B2.2 Commutative Algebra

Sheet 1 — HT26

Sections 1-5

Section A

1. Let R be a ring. Show that the Jacobson radical of R coincides with the set

$$\{x \in R \mid 1 - xy \text{ is a unit for all } y \in R\}.$$

2. Let R be a ring and let $S \subseteq R$ be a multiplicative subset. Let M be an R-module and suppose that for every $s \in S$ the map

$$[s]_M \colon M \to M, m \mapsto sm$$

is an isomorphism. Then there is a unique structure of an R_S -module on M such that (r/1)m = rm for all $m \in M$ and $r \in R$.

Moreover, if $r/s \in R_S$ then we necessarily have $(r/s)(m) = [s]_M^{-1}(rm)$.

3. Let R be a ring and let N be the nilradical of R. Then the nilradical of R[x] is N[x].

Mathematical Institute, University of Oxford Dawid Kielak: kielak@maths.ox.ac.uk

Section B

- 4. Let R be a ring.
 - (a) Show that if $P(x) = a_0 + a_1 x + \dots + a_k x^k \in R[x]$ is a unit of R[x] then a_0 is a unit of R and a_i is nilpotent for all $i \ge 1$.
 - (b) Show that the Jacobson radical and the nilradical of R[x] coincide.
- 5. Let R be a ring and let $N \subseteq R$ be its nilradical. Show that the following are equivalent:
 - (a) R has exactly one prime ideal.
 - (b) Every element of R is either a unit or is nilpotent.
 - (c) R/N is a field.
- 6. Let R be a ring and let $I \subseteq R$ be an ideal. Let $S = \{1 + r \mid r \in I\}$.
 - (a) Show that S is a multiplicative set.
 - (b) Show that the ideal generated by the image of I in R_S is contained in the Jacobson radical of R_S .
 - (c) Prove the following generalisation of Nakayama's lemma: **Lemma.** Let M be a finitely generated R-module and suppose that IM = M. Then there exists $r \in R$, such that $r - 1 \in I$ and rM = 0.
- 7. Let R be a ring and let M be a finitely generated R-module. Let $\phi: M \to M$ be a surjective homomorphism of R-modules. Prove that ϕ is injective, and is thus an automorphism. [Hint: use ϕ to construct a structure of R[x]-module on M and use the previous question.]
- 8. Let R be a ring. Let S be the subset of the set of ideals of R defined as follows: an ideal I is in S if and only if all the elements of I are zero-divisors. Show that S has maximal elements (for the relation of inclusion) and that every maximal element is a prime ideal. Show that the set of zero-divisors of R is a union of prime ideals.

Dawid Kielak: kielak@maths.ox.ac.uk

Section C

- 9. Let R be a ring. Consider the inclusion relation on the set $\operatorname{Spec}(R)$. Show that there are minimal elements in $\operatorname{Spec}(R)$.
- 10. Let R be a ring. The chan complex of R-modules

$$\cdots \to M_i \stackrel{d_i}{\to} M_{i-1} \stackrel{d_{i-1}}{\to} \cdots$$

is exact if and only if the complex

$$\cdots \to M_{i,\mathfrak{m}} \stackrel{d_{i,\mathfrak{m}}}{\to} M_{i+1,\mathfrak{m