the inclusion map. Suppose that B is integral
over A. Then Spec(ϕ) : Spec(B) → Spec(A) is surjective.

This is only part of what is known as the Going-Up Theorem in the
literature.

To prove Theorem 7.9, we shall need the following lemma.

Lemma 7.10. Suppose that C is a subring of a ring D. Suppose that
D (and hence C) is a domain and that D is integral over C. Then D
is a field if and only if C is a field.

Proof. If either of the rings is zero, then so is the other, and the con-
clusion clearly holds. From now on we assume that C and D are not
the zero ring.

“⇐”: Suppose that C is a field. Let d ∈ D ∖ {0}. We need to show
that d has an inverse in D. Let ϕ : C[t] → D be the C-algebra map
sending t on d. The kernel of this map is a prime ideal, since D is a
domain. Since non-zero prime ideals in C[t] are maximal (because C
is a field), we conclude that the image of ϕ contains an inverse of d.

“⇒”: Suppose that D is a field. Let c ∈ C ∖ {0}. We only have to
show that the inverse c−1 ∈ D lies in C. By assumption, D is integral
over C so there is a polynomial P (t) = tn + an−1t

n−1 + · · ·+ a0 ∈ C[t]
such that P (c−1) = 0. Thus we have cn−1 · P (c−1) = 0, i.e.,

c−1 + an−1 + · · ·+ a0c
n−1 = 0

which implies that c−1 ∈ C. □

Corollary 7.11. Let A be a subring of a ring B and let ϕ : A→ B be
the inclusion map. Suppose that B is integral over A. Let q be a prime
ideal of B. Then q ∩ A is a maximal ideal of A if and only if q is a
maximal ideal of B.

Proof. The induced map A/(q∩A) → B/q is injective and makes B/q
into an integral A/(q∩A)-algebra. Since both A/(q∩A) and B/q are
domains, the conclusion follows from Lemma 7.10. □
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Proof of Theorem 7.9. Write Bp for the localisation Bϕ(A\p) of the ring
B at the multiplicative set ϕ(A\p). Note that by Lemma 4.5, Bp is
isomorphic to the localisation of B at p, when B is viewed as an A-
module. By Lemma 4.1, we thus obtain a unique ring homomorphism
ϕp : Ap → Bp such that ϕp(a/1) = ϕ(a)/1. Write λA : A → Ap and
λB : B → Bp for the natural ring homomorphisms. We have λB ◦ ϕ =
ϕp ◦ λA (check) and thus we obtain a commutative diagram

Spec(Bp)
Spec(λB)

//

Spec(ϕp)

��

Spec(B)

Spec(ϕ)

��

Spec(Ap)
Spec(λA)

// Spec(A)

By Lemma 4.7, p is the image of the maximal ideal m of Ap under the
map Spec(λA). Thus it is sufficient to show that there is a prime ideal
q in Bp such that ϕ−1

p (q) = Spec(ϕp)(q) = m. Let q be any maximal
ideal of Bp (this exists by Lemma 1.2). Note that the ring Bp is integral
over Ap by Lemma 7.8. Thus Corollary 7.11 implies that ϕ−1

p (q) is a
maximal ideal of Ap. Since Ap is a local ring, we have m = ϕ−1

p (q). □

Corollary 7.12. Let ϕ : A→ B be a homomorphism of rings. Suppose
that B is integral over A. Then the map Spec(ϕ) : Spec(B) → Spec(A)
is closed (i.e., it sends closed sets to closed sets).

Proof. Let I be an ideal of B. We have to show that Spec(ϕ)(V (I))
is closed in Spec(A). Let qI : B → B/I be the quotient map and let
µ = qI ◦ϕ : A→ B/I. Let qµ : A→ A/ker(µ) be the quotient map and
let ψ : A/ker(µ) → B/I be the ring homomorphism induced by µ. We
have the following commutative diagram:

A
ϕ

//

µ

%%

qµ
��

B

qI
��

A/ker(µ)
ψ

// B/I

Since B is integral over A, B/I is also integral over A/ker(µ). Fur-
thermore, the map ψ is injective by construction. By Theorem 7.9,
we thus have Spec(ψ)(Spec(B/I)) = Spec(A/ker(µ)). Furthermore, by
Lemma 3.2, we have

Spec(qI)(Spec(B/I)) = V (I)

and
Spec(qµ)(Spec(A/ker(µ)) = V (ker(µ)).

Thus Spec(ϕ)(V (I)) = V (ker(µ)), which is closed. □

Note that the previous corollary shows in particular (although this
is easier to prove) that if ϕ : A → B is surjective, then Spec(ϕ) is a
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closed map. In particular, since Spec(ϕ) is injective and continuous in
that case (by Lemma 3.2), it is a homeomorphism onto its image.

Recall the following.

Theorem 7.13 (Chinese remainder theorem). Let R be a ring and let
I1, . . . , Ik be ideals of R. Let

ϕ : R →
k∏
i=1

R/Ii

be the ring homomorphism such that ϕ(r) =
∏k

i=1(r+ Ii) for all r ∈ R.
Then ker(ϕ) =

⋂k
i=1 Ii. Furthermore the map ϕ is surjective if and only

if Ii + Ij = R for every i, j ∈ {1, . . . , k} with i ̸= j, and in that case,
we have

⋂k
i=1 Ii =

∏k
i=1 Ii.

For the proof, see Prop. 10 in [AM].

Proposition 7.14. Let ϕ : A → B be a ring homomorphism and sup-
pose that B is finite over A. Then the map Spec(ϕ) has finite fibres
(i.e., for any p ∈ Spec(A), the set Spec(ϕ)−1({p}) is finite).

Proof. Let q : A → A/ker(ϕ) be the quotient map. The map Spec(q)
has finite fibres by Lemma 3.2 (since it is injective), so we may replace
A by A/ker(ϕ) and suppose that A is a subring of B. Let p be a prime
ideal of A. We have to show that there are only finitely many prime
ideals q in B such that q ∩ A = p.

Let p̄ be the ideal of B generated by p. Let q : A → A/p (resp.
q̄ : B → B/p̄) be the quotient map. Let ψ : A/p → B/p̄ be the ring
homomorphism induced by ϕ.

By Theorem 7.9, there is a prime ideal q ∈ Spec(B) such that q∩A =
p. Then p̄ ∩ A ⊆ q ∩ A = p. Since we of course have p̄ ∩ A ⊇ p we
conclude that p̄ ∩ A = p.

By construction, we have a commutative diagram

Spec(B/p̄)

Spec(ψ)
��

Spec(q̄)
// Spec(B)

Spec(ϕ)
��

Spec(A/p)
Spec(q)

// Spec(A)

Since any prime ideal q ∈ Spec(B) such that q ∩ A = p has the
property that q ⊇ p̄, we see (using Lemma 3.2) that any such prime
ideal lies in the image of Spec(q̄). The corresponding prime ideals of
Spec(B/p̄) are the prime ideals a such that ψ−1(a) = (0). We thus
have to show that Spec(ψ)−1((0)) is a finite set.

Now let S = (A/p)∖ {0}. This is a multiplicative set. Let
λA/p : A/p → (A/p)S

and let λB/p̄ : B/p̄ → (B/p̄)ψ(S) be the natural ring homomorphisms.
There is also a natural ring homomorphism ψS : (A/p)S → (B/p̄)ψ(S),
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which is compatible with λA/p and λB/p̄ (see Lemma 4.5). We thus
obtain a diagram

Spec((B/p̄)ψ(S))

Spec(ψS)

��

Spec(λB/p̄)
// Spec(B/p̄)

Spec(ψ)

��

Spec((A/p)S)
Spec(λA/p)

// Spec(A/p)

Now notice that if q ∈ Spec(B/p̄) then ψ−1(q) = (0) if and only
if q ∩ ψ(S) = ∅. In particular, any such ideal lies in the image of
Spec(λB/p̄).

It is thus sufficient to prove that the map Spec(ψS) has finite fibres,
as Spec((A/p)S) is a single point.

Notice now that A/p is a domain (since p is a prime ideal) and that
(A/p)S is none other than the fraction field of A/p.

Now, since B is finite over A, B/p̄ is also finite over A/p and fur-
ther, applying Lemma 7.8, we see that (B/p̄)ψ(S) is finite over (A/p)S.
In other words, (B/p̄)ψ(S) is a finite-dimensional (A/p)S-vector space.
Write K = (A/p)S. If q is a prime ideal in (B/p̄)ψ(S), then (B/p̄)ψ(S)/q
is a domain, which is finite over the field K and it is thus a field
by Lemma 7.10. Thus q is maximal. So we only have to show that
(B/p̄)ψ(S) has finitely many maximal ideals. Let q1, . . . , qk be any dis-
tinct maximal ideals of (B/p̄)ψ(S). By the Chinese remainder theorem,
we have a surjective homomorphism of K-algebras

(B/p̄)ψ(S) →
k∏
i=1

(B/p̄)ψ(S)/qi

and each (B/p̄)ψ(S)/qi is a K-algebra, which has dimension greater
than 0 as K-vector space. Hence (B/p̄)ψ(S) has dimension at least k
as a K-vector space. Hence there are at most dimK((B/p̄)ψ(S)) prime
(and therefore maximal) ideals in (B/p̄)ψ(S). □

END OF LECTURE 10

8. The Noether normalisation lemma and Hilbert’s
Nullstellensatz

Noether’s normalisation lemma shows that any finitely generated
algebra over a field can be “approximated” by a polynomial ring, up
to a finite injective homomorphism (see below for the definition). In
terms of affine varieties, in says that for any affine variety, there is a
finite surjective map from the variety to some affine space.

Theorem 8.1 (Noether’s normalisation lemma). Let K be a field and
let R be a non-zero finitely generated K-algebra. Then there exists an
injective homomorphism of K-algebras

K[y1, . . . , yt] → R
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for some t ⩾ 0 (where we set K[y1, . . . , yt] = K if t = 0), such that R
is finite as a K[y1, . . . , yt]-algebra.

The idea of the proof is as follows. It is easy to see that there is
an injective homomorphism of algebras K[y1, . . . , yt] → R so that R is
algebraic over K[y1, . . . , yt]. The proof of the normalisation lemma ba-
sically considers such a homomorphism and tweaks it, using properties
of polynomials, so that R becomes integral over K[y1, . . . , yt].

Proof. We will only prove this result in the situation where K is infi-
nite. For a proof in the situation where K is finite, see H. Matsumura,
Commutative Algebra, 2nd ed., Benjamin 1980 (14.G).

Let r1, . . . , rn ∈ R be a set of generators of minimal size (i.e., n is
minimal) for R as a K-algebra. We proceed by induction on n. If
n = 1 then either R ≃ K[x] or R ≃ K[x]/I for some proper ideal I
in K[x]. In the first case, we may set t = 1 in the theorem and in the
second case we may set t = 0 (the K-dimension of K[x]/I is bounded
above by the degree of any non-zero polynomial in I). So the theorem
is proved when n = 1. So suppose that n > 1 and that the theorem
holds for n− 1.

Up to renumbering the generators, we may assume that there is a
k ∈ {1, . . . , n} such that for all i ∈ {1, . . . , k}, ri is not algebraic over
K[r1, . . . , ri−1] (where we set K[r1, . . . , ri−1] = K if i = 1) and such
that rk+i is algebraic over K[r1, . . . , rk] for all i ∈ {1, . . . , n−k} (where
we set {1, . . . , n− k} = ∅ if k = n).

Indeed, we may assume that not all the elements of {r1, . . . , rn} are
algebraic overK, for then they would all be integral overK (sinceK is a
field) and we could then set t = 0 in the theorem by Corollary 7.4. To
find a suitable renumbering, choose one generator ri1 ∈ {r1, . . . , rk},
which is not algebraic over K and then look for a second generator
ri2 ∈ {r1, . . . , rk}, which is not algebraic over K[ri1 ]. If this does not
exist then renumber the remaining generators in an arbitrary way. Oth-
erwise, let ri2 ∈ {r1, . . . , rk} be such a generator and look for a gener-
ator ri3 , which is not algebraic over K[ri1 , ri2 ]. Keep going in this way
until all the remaining generators are algebraic over the K-algebra gen-
erated by the previous ones, and renumber the remaining generators in
an arbitrary way.

Now we may assume that k < n, for otherwise we may set t = k = n
in the theorem. The generator rn is thus algebraic over K[r1, . . . , rn−1].
Let P1(x) ∈ K[r1, . . . , rn−1][x] be a non zero polynomial (not necessar-
ily monic) such that P1(rn) = 0. Since K[r1, . . . , rn−1] is the image
of the polynomial ring K[x1, . . . , xn−1] by the homomorphism of K-
algebras sending xi to ri, there is a non zero polynomial

P (x1, . . . , xn) ∈ K[x1, . . . , xn−1][xn] = K[x1, . . . , xn]

such that P (r1, . . . , rn) = 0. Let F (x1, . . . , xn) be the sum of the mono-
mials of degree d = deg(P ) which appear in P (so that in particular
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deg(P − F ) < d). Choose λ1, . . . , λn−1 ∈ K such that

F (λ1, . . . , λn−1, 1) ̸= 0.

To see why the elements λi exist, note that since F is a homogenous
polynomial, the polynomial F (x1, . . . , xn−1, 1) is a sum of homogenous
polynomials of distinct degrees and thus is not the zero polynomial.
Hence F (x1, . . . , xn−1, 1) must be non-zero for some specific values of
x1, . . . , xn−1, because a non-zero polynomial with coefficients in an in-
finite field cannot evaluate to 0 for all the values of its variables (why?
– exercise).

Now let ui = ri − λirn for all i ∈ {1, . . . , n− 1}. We compute

0 = P (r1, . . . , rn)

= P (u1 + λ1rn, u2 + λ2rn, . . . , un−1 + λn−1rn, rn)

= F (λ1, . . . , λn−1, 1)r
d
n + F1(u1, . . . , un−1)r

d−1
n + · · ·+ Fd(u1, . . . , un−1)

for some polynomials F1, . . . , Fd in the variable ui, obtained by grouping
together the terms by powers of rn.

Thus, setting µ = (F (λ1, . . . , λn−1, 1))
−1 ∈ K we obtain

rdn + µF1(u1, . . . , un−1)r
d−1
n + · · ·+ µFd(u1, . . . , un−1) = 0

and we see that rn is integral over K[u1, . . . , un−1]. Now, by the induc-
tive hypothesis, there exists an injective homomorphism of K-algebras

K[y1, . . . , yt] → K[u1, . . . , un−1]

for some t ⩾ 0, such that K[u1, . . . , un−1] is integral over K[y1, . . . , yt].
Hence

R = K[r1, . . . , rn] = K[u1, . . . , un−1][rn]

is integral over K[y1, . . . , yt] by Lemma 7.7. □

Noether’s normalisation lemma has the following fundamental corol-
lary.

Corollary 8.2 (weak Nullstellensatz). Let K be a field and let R be
a finitely generated K-algebra. Suppose that R is a field. Then R is
finite over K (i.e., R is a finite-dimensional K-vector space).

Proof. Let
K[y1, . . . , yt] → R

be as in Noether’s normalisation lemma. Recall that by Theorem 7.9,
the map Spec(R) → Spec(K[y1, . . . , yt]) is surjective. Now Spec(R) has
only one element, since R is a field. Hence Spec(K[y1, . . . , yt]) has only
one element. Thus t = 0, because for any t ⩾ 1, Spec(K[y1, . . . , yt])
has more than one element.

To see this, suppose that t ⩾ 1 and note first that the ringK[y1, . . . , yt]
has the prime ideal (0) since it is a domain. Also, the element y1 is not
a unit and it is thus contained in a maximal ideal (use Lemma 1.2),
which is not equal to (0), since y1 ̸= 0. Hence K[y1, . . . , yt] has at least
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two prime ideals (in fact it has infinitely many but we do not need this
here).

We conclude that R is integral over K. Since R is also finitely
generated as a K-algebra, it must be finite over K (see after Corol-
lary 7.5). □

END OF LECTURE 11
The weak Nullstellensatz has the following corollaries, which are of

fundamental importance in algebraic geometry.

Corollary 8.3. Let K be an algebraically closed field. Let t ⩾ 1.
Then an ideal I of K[x1, . . . , xt] is maximal if and only if it has the
form (x1 − a1, . . . , xt − at) for some a1, . . . , at ∈ K. A polynomial
Q(x1, . . . , xt) ∈ K[x1, . . . , xt] lies in (x1 − a1, . . . , xt− at) if and only if
Q(a1, . . . , at) = 0.

Proof. We first prove the first statement.
“⇐” Quotienting by the ideal (x1−a1, . . . , xt−at) gives the evaluation

map
K[x1, . . . , xn] → K, p(x1, . . . , xn) 7→ p(a1, . . . , an);

the map is a ring epimorphism onto a field, and hence its kernel is a
maximal ideal.

“⇒”: Suppose that I is maximal. Note that K[x1, . . . , xt]/I is a
field, which is also a finitely generated K-algebra. Hence, by the weak
Nullstellensatz (Corollary 8.2), K[x1, . . . , xt]/I is finite, and in par-
ticular algebraic over K. Since K is algebraically closed, this im-
plies that K[x1, . . . , xt]/I is isomorphic to K as a K-algebra. Let
ϕ : K[x1, . . . , xt] → K be the induced homomorphism of K-algebras
obtained by composing the isomorphism with the quotient map

K[x1, . . . , xt] → K[x1, . . . , xt]/I.

By construction, the ideal I contains the ideal

(x1 − ϕ(x1), . . . , xt − ϕ(xt)).

Since the ideal (x1 − ϕ(x1), . . . , xt− ϕ(xt)) is also maximal by the first
part, we must have

I = (x1 − ϕ(x1), . . . , xt − ϕ(xt)).

For the second statement, note that the homomorphism ofK-algebras
ψ : K[x1, . . . , xt] → K, such that ψ(P (x1, . . . , xt)) = P (a1, . . . , at), is
surjective and ker(ψ) ⊇ (x1 − a1, . . . , xt − at). In particular, ker(ψ)
is maximal, and we must have ker(ψ) = (x1 − a1, . . . , xt − at), since
(x1 − a1, . . . , xt − at) is maximal by the first part. □

Corollary 8.4. Let K be a field. Let R be a finitely generated K-
algebra. Then R is a Jacobson ring.
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Proof. Let I ⊆ R be an ideal. We need to show that the Jacobson
radical of I of R coincides with the radical of I. In other words, we
need to show that the nilradical of R/I coincides with the Jacobson
radical of the zero ideal in R/I. Since R/I is also finitely generated
over K, we may thus replace R by R/I and suppose that I = 0.

Let f ∈ R and suppose that f is not nilpotent. We need to show
that there exists a maximal ideal m in R, such that f ̸∈ m. Let S =
{1, f, f 2, . . . }. Since f is not nilpotent, we have fk · f ̸= 0 for all k ⩾ 0
(setting f 0 = 1) and thus the localisation RS is not the zero ring. Let
q be a maximal ideal of RS (this exists by Lemma 1.2). Since RS is
a finitely generated K-algebra (see Lemma 4.2), the quotient RS/q is
also finitely generated over K. Thus, by Corollary 8.2, the canonical
homomorphism of rings K → RS/q (giving the K-algebra structure)
makes RS/q into a finite field extension of K. Let ϕ : R → RS/q be
the homomorphism of K-algebras obtained by composing the natural
homomorphism R → RS with the homomorphism RS → RS/q. The
image im(ϕ) of ϕ is a domain (since RS/q is a domain, being a field),
which is integral over K (since RS/q is integral over K, being finite over
K - see after Corollary 7.5) and thus im(ϕ) is a field by Lemma 7.10.
Thus ker(ϕ) is a maximal ideal of R. On the other hand, ker(ϕ) is
by construction the inverse image of q by the natural homomorphism
R → RS. Since f/1 is a unit in RS, we have f/1 ̸∈ q and thus
f ̸∈ ker(ϕ). Thus we may set m = ker(ϕ). □

The following corollary also contains a definition.

Corollary 8.5 (strong Nullstellensatz). Let K be an algebraically closed
field. Let t ⩾ 1 and let I ⊆ K[x1, . . . , xt] be an ideal. Let

Z(I) = {(c1, . . . , ct) ∈ Kn | P (c1, . . . , cn) = 0 for all P ∈ I}

Let Q(x1, . . . , xt) ∈ K[x1, . . . , xt]. Then Q ∈ r(I) if and only if

Q(c1, . . . , ct) = 0

for all (c1, . . . , ct) ∈ Z(I).

The strong Nullstellensatz implies that the set of simultaneous roots
of a set of polynomials determines the radical of the ideal generated by
the set of polynomials.

Proof. Let R = K[x1, . . . , xt]. The implication “⇒” is straightforward.
We prove the implication “⇐”. Let Q(x1, . . . , xt) ∈ K[x1, . . . , xt] and

suppose that Q(c1, . . . , ct) = 0 for all (c1, . . . , ct) ∈ Z(I). Suppose for
contradiction that Q ̸∈ r(I). Since R is a Jacobson ring (by Corol-
lary 8.4), there exists a maximal ideal m in R, such that m ⊇ I and
Q ̸∈ m. By Corollary 8.3, we have m = (x1−a1, . . . , xt−at) for some ai
(where i ∈ {1, . . . , t}). By construction, we have P (a1, . . . , at) = 0 for
all P ∈ m and hence for all P ∈ I. In other words, (a1, . . . , at) ∈ Z(I).
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By the second statement in Corollary 8.3, we see thatQ(a1, . . . , at) ̸= 0.
This is a contradiction, so Q ∈ r(I). □

9. Jacobson rings

In this section, we collect more consequences of the weak Nullstel-
lensatz and we show that the property of being a Jacobson ring is a
very stable property. See Theorem 9.5 below. We also give an al-
ternative proof of the weak Nullstellensatz, based of the Artin–Tate
Theorem (Theorem 6.7), which does not depend on Noether’s normal-
isation lemma. This shows in particular that the proof of Theorem 9.5
below can be made independent of Noether’s normalisation lemma. In
the situation where the ring is noetherian, it can even be made inde-
pendent of the more difficult results of the theory of integral extensions
(like Theorem 7.9).

New proof of the weak Nullstellensatz (Corollary 8.2). For this, we shall
need the following lemma.

Lemma 9.1. Let K be a field. Let t ⩾ 1 and let P (x1, . . . , xt) ∈
K[x1, . . . , xt] be a non-zero polynomial. Then there exists a non zero
prime ideal in K[x1, . . . , xt], which does not contain P (x1, . . . , xt).

Proof. Let L = K(x1, . . . , xt−1) be the quotient field of K[x1, . . . , xt−1]
(where we set L = K if t = 1). Let

ι : K[x1, . . . , xt] = K[x1, . . . , xt−1][xt] → L[xt]

be the natural injective map. If we can find a prime ideal p in L[xt]
such that ι(P ) ̸∈ p, then the prime ideal ι−1(p) will not contain P , so
we may assume that t = 1.

Let us write xt = x1 = x so that K[x1, . . . , xt] = K[x]. We may
assume without restriction of generality that P (x) is monic (why?). We
may also assume that P (x) is not constant (otherwise, any maximal
ideal of K[x] will do).

Let Q be an irreducible factor of 1 + P . Then the ideal (Q) does
not contain P because otherwise 1 = 1 + P − P ∈ (Q), and hence Q
is not prime, as it is not proper. Since Q is irreducible, the ideal (Q)
is prime and therefore the ideal (Q) satisfies the requirements of the
lemma. □

Now to the proof of the weak Nullstellensatz. Let K be a field and
let R be a finitely generated K-algebra. Suppose that R is a field.
We want to show that R is finite over K. Let r1, . . . , rk be generators
of R over K. Suppose that the ri are numbered in such a way that
the elements r1, . . . , rl are algebraically independent over K for some
l ∈ {0, . . . k} (in particular, the set r1, . . . , rl might be empty) and so
that rk+i is algebraic over K(r1, . . . , rl) for all i ∈ {1, . . . k − l}. Recall
that to say that the generators r1, . . . , rl are algebraically independent
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means that the homomorphism of K-algebras from K[x1, . . . , xl] to R,
which sends xi to ri for all i ∈ {1, . . . , l}, is injective. This renum-
bering can be carried out as in the proof of Noether’s normalisation
lemma. We may assume that l ⩾ 1, for otherwise R is a finite field
extension of K (since R would be then an integral and finitely gen-
erated K-algebra) and there is nothing to prove. Since R is a field,
the quotient field L ≃ K(x1, . . . , xl) of K[x1, . . . , xl] ≃ K[r1, . . . , rl]
can be viewed as a subfield of R (ie, the subfield K(r1, . . . , rl)). Now
note that R is generated by rl+1, . . . , rk as an L-algebra and that the
rl+i (i ∈ {1, . . . , k − l}) are algebraic over L, since they are algebraic
over K(r1, . . . , rl). Since L is a field, the rl+i are actually integral
over L and hence R is a finite field extension of L. We deduce from
the Theorem of Artin–Tate (Theorem 6.7) that L is finitely gener-
ated over K. In particular, K(x1, . . . , xl) ≃ L is finitely generated as a
K[x1, . . . , xl]-algebra. Let P1(x)/Q1(x), . . . , Pa(x)/Qa(x) be generators
of K(x1, . . . , xl) as a K[x1, . . . , xl]-algebra. Let Q(x) =

∏a
i=1Qi(x) and

let S = {1, Q(x), Q2(x), . . . }. Since K[x1, . . . , xl] is a domain, the lo-
calised ring K[x1, . . . , xl]S can be viewed as a subring of K(x1, . . . , xl).
Furthermore, since every element of K(x1, . . . , xl) can now be written
as a quotient R(x)/Qb(x) for some b ⩾ 0, we see that K[x1, . . . , xl]S =
K(x1, . . . , xl). Since K(x1, . . . , xl) has only one prime ideal, namely
the zero ideal, we conclude from Lemma 4.6 that every non zero prime
ideal of K[x1, . . . , xl] contains Q(x). This contradicts Lemma 9.1. We
conclude that l = 0, so that R is finite over K. □

The Jacobson property enters the proof of Theorem 9.5 via the fol-
lowing lemma.

Lemma 9.2. Let R be a Jacobson ring. Suppose that R is a domain.
Let b ∈ R and let S = {1, b, b2, . . . }. Suppose that RS is a field. Then
R is a field.

Proof. We know from Lemma 4.6 that the prime ideals of R, which do
not meet b are in one to one correspondence with the prime ideals of
RS. Since RS is a field, there is only one such ideal in R, namely the
0 ideal. Hence every non zero prime ideal of R meets b. Now suppose
for a moment that (0) is not a maximal ideal of R. Since (0) is its own
radical (since R is a domain) and since R is Jacobson, the ideal (0) is
the intersection of all the non zero maximal ideals of R. However, we
just saw that this intersection contains b, which is a contradiction. So
(0) must be a maximal ideal of R. Hence R is a field (why?). □

Corollary 9.3. Let T be a field and let R ⊆ T be a subring. Suppose
that R is a Jacobson ring. Suppose that T is finitely generated over R.
Then R is a field. In particular, T is finite over R.

Proof. LetK ⊆ T be the fraction field of R. Note that by Corollary 8.2,
T is a finite extension of K. Let t1, . . . , tk ∈ T be generators of T as
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an R-algebra. Let

Pi(x) = xdi + (ai,di−1/bi,di−1)x
di−1 + · · ·+ ai,0/bi,0 ∈ K[x]

be a monic polynomial with coefficients in K, which annihilates ti (this
exists since T is integral over K). Let b =

∏k
i=1

∏di−1
j=0 bi,j. Let S =

{1, b, b2, . . . }. Then there is a natural injective homomorphism of R-
algebras from RS into K, because R is a domain and we view RS as
a sub-R-algebra of K. By construction, T is generated by the ti as
an RS-algebra and the elements ti are integral over RS. Hence T is
finite over RS. Lemma 7.10 now implies that RS is a field. Finally,
Lemma 9.2 implies that R is a field. □

Second proof of Corollary 9.3 in the noetherian situation. We will sup-
pose that R is noetherian. Let K ⊆ T be the fraction field of R. By
Corollary 8.2, T is a finite extension of K. Then K is finitely gen-
erated over R by Theorem 6.7. But then K has the form RS′ for a
multiplicative set S ′ generated by an element of R (which can be taken
to be the product of the denominators of a finite set of generators of
K over R – we leave the details to the reader). Hence R is a field by
Lemma 9.2. □

Corollary 9.4. Let ψ : R → T be a homomorphism of rings. Suppose
that R is Jacobson and that T is a finitely generated R-algebra. Let m
be a maximal ideal of T . Then ψ−1(m) is a maximal ideal of R and the
induced map R/ψ−1(m) → T/m makes T/m into a finite field extension
of R/ψ−1(m).

Proof. Note that T/m is a field which is finitely generated overR/ψ−1(m).
Also, R/ψ−1(m) is a Jacobson ring, since it is the quotient of a Jacobson
ring. Thus Corollary 9.3 implies the result. □

Theorem 9.5. A finitely generated algebra over a Jacobson ring is
Jacobson.

Proof. The beginning of the proof is similar to the proof of Corol-
lary 8.4.

Let R be a Jacobson ring and let T be a finitely generated R-algebra.
Let I ⊆ T be an ideal. We need to show that the Jacobson radical

of I of T coincides with the radical of I. In other words, we need to
show that the nilradical of T/I coincides with the Jacobson radical of
the zero ideal in T/I. Since T/I is also finitely generated over R, we
may thus replace T by T/I and suppose that I = 0.

Let f ∈ T and suppose that f is not nilpotent. We need to show
that there exists a maximal ideal m in T , such that f ̸∈ m. Let S =
{1, f, f 2, . . . }. Since f is not nilpotent, we have fk · f ̸= 0 for all
k ⩾ 0 (setting f 0 = 1) and thus the localisation TS is not the zero ring.
Let q be a maximal ideal of TS (this exists by Lemma 1.2). Since TS
is a finitely generated R-algebra (see Lemma 4.2), the quotient TS/q
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is also finitely generated over R. Let ϕ : R → TS/q be the canonical
ring homomorphism. From Corollary 9.4, we deduce that ker(ϕ) is a
maximal ideal and that TS/q is a finite field extension of R/ker(ϕ).

Now consider the map Φ : T → TS/q which is the composition of the
natural map T → TS with the quotient map. The image im(Φ) of Φ is
an R-subalgebra, and hence R/ker(ϕ)-subalgebra, of TS/q. Since TS/q
is integral over R/ker(ϕ), we see that im(Φ) is integral over R/ker(ϕ)
and hence im(Φ) is a field by Lemma 7.10. In other words, ker(Φ) is
a maximal ideal of T . Finally, note that ker(Φ) is by construction the
inverse image of q by the natural homomorphism T → TS and that
f/1 ̸∈ q, since f/1 is a unit in TS. Thus we have f ̸∈ ker(Φ). We
conclude that we may set m = ker(Φ). □

The ring Z is Jacobson (prove this). Hence any finitely generated
algebra over Z is a Jacobson ring.

END OF LECTURE 12

10. Dimension

The dimension of a ring R is an invariant of a ring, whose definition
is inspired by algebraic geometry. If R is the coordinate ring of an
affine algebraic variety over an algebraically closed field, the dimension
of R is the ordinary dimension of the variety.

Here is the formal definition.

Definition 10.1. Let R be a ring. The dimension of R is

dim(R) = sup{n | p0 ⊃ p1 ⊃ · · · ⊃ pn, p0, . . . , pn ∈ Spec(R)}.

Let p be a prime ideal of R. The codimension (also called height) of p
is

ht(p) = sup{n | p ⊃ p1 ⊃ · · · ⊃ pn, p1, . . . , pn ∈ Spec(R)}.

Note that the dimension of R as well as the codimension of p might
be infinite. From the definitions, we see that if q is a prime ideal and
q ⊂ p then we have ht(p) > ht(q), provided ht(p) <∞.

Let R be a ring. If N is the nilradical of R, then N is contained in
every prime ideal of R and thus

dim(R) = dim(R/N)

and
ht(p (modN)) = ht(p)

for any prime ideal p of R (where p (modN) is the image of p in R/N).
Note finally that from the definitions, we have

dim(R) = sup{ht(p) | p ∈ Spec(R)}.

More generally, for any ideal I ⊆ R, we clearly have dim(R) ⩾ dim(R/I).
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Lemma 10.2. Let R be a ring and let p ∈ Spec(R). Then ht(p) =
dim(Rp). Also, we have

dim(R) = sup{ht(m) | m a maximal ideal of R}.

Proof. Recall that the prime ideals of Rp are in one-to-one correspon-
dence with the prime ideals contained in p by Lemma 4.6. Furthermore
this correspondence preserves inclusion. The first equality follows di-
rectly from this. For the second one, note that by definition, we have

dim(R) ⩾ sup{ht(p) | p a maximal ideal of R}
so we only have to establish the reverse inequality. To establish this,
let p be a prime ideal, which is not maximal. Consider a chain of prime
ideals

p ⊃ p1 ⊃ · · · ⊃ pn,

and let m be a maximal ideal containing p. We then have a chain

m ⊃ p ⊃ p1 ⊃ · · · ⊃ pn.

Hence ht(m) > ht(p) and thus we clearly have

sup{ht(p) | p ∈ Spec(R) maximal} ⩾ sup{ht(p) | p ∈ Spec(R)}
= dim(R). □

Note that Lemma 10.2 has in particular the following consequence.
Let R be a ring and let S be a multiplicative subset of R. Let p
be a prime ideal of RS and let λ : R → RS be the natural ring ho-
momorphism. Then ht(p) = ht(λ−1(p)) (use the second remark after
Lemma 4.6, as Rλ−1(p)

∼= (RS)p).
If R is a ring and I ⊆ R is an ideal, we define the codimension or

height ht(I) of I as follows:

ht(I) = min{ht(p) | p ∈ Spec(R), p ⊇ I}.
(this generalises the definition of the height of a prime ideal given
above).

From the definition, we see that if J is another ideal and J ⊆ I, then
ht(J) ⩽ ht(I).

If ht(I) <∞, there is a prime ideal p, which is minimal among all the
prime ideals containing I, and such that ht(p) = ht(I). This follows
directly from the definitions.

The next two subsections contain some preliminary results (which
are also of independent interest) that we shall need before we resume
the study of dimension in Section 10.3 below.

10.1. Transcendence bases. Let k be a field and let K be a field
containing k. If S ⊆ K is a finite subset of K, we shall write k(S)
for the smallest subfield of K containing k and S. By construction,
k(S) is isomorphic to the field of fractions of the k-algebra k[S] ⊆ K
(recall that k[S] is the smallest k-subalgebra of K containing k and
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S). If S = {α1, . . . , αh} then we shall as usual use the shorthand
k(α1, . . . , αh) for k({α1, . . . , αh}).

If S1, S2 ⊂ K are two finite subsets, we have k(S1 ∪ S2) = k(S1)(S2)
(this follows from the definitions).

Also, recall that if the elements of S are all algebraic (equivalently,
integral) over k, then we actually have k(S) = k[S]. To see this, note
that we only have to verify this in the situation where S = {s} in view
of the compatibility mentioned in the previous paragraph. Now notice
that we have a homomorphism of k-algebras k[t] → K that sends t
to s. Since the image of this homomorphism is a domain and s is
algebraic, the kernel of this homomorphism is a non-zero prime ideal
of k[t], which is thus maximal (why?). Hence k[s] is actually a field (all
this should be familiar from Rings and Modules or the Galois Theory
course). Finally note that if all the elements of S are algebraic over
k then k(S) is a finite extension of k. This follows from Corollary 7.4
and Proposition 7.2.

If there is a finite subset S of K such that K = k(S) we say that
K is finitely generated over k as a field. This is a weaker condition
than finitely generated as a k-algebra but by the previous paragraph it
coincides with it if all the elements of S are algebraic over k.

We say that the set S ⊆ K is a finite transcendence basis of K over
k if

• S is finite;
• the elements of S are algebraically independent over k;
• K is algebraic (equivalently, integral) over the field k(S).

It is easy to see that if K is finitely generated over k as a field,
then K has a transcendence basis over k. To obtain such a basis, start
with a finite set S such that K = k(S). Take a subset S ′ ⊆ S, which
is algebraically independent and has maximal cardinality among such
subsets (note that S ′ might be empty). Then each of the elements of
S ∖ S ′ is by construction algebraic over k(S ′) and thus K is algebraic
over k(S ′). This subset will be a transcendence basis of K over k.

Proposition 10.3. Let K be a field and k ⊆ K a subfield. Suppose
that K is finitely generated over k as a field. Let S and T be two finite
transcendence bases of K over k. Then |S| = |T |.
Proof. For convenience, write S = {γ1, . . . , γn} and T = {ρ1, . . . , ρm},
where n = |S| and m = |T |.

We shall prove that m = n by induction on min(m,n). The state-
ment is true if min(m,n) = 0 (so that either S or T is empty), for in
that case K is algebraic over k and then both S and T must be empty.

We may assume without restriction of generality that S ∩T = ∅. To
see this, suppose that S ∩ T = U and that U ̸= ∅. Then S ∖ U and
T ∖ U are transcendence bases for K over k(U). We have

min(|S ∖ U |, |T ∖ U |) = min(m,n)− |U |
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and thus by induction, we have |S ∖ U | = |T ∖ U | so that |S| = n =
|T | = m.

We also contend that m or n is minimal among the cardinalities of
all possible transcendence bases of K over k. To see this, suppose that
m ⩽ n (say) so that m = min(m,n). Suppose that m = |T | is not
minimal. Choose a transcendence basis T ′ of K over k such that |T ′| <
m and such that |T ′| is minimal. We have min(|T |, |T ′|) < min(m,n)
and so by induction we have |T ′| = |T | = m, which a contradiction.
Hence m is minimal.

We now start the proof. Suppose without restriction of generality
that m is minimal among the cardinalities of all possible transcendence
bases of K over k (swap S and T if necessary).

By assumption, there is a non-zero polynomial

P (x0, . . . , xm) ∈ k[x0, . . . , xm],

such that
P (γ1, ρ1, . . . , ρm) = 0

(to obtain this polynomial, start with a non zero polynomial with co-
efficients in k(ρ1, . . . , ρm) ≃ Frac(k[x1, . . . , xm]), which annihilates γ1,
and clear denominators). We suppose that P (x0, . . . , xm) has minimal
degree among all non-zero polynomials with this property.

By assumption, P (x0, . . . , xm) contains monomials with positive pow-
ers of xk for some k ⩾ 1 (otherwise γ1 is algebraic over k). Renumber-
ing, we may suppose that this variable is x1.

We may thus write

P (x0, . . . , xm) =
∑
j

Pj(x0, x2, . . . , xm)x
j
1

where Pj(x0, x2, . . . , xm) ∈ k[x0, x2, . . . , xm]. Since P (x0, . . . , xm) is a
non-constant polynomial in the variable x1, we know that

Pj0(x0, x2, . . . , xm) ̸= 0

for some j0 > 0; take maximal such j0. Also, we cannot have

Pj0(γ1, ρ2, . . . , ρm) = 0,

because that would violate the minimality of the degree of P (x0, . . . , xm).
Thus, since P (γ1, ρ1, . . . , ρm) =

∑
j Pj(γ1, ρ2, . . . , ρm)ρ

j
1 = 0, we see

that ρ1 is algebraic over

k(γ1, ρ2, . . . , ρm).

Hence k(γ1, ρ1, ρ2, . . . , ρm) is algebraic over k(γ1, ρ2, . . . , ρm) and thus
K is algebraic over k(γ1, ρ2, . . . , ρm) (again use Corollary 7.4 and Propo-
sition 7.2). Since m is minimal, we conclude that {γ1, ρ2, . . . , ρm} is a
transcendence basis of K. In particular {γ2, . . . , γn} and {ρ2, . . . , ρm}
are transcendence bases of K over k(γ1). By induction, we thus have
m− 1 = n− 1, i.e., m = n and the proof is complete. □
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Let k be a subfield of a field K and suppose that K is finitely gen-
erated over k as a field. In view of the last proposition, we may define
the transcendence degree tr(K|k) of k over K as the cardinality of
any transcendence basis of K over k. As a basic example, we have
tr(k(x1, . . . , xn)|k) = n for any field k.

END OF LECTURE 13

10.2. The Artin–Rees Lemma and Krull’s theorem. Let R be a
ring. A ring grading on R is the datum of a sequence R0, R1, . . . of
additive subgroups of R, such that R = ⊕i⩾0Ri (where ⊕ refers to an
internal direct sum of additive subgroups) and such that Ri ·Rj ⊆ Ri+j

for every i, j ⩾ 0 (i.e., if r ∈ Ri and t ∈ Rj then rt ∈ Ri+j). One can
see from the definition that R0 is then a subring of R and that ⊕i⩾i0Ri

is an ideal of R for any i0 ⩾ 0. Each Ri naturally carries a structure
of an R0-module. Finally, the natural map R0 → R/(⊕i⩾1Ri) is an
isomorphism of rings and we have natural isomorphism of R0-modules
Ri0 ≃ (⊕i⩾i0Ri)/(⊕i⩾i0+1Ri) for any i0 ⩾ 0 (why?).

If r ∈ R, we shall often write [r]i for the projection of r to Ri and
we call it the i-th graded component of r.

For example, if k is a field, the ring k[x] has a natural grading given
by (k[x])i = {a · xi | a ∈ k}. Any ring carries a trivial grading, such
that R0 = R and Ri = 0 for all i ⩾ 0.

Suppose that R is a graded ring. Let M be an R-module. A grad-
ing on M (relative to the grading on R) is the datum of a sequence
M0,M1, . . . of additive subgroups of M , such that M = ⊕i⩾0Mi (where
⊕ refers to an internal direct sum) and such that Ri ·Mj ⊆Mi+j for any
i, j ⩾ 0 (i.e., if r ∈ Ri and t ∈ Mj then rt ∈ Mi+j). In this situation,
we say that M is a graded R-module (this is a slight abuse of language
because the reference to the grading of R is only implicit).

There is an obvious notion of homomorphism of graded R-modules.

Lemma 10.4. Let R be a graded ring with grading (Ri)i⩾0. The fol-
lowing are equivalent:

(1) The ring R is noetherian.
(2) The ring R0 is noetherian and R is finitely generated as an

R0-algebra.

Proof. The implication (2)⇒(1) is a consequence of Hilbert’s basis the-
orem and passing to quotients.

We prove the implication (1)⇒(2). The ring R0 is noetherian since
it is a quotient of a noetherian ring.

To show that R is finitely generated as an R0-module, let a1, . . . , ak
be generators of ⊕i>0Ri viewed as an ideal of R (this exists, since R
is noetherian). We claim that the graded components of a1, . . . , ak
generate R as an R0-algebra (more concretely: the elements

[a1]1, [a1]2, . . . , [a2]1, [a2]2, . . .
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generate R as an R0-algebra). This will prove the lemma, since each
ai only has finitely many graded components.

We shall prove by induction on i ⩾ 0 that Ri lies inside the sub-
R0-algebra generated by the graded components of a1, . . . , ak. Since R
is generated by all the Ri, this will prove the claim. For i = 0, there
is nothing to prove. So suppose that i > 0 and that the subgroups
R0, . . . , Ri−1 lie inside the sub-R0-algebra generated by the graded com-
ponents of a1, . . . , ak.

Let r ∈ Ri. By assumption, there are elements t1, . . . , tk ∈ R such
that r = t1a1 + · · ·+ tkak. We deduce that

r = [r]i =
k∑
j=1

i∑
u=1

[tj]i−u[aj]u

Now, in this sum, we have [tj]i−u ∈ R0 ⊕ R1 ⊕ · · · ⊕ Ri−1 and thus
[tj]i−u lies in the sub-R0-algebra generated by the graded components
of a1, . . . , ak by the inductive hypothesis. Thus r lies in this sub-R0-
algebra also, which proves the claim and the lemma. □

Let R be a ring and let M be an R-module. A (descending) filtration
M• of M is a sequence of R-submodules

M =M0 ⊇M1 ⊇M2 ⊇ . . .

of M . If I is an ideal of R, then M• is said to be an I-filtration if
IMi ⊆ Mi+1 for all i ⩾ 0. An I-filtration M• is said to be stable if
IMi =Mi+1 for all i larger than some fixed natural number.

Now we are given a ring R, an ideal I ⊆ R, an R-module M and an
I-filtration M• on M .

Note that the direct sum of R-modules R# = ⊕i⩾0I
i (where I0 = R)

carries a natural structure of graded ring, with the grading given as
follows: if α ∈ I i and β ∈ Ij, then the product of α and β in R# is
given by the product of α and β in R, viewed as an element of I i+j.
The ring R# is often called the blow-up algebra associated with R and
I (this terminology comes from algebraic geometry). The direct sum
M# = ⊕i⩾0Mi of R-modules then carries a natural structure of graded
R#-module (if α ∈ I i and β ∈ Mj, then the multiplication of β by
α in M# is given by the multiplication of β by α in M , viewed as
an element of Mi+j, in which it lies since M• is an I-filtration). Note
that R# is naturally an R-algebra, since there is an natural injective
homomorphism of rings R → R#, sending r ∈ R to the corresponding
element of degree 0. The corresponding R-module structure on M# is
then simply M# = ⊕i⩾0Mi viewed as a direct sum of R-modules.

Lemma 10.5. Let R be a ring and let I ⊆ R be an ideal. Suppose
that R is noetherian. Then the ring R# associated with R and I is also
noetherian.
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Proof. Let r1, . . . , rk ∈ I be generators of I (this exists because R is
noetherian). There is a homomorphism of rings ϕ : R[x1, . . . , xk] → R#,
given by the formula P (x1, . . . , xk) 7→ P (r1, . . . , rk). Here r1, . . . , rk are
viewed as elements of degree 1 inR# and the coefficients of P (x1, . . . , xk)
are viewed as elements of degree 0 (so that ϕ is a homomorphism of
R-algebras). By construction, ϕ is surjective and hence R# is also
noetherian by the Hilbert basis theorem. □

Note that in this context there is a slight inaccuracy in [AM], p. 107,
before Lemma 10.8.

Lemma 10.6. Let R be a ring. Let I ⊆ R be an ideal. Let M• be an I-
filtration on M . Suppose that Mj is finitely generated as an R-module
for all j ⩾ 0. Let R# be the corresponding graded ring and let M# be
the corresponding graded R#-module. The following are equivalent:

(1) The R#-module M# is finitely generated.
(2) The filtration M• is stable.

Proof. Let n ⩾ 0 and consider the graded subgroup

M#
(n) = (

n⊕
j=0

Mj)
⊕

(
∞⊕
k=1

IkMn)

of M#. Note that M#
(n) is a sub-R#-module of M# by construction.

Note also that each Mj with j ∈ {0, . . . , n} is finitely generated as
an R-module by assumption and thus M#

(n) is finitely generated as a
R#-module (it is generated by

⊕n
j=0Mj). We have inclusions

M#
(0) ⊆M#

(1) ⊆M#
(2) ⊆ . . .

and by construction we have M# =
⋃∞
i=0M

#
(i).

Note that saying that the I-filtration M• is stable is equivalent to
saying that M#

(n0+k)
= M#

(n0)
for all k ⩾ 0 and some n0 ⩾ 0. We claim

that M#
(n0+k)

= M#
(n0)

for all k ⩾ 0 and some n0 ⩾ 0 if and only if
M# is finitely generated as an R#-module. Indeed, if M# is finitely
generated as a R#-module, then M#

(n0+k)
=M#

(n0)
for all k ⩾ 0 as soon

as M#
(n0)

contains a given finite set of generators for M# =
⋃∞
i=0M

#
(i).

On the other hand, if M#
(n0+k)

=M#
(n0)

for all k ⩾ 0 then M# =M#
(n0)

,
and M# is finitely generated since M#

(n0)
is finitely generated. □

Proposition 10.7 (Artin–Rees Lemma). Let R be a noetherian ring.
Let I ⊆ R be an ideal. Let M be a finitely generated R-module and let
M• be a stable I-filtration on M . Let N ⊆ M be a submodule. Then
the filtration N ∩M• is a stable I-filtration of N .

Proof. By construction, there is a natural inclusion of R#-modules
N# ⊆M#. By Lemma 10.6, the R#-module M# is finitely generated.
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The module N# is thus also finitely generated by Lemma 10.5 and by
Lemma 6.3. Hence N ∩M• is a stable I-filtration by Lemma 10.6. □

Corollary 10.8. Let R be a noetherian ring. Let I ⊆ R be an ideal and
let M be a finitely generated R-module. Let N ⊆ M be a submodule.
Then there exists a natural number n0 ⩾ 0 such that

In(In0M ∩N) = In0+nM ∩N

for all n ⩾ 0.

Proof. Apply the lemma of Artin-Rees to the filtration I•M of M . □

Corollary 10.9 (Krull’s theorem). Let R be a noetherian ring. Let
I ⊆ R be an ideal and let M be a finitely generated R-module. Then
we have ⋂

n⩾0

InM =
⋃

r∈1+I

ker([r])

where [r] : M →M is defined by m 7→ r ·m.

Proof. Let N =
⋂
n⩾0 I

nM . By Corollary 10.8, there exists a natural
number n0 ⩾ 0 such that

IN = I(In0M ∩N) = In0+1M ∩N = N.

We deduce from Q4 of Sheet 1 (the general form of Nakayama’s lemma)
that there exists r ∈ 1+ I such that rN = 0. Hence N =

⋂
n⩾0 I

nM ⊆⋃
r∈1+I ker([r]). On the other hand, if r ∈ 1 + I, y ∈ M and ry = 0,

then (1 + a)y = y + ay = 0 for some a = r − 1 ∈ I and so y ∈ IM .
Since y + ay = 0, we conclude that y ∈ I2M . Continuing in this way,
we conclude that y ∈ N . □

END OF LECTURE 14

10.3. Dimension theory of noetherian rings. We first examine the
case of dimension 0. We will call a ring artinian if whenever we have
a descending sequence of ideals

I1 ⊇ I2 ⊇ I3 ⊇ . . .

in R, there exists an n ⩾ 1 such that In+k = In for all k ⩾ 0. We then
say that the sequence I• stabilises (compare with Lemma 6.1).

Lemma 10.10. Let R be a noetherian local ring with maximal ideal
m. The following are equivalent:

(1) dim(R) = 0;
(2) m is the nilradical of R;
(3) mn = 0 for some n ⩾ 1;
(4) R is artinian.
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Proof. We prove a cycle of implications.
(1)⇒(2): If dim(R) = 0 then every prime ideal of R coincides with

m. Hence m is the nilradical of R.
(2)⇒(3): This follows from Lemma 6.4, as m is finitely generated.
(3)⇒(4): Let

I1 ⊇ I2 ⊇ I3 ⊇ . . .

be a descending sequence of ideals in R. Let k ⩾ 0 be the minimal
natural number such that the sequence

mkI1 ⊇ mkI2 ⊇ mkI3 ⊇ . . .

stabilises. The number k exists since mk = 0 for some k ⩾ 0 by
(3). Suppose for contradiction that k > 0. Let n0 ⩾ 1 be such that
mkIn = mkIn0 for all n ⩾ n0. Consider the descending sequence

mk−1I1 ⊇ mk−1I2 ⊇ mk−1I3 ⊇ . . .

By construction we have mk−1In ⊇ mkIn0 for all n ⩾ 1. There are thus
natural inclusions

mk−1I1/m
kIn0 ⊇ mk−1I2/m

kIn0 ⊇ mk−1I3/m
kIn0 ⊇ . . .

and furthermore, for all n ⩾ n0, we have m(mk−1In/m
kIn0) = 0. Hence

mk−1In/m
kIn0 has a natural structure of R/m-module if n ⩾ n0. In

particular, the sequence
mk−1In0/m

kIn0 ⊇ mk−1In0+1/m
kIn0 ⊇ mk−1In0+2/m

kIn0 ⊇ . . .

is a decreasing sequence of R/m-modules. Also, all these R/m-modules
are finitely generated because R is a noetherian ring. Since R/m is
a field, one thus obtains a decreasing sequence of finite-dimensional
vector spaces and such a sequence must stabilise. Let n1 ⩾ n0 be such
that mk−1In/m

kIn0 = mk−1In1/m
kIn0 for all n ⩾ n1. Then we have

by construction mk−1In = mk−1In1 for all n ⩾ n1. In particular, the
sequence mk−1In also stabilises. This contradicts the minimality of k
so we must have k = 0, i.e., the sequence I1 ⊇ I2 ⊇ I3 ⊇ . . . stabilises.

(4)⇒(1): We argue by contradiction, and assume that R is artinian
and that dim(R) ̸= 0. Then there are two prime ideals p0, p1 of R
such that p0 ⊃ p1. In particular, we have m ⊃ p1. This implies that
m is not the nilradical of R (since the nilradical is contained in p1 by
Proposition 2.2).

Since R is artinian, we know that there is a natural number n0 ⩾ 0
such that mn0 =

⋂∞
i=0m

i. Moreover,
⋂∞
i=0m

i =
⋃
r+1∈m ker[r] by Krull’s

Theorem. Every such r is a unit since m is the maximal ideal of the
local ring R, and hence

⋂∞
i=0m

i = 0. Thus mn0 = 0. In particular,
every element of m is nilpotent and m is the nilradical of R. This is
the desired contradiction. □

Theorem 10.11 (Krull’s principal ideal theorem). Let R be a noether-
ian ring. Let f ∈ R be an element which is not a unit. Let p be minimal
among the prime ideals containing f . Then we have ht(p) ⩽ 1.
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Proof. Note that the maximal ideal of Rp is minimal among the prime
ideals of Rp containing f/1 ∈ Rp (use Lemmata 4.6 and 4.7). Further-
more, the height of p is the same as the height of the maximal ideal of
Rp (again, use Lemmata 4.6 and 4.7). Since Rp is also noetherian by
Lemma 6.2, we may thus suppose that R is a local ring and that p is
a maximal ideal.

Write q for a proper subideal of p. If no such q exists, then we are
done. Otherwise, by assumption, we have f ̸∈ q.

Write λ : R → Rq for the natural map (sending r to r/1). For n ⩾ 1,
write λ(qn) for the ideal of Rq generated by λ(qn). We know that λ(qn)
consists of the elements of the form r/t, where r ∈ qn and t ∈ R ∖ q

(see Lemma 4.6). Also, it is easily checked that λ(qn) = (λ(q))n.
Now consider the ideal In = λ−1(λ(qn)) (this ideal is called the n-th

symbolic power of q). By construction, we have In ⊇ qn. Furthermore,
we have I1 = q by Lemma 4.6. The ideal In has the advantage over
qn that if fr ∈ In for some r ∈ R, then we must have r ∈ In (because
λ(fr)(1/f) = λ(r) ∈ λ(qn), noting that f ∈ R∖ q).

Now consider the ring R/(f). The ring R/(f) is also local (because
if R/(f) had more than one maximal ideal, then so would R) and it
is noetherian. The ring R/(f) has dimension 0, since its only maxi-
mal ideal (given by p (mod (f))) is a minimal prime ideal of R/(f) by
construction.

Now we are given a descending sequence of ideals

(1) I1 ⊇ I2 ⊇ I3 . . .

We conclude from Lemma 10.10 that the image of this sequence in
R/(f) must stabilise (note that the image of an ideal by a surjective
homomorphism is an ideal). In other words, there is an n0 ⩾ 1 with the
property that for any n ⩾ n0, we have In ⊆ In+1+(f). Furthermore, in
this situation, if r ∈ In, t ∈ In+1 and r = t+hf for some h ∈ R, then we
have r−t ∈ In, and so h ∈ In (see above). This means that we actually
have In ⊆ In+1+(f)In, and in particular In ⊆ In+1+pIn. In particular,
the natural map In+1/pIn+1 → In/pIn is surjective. By Corollary 2.7
(Nakayama’s lemma) we conclude that In+1 → In is surjective, so that
In+1 = In. So the sequence (1) stabilises at n0.

Now note that since In ⊇ qn for all n ⩾ 1, we have λ(In) = λ(qn) =

(λ(q))n. Hence the descending sequence of ideals of Rq

λ(q) ⊇ (λ(q))2 ⊇ (λ(q))3 ⊇ . . .

also stabilises at n0. Also, λ(q) is the maximal ideal ofRq (by Lemma 4.6).
But now (this is the crucial step of the proof), Krull’s theorem (Corol-
lary 10.9) implies that ⋂

i⩾0

(λ(q))i = 0,
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and so we have (λ(q))n0 = 0. Since λ(q) is the maximal ideal, we
conclude from Lemma 10.10 that Rq has dimension 0. In particular,
we have ht(q) = 0 (by Lemma 10.2). In other words, q cannot contain
any prime ideal other than itself. Hence k = 1. □

Corollary 10.12. Let R be a noetherian ring. Let f1, . . . , fk ∈ R. Let
p be a prime ideal minimal among those containing (f1, . . . , fk). Then
ht(p) ⩽ k.

Proof. By induction on k. The case k = 1 is Krull’s principal ideal
theorem. We suppose that k > 1 and that the statement is true for
k − 1 in place of k.

Just as at the beginning of the proof of Krull’s principal ideal theo-
rem, we may suppose that R is a local ring with maximal ideal p.

Let
p ⊃ p1 ⊃ p2 ⊃ . . .

be a (possibly infinite) chain of prime ideals beginning with p and of
length ht(p). We also assume that there are no prime ideals between p
and p1, other than p and p1. Note that this last condition is automati-
cally satisfied if ht(p) <∞, because the chain then has maximal (finite)
length. If ht(p) = ∞ we can create a chain satisfying this condition,
see sheet 4.

We want to show that that ht(p) ⩽ k. We may suppose that ht(p) >
0, otherwise there is nothing to prove. Let q = p1. We claim that
ht(q) ⩽ k − 1 (so, in particular, we cannot have ht(p) = ∞).

We prove the claim. From the assumptions, there is an fi such that
fi ̸∈ q (otherwise p is not minimal among the prime ideals containing
(f1, . . . , fk)). Up to renumbering, we may assume that f1 ̸∈ q. Since
there are no prime ideals between p and q other than p and q, we see
that p is minimal among the prime ideals containing (q, f1). Hence
the ring R/(q, f1) has dimension 0, as p (mod (q, f1)) is maximal. We
conclude from Lemma 10.10 (iii) that the image of all the fi are nilpo-
tent in R/(q, f1). In other words there are elements bi ∈ q, ai ∈ R and
integers ni ⩾ 2 such that

fni
i = aif1 + bi.

Note that

p ⊇ (f1, f
n2
2 , fn3

3 , . . . , fnk
k ) = (f1, b2, . . . , bk)

and that p is also minimal among all the prime ideals containing
(f1, b2, . . . , bk), since

r((f1, f
n2
2 , fn3

3 , . . . , fnk
k )) = r((f1, f2, . . . , fk)).

Write J = (b2, . . . , bk). Note that J ⊆ q. Since p is minimal among
all the prime ideals containing f1 and J , we see that p (mod J) is min-
imal among all the prime ideals of R/J containing f1 + J . Hence
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ht(p (mod J)) ⩽ 1 by Krull’s principal ideal theorem. On the other
hand, we have

p (mod J) ⊃ q (mod J)

(since J ⊆ q ⊆ p and q ⊂ p) so ht(p (mod J)) = 1 and ht(q (mod J)) =
0. In particular, q is minimal among all the prime ideals containing
J . Applying the inductive hypothesis, we see that ht(q) ⩽ k − 1. In
particular, the chain (∗) is finite.

Finally, we see from the assumptions that ht(p) = ht(q)+ 1 ⩽ k and
so the corollary is proven. □

In particular, in a noetherian ring, the height of any prime ideal is
finite. Together with Lemma 10.2, this shows that the dimension of a
noetherian local ring is finite.

It is not true however that any noetherian ring has finite dimension.
For an example of a noetherian ring of infinite dimension, see Ex. 3 of �

chap. 11, p. 126 of [AM].
Note also that Corollary 10.12 implies that ht((f1, . . . , fk)) ⩽ k. If

we have ht((f1, . . . , fk)) = k, then any minimal prime ideal associated
with (f1, . . . , fk) has height k (because any such ideal has height ⩾ k
by assumption, and height ⩽ k by Corollary 10.12).

Corollary 10.13. Let R be a noetherian ring. Let

p0 ⊃ p1 ⊃ p2 ⊃ . . .

be a descending chain of prime ideals of R. Then there is i0 ⩾ 0 such
that pi0+i = pi0 for all i ⩾ 0. Moreover, if p0 is generated by c elements,
we have i0 ⩽ c.

The proof follows directly from Corollary 10.12 and the definition of
the height.

Corollary 10.14. Let R be a noetherian ring. Let p be a prime ideal of
height c. Suppose that 0 ⩽ k ⩽ c and that we have elements t1, . . . , tk ∈
p such that ht((t1, . . . , tk)) = k. Then there are elements tk+1, . . . , tc ∈
p, such that ht(t1, . . . , tc) = c.

Note that the assumptions imply that we have k ⩽ c. Here we
set (t1, . . . , tk) = (0), resp. (t1, . . . , tc) = 0, if k = 0, resp. if c = 0.
Note also that if ht(t1, . . . , tc) = c then p is a minimal prime ideal
associated with the ideal (t1, . . . , tc). Indeed, if there were a prime
ideal q such that q ⊂ p and q ⊇ (t1, . . . , tc), then we would have
ht(p) = c > ht(q) ⩾ ht(t1, . . . , tc) = c, which is a contradiction.

Proof. If c = 0 then p is a minimal prime ideal of R and then ht((0)) =
c = 0 so there is nothing to prove. So we suppose that c > 0. We may
obviously assume that k < c.

By induction on k < c, it is sufficient to construct an element t ∈ p
so that ht((t1, . . . , tk, t)) = k + 1. Since by Corollary 10.12, we have
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ht((t1, . . . , tk, t)) ⩽ k+1 for any t ∈ R, we actually only have to find an
element t ∈ p such that ht((t1, . . . , tk, t)) > k. Suppose for contradic-
tion that such an element does not exist. Since ht((t1, . . . , tk, t)) ⩾ k
for any t ∈ R, this implies that ht((t1, . . . , tk, t)) = k for all t ∈ p.
In particular, for any t ∈ p, there is a prime ideal q, which contains
(t1, . . . , tk, t) and which has height k; now q contains a minimal prime
ideal q1 associated with (t1, . . . , tk) by Sheet 2 and we have ht(q1) ⩾ k
by assumption; hence we must have q = q1, so that q is a minimal prime
ideal associated with (t1, . . . , tk), which has height k. We conclude that
for all t ∈ p, t is contained in a minimal prime ideal of height k as-
sociated with (t1, . . . , tk). In other words, p is contained in the union
of the minimal prime ideals of height k associated with (t1, . . . , tk).
By Proposition 5.1 (1), we conclude that p is contained in, and hence
equal to, one of these minimal prime ideals. Since ht(p) = c > k, this
contradicts Corollary 10.12. □

END OF LECTURE 15

10.4. The dimension of polynomial rings. We now turn to the
computation of the dimension of polynomial rings. The main result is

Theorem 10.15. Let R be a noetherian ring. Suppose that dim(R) <
∞. Then dim(R[x]) = dim(R) + 1.

Before we start with the proof, we prove a few intermediate results.
If R is a ring and I is an ideal of R, we shall write I[x] for the ideal

generated by I in R[x]. The ideal I[x] can easily be seen to consist of
the polynomials with coefficients in I (hence the notation). If the ideal
I is also prime, then so is I[x], since

R[x]/I[x] ≃ (R/I)[x]

and (R/I)[x] is a domain if R/I is a domain.

Lemma 10.16. Let ϕ : R → T be a ring homomorphism. Let p ∈
Spec(R) and let I be the ideal generated by ϕ(p) in T .

Write ψ : R/p → T/I for the ring homomorphism induced by ϕ and
let S = (R/p)∖ {0}.

Suppose that we have a chain of prime ideals

q0 ⊃ q1 ⊃ · · · ⊃ qk

in T , such that ϕ−1(qi) = p for all i ∈ {0, . . . , k}. Then k ⩽ dim((T/I)ψ(S)).

Proof. This is an exercise on Sheet 4 □

Recall that if N is the nilradical of R then the nilradical of R[x] is
N [x].
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Lemma 10.17. Let R be a noetherian ring and let p1, . . . , pk be the
minimal prime ideals of R. Then the minimal prime ideals of R[x]
are the ideals p1[x], . . . , pk[x]. More generally, if I is an ideal of R
and p1, . . . , pk are the minimal prime ideals associated with I, then the
ideals p1[x], . . . , pk[x] are the minimal prime ideals associated with I[x].

Proof. We first prove the first statement. Note that we have
⋂
i pi =

r((0)), because the nilradical r((0)) of R is decomposable by the Lasker–
Noether theorem. We deduce from this that

⋂
i pi[x] = r((0))[x]. Thus⋂

i pi[x] is a minimal primary decomposition of r((0))[x] (use Proposi-
tion 5.1 (2)). This implies that the minimal prime ideals of R[x] are
precisely the ideals p1[x], . . . , pk[x] (use Theorem 5.8 and Lemma 5.11),
which is what we wanted to prove.

For the second statement, apply the first statement to pi (mod I),
noting that (R/I)[x] ≃ R[x]/I[x] (or provide a direct proof, similar to
the proof for I = (0)). □

Lemma 10.18. Let R be a noetherian ring and let I be a proper ideal
of R. Then ht(I) = ht(I[x]).

Proof. We first prove the statement if I = p ∈ Spec(R). Let c = ht(p)
and let J = (a1, . . . , ac) be a subideal in p such that ht(J) = c, so
that p is a minimal prime ideal associated with J . This exists by
Corollary 10.14. By the previous lemma, p[x] is a minimal prime ideal
associated with J [x]. We conclude from Corollary 10.12 that ht(p[x]) ⩽
c (since the elements a1, . . . , ac generate J [x] in R[x]). On the other
hand, if

p ⊃ p1 ⊃ p2 ⊃ · · · ⊃ pc
is a descending chain of prime ideals in R, then

p[x] ⊃ p1[x] ⊃ p2 ⊃ · · · ⊃ pc[x]

is a descending chain of prime ideals in R[x], so ht(p[x]) ⩾ c. Hence
ht(p[x]) = c.

Now let us look at the general case. We know that there is a minimal
prime ideal p associated with I, such that ht(p) = ht(I). We conclude
from this that ht(I[x]) ⩽ ht(p[x]) = ht(p) = ht(I). On the other
hand there is a minimal prime ideal q associated with I[x] such that
ht(q) = ht(I[x]). By Lemma 10.17, we have q = (q ∩R)[x], and so
ht(I[x]) = ht(q) = ht((q∩R)[x]) = ht(q∩R) ⩾ ht(I[x]∩R) = ht(I). □

Lemma 10.19. Let q be a prime ideal of R[x] and let I be an ideal
of R such that I ⊆ q ∩ R. Suppose that q ∩ R is a minimal prime
ideal associated with I. Let q′ ⊆ q be a prime ideal of R[x], which is a
minimal prime ideal associated with I[x]. Then q′ = (q ∩R)[x].
Proof. We have

q′ ∩R ⊇ I[x] ∩R = I
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and thus
(q′ ∩R)[x] ⊇ I[x].

Hence
q′ ⊇ (q′ ∩R)[x] ⊇ I[x].

By minimality, we thus have q′ = (q′ ∩ R)[x]. On the other hand, we
have q′ ⊆ q, and so

q′ = (q′ ∩R)[x] ⊆ (q ∩R)[x].
Now by Lemma 10.17, we know that (q∩R)[x] is a minimal prime ideal
associated with I[x] and thus we must have q′ = (q ∩R)[x]. □

Proposition 10.20. Let R be a noetherian ring and p be a prime ideal
of R[x]. Then

ht(p) ⩽ 1 + ht(p ∩R).
If p is maximal, we have

ht(p) = 1 + ht(p ∩R).

Proof. Let δ = ht(p∩R) and let c = ht(p). Note that since (p∩R)[x] ⊆
p, we have δ ⩽ c by Lemma 10.18. Let a1, . . . , ac ∈ p be such that
ht((a1, . . . , ai)) = i for all i ∈ {1, . . . , c}. This exists by Corollary 10.14
(or rather, its proof). Using Lemma 10.18 again, we may suppose that
a1, . . . , aδ ∈ p ∩ R. In particular, (p ∩ R)[x] is a minimal prime ideal
associated with (a1, . . . , aδ).

We shall now inductively define a chain of prime ideals

p = q0 ⊃ q1 ⊃ · · · ⊃ qc

such that qi is a minimal prime ideal associated with (a1, . . . , ac−i). We
let q0 = p and we suppose that i > 0 and that the ideals q0, . . . , . . . qi−1

are given. We then let qi be a (arbitrary) minimal prime ideal asso-
ciated with (a1, . . . , ac−i), which is contained in qi−1. This exists by
Sheet 2 and so we have constructed our chain of prime ideals.

Note that we have by construction ht(qi) = c − i (see after Corol-
lary 10.12).

Now note the key fact that both qc−δ and (p ∩ R)[x] are minimal
prime ideals associated with (a1, . . . , aδ). Applying Lemma 10.19, we
find that we actually have

qc−δ = (p ∩R)[x].
We thus see that for all i ∈ {0, . . . , c− δ}, we have

p ⊇ qi ⊇ (p ∩R)[x]
implying that

p ∩R ⊇ qi ∩R ⊇ p ∩R
so that qi ∩R = p∩R. We now conclude from Lemma 10.16 and sheet
4 that

c−δ ⩽ dim((R[x]/(p∩R)[x])(R/(p∩R))∗) = dim(Frac(R/(p∩R))[x]) ⩽ 1.
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This proves the first statement. For the second one, note that if p is
maximal then p ̸= (p∩R)[x] = qc−δ (because (p∩R)[x] is not maximal),
so c−δ ⩾ 1. In particular, we then have that c = δ+1, as required. □

Proof of Theorem 10.15. Let m be a maximal ideal of R[x] such that
ht(m) = dim(R[x]). This exists by Lemma 10.2. We then have ht(m) =
1 + ht(m ∩R) by the last proposition.

Suppose for contradiction that ht(m∩R) < dim(R). Then there is a
maximal ideal p in R such that ht(p) > ht(m∩R). Let n be a maximal
ideal of R[x], which contains p[x]. By maximality, we have n ∩ R = p,
so that ht(n) = 1 + ht(p) > 1 + ht(m ∩R) = ht(m), a contradiction.

So we conclude that ht(m) = dim(R[x]) = dim(R) + 1, as required.
□

Remark 10.21. Let R be a noetherian ring and let p ⊆ q be prime
ideals of R. We then obviously have

ht(p) + ht(q (mod p)) ⩽ ht(q)

(where q (mod p) is an ideal of R/p). However it is not true that �

ht(p) + ht(q (mod p)) = ht(q)

in general. One class of rings, where equality holds is the class of so
called catenary domains. One can show that finitely generated algebras
over fields are catenary. So equality will hold if R is a domain, which
is finitely generated over a field (we will not prove this however).

Note that in the proof of Proposition 10.20, we showed that

ht((m ∩R)[x]) + ht(m/(m ∩R)[x]) = ht(m)

(why?) and the fact that equality holds in this situation was crucial in
the proof.

Corollary 10.22. Let R be a noetherian ring. Suppose that dim(R) <
∞. Then dim(R[x1, . . . , xt]) = dim(R) + t.

Proof. This follows from Theorem 10.15 and Hilbert’s basis theorem.
□

Corollary 10.23. Let k be a field and let R be a finitely generated
k-algebra. Suppose that R is a domain and let K = Frac(R). Then
dim(R) and the trace tr(K|k) are finite and equal.

For the proof of the corollary, we shall need the following.

Lemma 10.24. Let R be a subring of a ring T . Suppose that T is
integral over R. Then dim(T ) = dim(R).

Note that the lemma also holds if R or T has infinite dimension (in
which case it says that the other ring also has infinite dimension).
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Proof. Suppose first that dim(R), dim(T ) <∞. Let

p0 ⊃ p1 ⊃ · · · ⊃ pdim(R)

be a descending chain of prime ideals in R, which is of maximal length.
By Theorem 7.9, there is a prime ideal qdim(R) in T such that qdim(R) ∩
R = pdim(R) and by Q6 of sheet 2, there are prime ideals qi in T , such
that qi ∩R = pi and such that

q0 ⊃ q1 ⊃ · · · ⊃ qdim(R).

Hence dim(T ) ⩾ dim(R).
Now, resetting notation, let

q0 ⊃ q1 ⊃ · · · ⊃ qdim(T ).

be a descending chain of prime ideals in T , which is of maximal length.
Then we have

q0 ∩R ⊃ q1 ∩R ⊃ · · · ⊃ qdim(T ) ∩R.
by Q1 of sheet 3. Hence dim(T ) ⩽ dim(R) and thus dim(T ) = dim(R).

The argument in the situation where either dim(R) = ∞ or dim(T ) =
∞ proceeds along the same lines and is left to the reader. □

Proof of Corollary 10.23. By Noether’s normalisation lemma, there is
for some d ⩾ 0 an injection of rings k[x1, . . . , xd] ↪→ R, which makes
R into an integral k[x1, . . . , xd]-algebra. From the previous lemma and
Corollary 10.22, we deduce that dim(R) = d. On the other hand, the
fraction field k(x1, . . . , xd) of k[x1, . . . , xd] is naturally a subfield of K
and since every element of R is integral over k[x1, . . . , xd], we see that
every element of K is algebraic over k(x1, . . . , xd) (why?). Hence

tr(K|k) = tr(k(x1, . . . , xd)|k) = d = dim(R). □

END OF LECTURE 16

11. Dedekind rings (not examinable)

A Dedekind domain is a noetherian domain of dimension one, which
is integrally closed. Examples of Dedekind domains include Z, and
polynomial rings in one variable over a field, which are domains and are
integrally closed. We will see that in a Dedekind domain, every ideal
can be written in unique fashion as a product of powers of distinct
prime ideals. This unique decomposability generalises to ideals the
decomposability into irreducibles of an element that exists in a UFD
(and in fact a Dedekind domain is a UFD if and only if it is a PID -
see Sheet 4).

Recall that a Unique Factorisation Domain (UFD) or factorial ring
is a domain R, which has the following property: for every r ∈ R∖{0},
there is a sequence r1, . . . , rk ∈ R (for some k ⩾ 0), such that

(1) the elements ri are irreducible;
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(2) (r) = (r1 · · · rk) (with the standard convention that the empty
product is equal to 1 ∈ R);

(3) if r′1, . . . , r′k′ is another sequence with properties (1) and (2), then
k = k′ and there is a permutation σ ∈ Sk such that (ri) = (r′σ(i)) for
all i ∈ {1, . . . , k}.

We will also see below that the integral closure of Z in a finite exten-
sion of Q is a Dedekind domain. This last kind of ring is much studied
in algebraic number theory.

We first note a couple of simple facts:

Lemma 11.1. Let R be a Dedekind domain.
(1) All the non-zero prime ideals of R are maximal.
(2) If q1, q2 are primary ideals and r(q1) ̸= r(q2) then q1 and q2 are

coprime.

Note that the lemma, together with the Chinese remainder theorem,
shows that if q1, . . . , qk are primary ideals with distinct radicals in a
Dedekind domain, we have ⋂

i

qi =
∏
i

qi.

Proof. We prove the claims in turn.
(1) If p is a non-zero prime ideal, then we have the chain p ⊃ (0) of

prime ideals (note that (0) is a prime ideal since R is a domain).
This chain is of maximal length, since R is of dimension one.
Now let m ⊇ p be a maximal ideal containing p. We must have
m = p, otherwise

m ⊃ p ⊃ (0)

would be a chain of prime ideals of length 2, which is impossible
by the above.

(2) Since r(q1) ̸= r(q2), the ideals r(q1) and r(q2) are coprime, since
they are prime, and hence maximal by (i). Thus the conclusion
follows from Lemma 11.2 below. □

Lemma 11.2. Let R be a ring. Suppose that the ideals r(I) and r(J)
of R are coprime. Then I and J are coprime.

Proof. Note that we have r(I + J) ⊆ r(r(I) + r(J)), since I + J ⊆
r(I) + r(J). On the other hand, we also have r(I) + r(J) ⊆ r(I + J),
and thus we have r(r(I) + r(J)) ⊆ r(r(I + J)) = r(I + J). So we have
r(I + J) = r(r(I) + r(J)) (this equality holds without any assumptions
on the ideals r(I) and r(J)). In our situation, we have r(I)+r(J) = (1),
and so r(I+J) = (1). In particular, 1 ∈ I+J , and thus I+J = (1) = R,
as required. □

Exercise 11.3. Let R be an integrally closed domain. Then Rp is also
integrally closed for all p ∈ Spec(R).
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Hint: use Lemma 7.8.

Proposition 11.4. Let R be a noetherian local domain of dimension
one with maximal ideal m. The following conditions are equivalent:

(1) R is integrally closed;
(2) m is a principal ideal;
(3) for any non-zero ideal I of R, we have I = mn for a uniquely

determined n ⩾ 0.

Proof. Let K be the fraction field of R.
(1)⇒(2): Let a ∈ m ∖ {0}. Note that the ring R/(a) is local with

maximal ideal m (mod (a)) and noetherian (see the beginning of the
proof of Krull’s principal ideal theorem for details). Furthermore,
we have ht(m (mod (a))) = dim(R/(a)) = 0, because if there were a
prime ideal properly contained in m (mod (a)), this would lead to a
descending chain m ⊃ p ⊃ (0) of prime ideals in R, which contra-
dicts the assumption that ht(m) = 1. By Lemma 10.10, the ideal
m (mod (a)) is thus nilpotent. Let n > 0 be the minimal integer such
that (m (mod (a)))n = (mn (mod (a))) = (0) and let b ∈ mn−1 be such
that b (mod (a)) ̸= 0. Now let x = a/b ∈ K. We have bm ⊆ mn ⊆ (a)
and so x−1m ⊆ R (note that x−1m is an ideal). Furthermore, we have
x−1 ̸∈ R, for otherwise we would have b = x−1 · a ∈ (a), which is
excluded by assumption.

We claim that we cannot have x−1m ⊆ m. Indeed, suppose that
x−1m ⊆ m. Then x−1 induces a homomorphism of R-modules m → m
(given by multiplication by x−1) and such a homomorphism is annihi-
lated by a monic polynomial P (x) with coefficients in R by Proposi-
tion 7.1 (because m is finitely generated, as R is noetherian). We then
have P (x−1)(h) = 0 for any non zero element h ∈ m and since R is a
domain this implies that P (x−1) = 0. Since R is integrally closed, this
implies that x−1 ∈ R, which is a contradiction.

Hence x−1m ̸⊆ m and since R is local, we thus must have x−1m = R.
In other words, x ∈ R and m = (x).

(2)⇒(3): We first prove that I is a power of m. We may suppose
without restriction of generality that I ̸= R (otherwise I = m0). Sup-
pose for contradiction that I is not a power of m. Let b ∈ R be such
that m = (b). The ring R/I has dimension 0 by Lemma 10.10, and thus
the ideal m (mod I) is nilpotent. Let n > 0 be the largest integer such
that I ⊂ mn. This exists by assumption and because some power of m
is contained in I, since m (mod I) is nilpotent. Let a ∈ I be an element
such that a ̸∈ mn+1 (this exists by construction). By construction, we
may write a = tbn for some t ∈ R. We cannot have t ∈ m because
otherwise we would have a ∈ mn+1, which is excluded. Hence t is a
unit of R (since R is local) and thus mn = (t−1a) = (a) ⊆ I. This is a
contradiction, so we must have I = mn for some n > 0.
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Secondly, n is uniquely determined. Indeed, suppose that (bn1) =
(bn2) for n1 ⩽ n2. Then there is a u ∈ R such that bn1 = bn2u. Since
R is a domain, bn2−n1u = 1, so b is a unit if n2 ̸= n1. Since b is not a
unit, we thus have n1 = n2.

(3)⇒(1): The R-module m/m2 is not zero (if it were zero, the ideal
m would be zero by Corollary 2.6, which is not possible, since R has
dimension 1). So we may choose an element x ∈ m∖m2. By assumption
(x) is equal to some power of m, which must be 1 by construction.
Hence m = (x). We conclude that R is a PID and thus a UFD. We
saw in the solution to Q4 of sheet 2 that any UFD is integrally closed
and thus R is integrally closed. □

Corollary 11.5. The localisation of a Dedekind domain at a non-zero
prime ideal is a PID.

The proof is immediate – after localising, the ring becomes local.

Corollary 11.6. Let R be a Dedekind domain. Then any primary ideal
is equal to a power of its radical.

Proof. Let p be a prime ideal and let a be a p-primary ideal. Let
λ : R → Rp be the natural homomorphism from R to its localisation at
p. Let m = pp be the maximal ideal of Rp (recall that this is also the
ideal generated by λ(p)).

We claim that λ−1(ap) = a. Indeed, consider the exact sequence

0 → a → λ−1(ap) → λ−1(ap)/a → 0.

The localisation at p of this sequence is

0 → ap → (λ−1(ap))p = ap → (λ−1(ap))p/ap = 0 → 0

By Lemma 4.4, there is a natural isomorphism of Rp-modules

(λ−1(ap)/a)p = (λ−1(ap))p/ap = 0.

Now note that r(a) = p by assumption and that for any element a ∈
R ∖ p, we have (a, p) = (1), since p is maximal by Lemma 11.1 (i).
Hence, by Lemma 11.2, we have (a, a) = (1) if a ∈ R ∖ p and in that
case the image of a in R/a is a unit. Since λ−1(ap)/a is naturally an
R/a-module, we conclude that (λ−1(ap)/a)p = λ−1(ap)/a (as we have
localised at units) and we thus see that λ−1(ap)/a = 0. In other words,
λ−1(ap) = a, and the claim is proved.

Now notice that by Proposition 11.4 (3), we have ap = mk = pkp for
some k ⩾ 1. Also we have pk = λ−1(pkp), since pk is also p-primary by
Lemma 5.5. We conclude that

a = λ−1(ap) = λ−1(pkp) = pk

as required. □
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Proposition 11.7. Let R be a Dedekind domain. Let I be an ideal in
R. Then all the minimal primary decompositions of I are equal up to
reindexing.

Note that I has primary decompositions by the Lasker-Noether the-
orem, since R is noetherian.

Proof. Let
⋂n
i=1 ai = I be a minimal primary decomposition of I. By

Corollary 11.6, we have ai = pni
i for some distinct prime ideals pi and

some integers ni ⩾ 1. Furthermore, we have
n⋂
i=1

ai =
n∏
i=1

ai

(see after Lemma 11.1). We thus have to show that if I =
∏m

j=1 q
mj

j

is another representation of I as a product of powers of distinct prime
ideals, then we have n = m and there is some bijection σ : {1, . . . , n} → {1, . . . , n}
such that pi = qσ(i) and ni = mσ(i) for all i ∈ {1, . . . , n}. So suppose
that

m∏
j=1

q
mj

j =
n∏
i=1

pni
i (∗)

where the qi (resp. the pi) are distinct prime ideals. It will be sufficient
to show that if some prime ideal appears with some multiplicity on the
left of (∗) then it will appear with the same multiplicity on the right
of (∗). So consider eg q1. Localising (∗) at q1, we obtain

m∏
j=1

(qj,q1)
mj =

n∏
i=1

(pi,q1)
ni

Now note that if qj ̸= q1, we have qj,q1 = (1) = Rq1 , because qj ̸⊆ q1
(since qj is maximal). Similarly, if pi ̸= q1, we have pi,q1 = (1). Hence
we obtain the equality

(q1,q1)
m1 = (pi1,q1)

ni1

for some i1 ∈ {1, . . . , n} such that pi1 = q1. On the other hand q1,q1 =
pi1,q1 is the maximal ideal of Rq1 and every ideal in Rq1 is a uniquely
determined power of this maximal ideal by Proposition 11.4 (3). Hence
m1 = ni1 . This concludes the proof. □

We conclude from Proposition 11.7 that in a Dedekind domain, every
ideal can be written in a unique way (up to reindexing) as a product of
powers of distinct prime ideals.

The next three results require some knowledge of Galois Theory.

Proposition 11.8. Let R be an integrally closed domain and let K be
its fraction field. Let L|K be a finite separable extension. Then

(1) the fraction field of the integral closure of R in L is L;
(2) the integral closure of R in L is finite over R.
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Proof. Omitted. See [AM], Th. 5.17, p. 64. The proof of (1) is easy
(prove it). The proof of (2) exploits the fact that the so-called “trace
form” associated with a finite separable extensions is non-degenerate.

□

Remark. The previous proposition is also true if R is a domain,
which is finitely generated over a field (without the requirement that
R is integrally closed) and L|K is any finite extension of fields (in
particular one could take L = K). This is a theorem of E. Noether.
See D. Eisenbud, Commutative Algebra with a view toward algebraic
geometry, par. 13.3, Cor. 13.13, p. 297. Note that if R is domain, it
is in general difficult to show that the integral closure of R in its own
fraction field is finite over R.

Corollary 11.9. Let R be Dedekind domain with fraction field K. Let
L be a finite separable extension of K. Let T be the integral closure of
R in L. Then T is also a Dedekind domain.

Proof. The ring T is clearly a domain, and it is integrally closed by
Lemma 7.7 and Proposition 11.8 (1). Also, the ring T is of dimension 1
by Lemma 10.24. Finally, by the Hilbert basis theorem, T is noetherian.
Indeed, T is finite, and in particular finitely generated over R, and R
is noetherian by assumption. □

Proposition 11.10. Let R be an integrally closed domain and let K be
its fraction field. Let L|K be a finite Galois extension of K. Let T be
the integral closure of R in L. Let p ∈ Spec(R) and let q1, q2 ∈ Spec(T )
be prime ideals of T such that q1 ∩ R = q2 ∩ R = p. Then there exists
an element σ ∈ Gal(L|K) such that σ(q1) = q2.

Note that σ(T ) ⊆ T for all σ ∈ Gal(L|K) (why?). In particular, each
σ ∈ Gal(L|K) induces an automorphism σ|T : T

∼→ T of R-algebras,
with inverse (σ−1)|T .

Proof. Suppose first that

q2 ⊆
⋃

σ∈Gal(L|K)

σ(q1).

In this situation, Proposition 5.1 (i) implies that q2 ⊆ τ(q1) for a
particular τ ∈ Gal(L|K). According to Q1 of sheet 3, this is only
possible if q2 = τ(q1) and hence we are done in this situation.

Now suppose that

q2 ̸⊆
⋃

σ∈Gal(L|K)

σ(q1).

In particular, there is an element e ∈ q2 such that e ̸∈ σ(q1) for all σ ∈
Gal(L|K), or in other words such that σ(e) ̸∈ q1 for all σ ∈ Gal(L|K).

Now consider that the element f =
∏

σ∈Gal(L|K) σ(e) is invariant
under Gal(L|K) by construction. Hence f lies in K ∩T , since L|K is a
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Galois extension. Since R is integrally closed, we have K ∩ T = R, so
f ∈ R. On the other hand, since e ∈ q2 and q2 is an ideal, we also have
f ∈ q2, so that f ∈ R ∩ q2 = p. In particular, f ∈ R ∩ q1 = p. Now
since q1 is a prime ideal, this implies that one of the elements σ(e) (for
some σ ∈ Gal(L|K)) lies in q1, which is a contradiction.

Hence we must have q2 ⊆
⋃
σ∈Gal(L|K) σ(q1) and we can conclude

using the argument given above. □

The following lemma (and the complement that follows) plays a key
role in Algebraic Number Theory.

Lemma 11.11. Let R be a Dedekind domain with fraction field K. Let
L|K be a finite separable extension of K and let T be the integral closure
of R in L (recall that T is also a Dedekind domain by Corollary 11.9).
Let p be a non-zero prime ideal in R. Let p̄ = pT be the ideal generated
by p in T . Let

p̄ = qn1
1 · · · qnk

k

be the minimal primary decomposition of p̄. Then the qi are precisely
the prime ideals q of T which have the property that q ∩R = p.

Proof. We have already seen that qn1
1 · · · qnk

k = qn1
1 ∩ · · · ∩ qnk

k . Hence
qi ∩ R ⊇ p and thus qi ∩ R = p, since p is maximal. Thus the qi are
among the prime ideals q of T , with the property that q ∩R = p.

Conversely, let q be a prime ideal of T , such that q ∩R = p. Then
q ⊇ qn1

1 ∩ · · · ∩ qnk
k

and thus by Proposition 5.1 (ii), we have q ⊇ qni
i for some i; since qi is

the radical of qni
i , we thus have q ⊇ qi and thus q = qi (again because

qi is maximal). □

Complement. We keep the notation of the last lemma. If F2|F1 is
a finite field extension, recall that one writes [F2 : F1] for the dimension
of F2 as a F1-vector space. Write fi = [T/qi : R/p]. One can show that∑

i

nifi = [L : K].

See S. Lang, Algebraic Number Theory, I, par. 7, Prop. 21, p. 24 for
a proof. The integer ni is called the ramification degree of qi over p.
Finally, note that it follows from Proposition 11.7 and Proposition 11.10
that the integers ni and fi are independent of i if L|K is a Galois
extension (why?).

END OF LECTURE 17
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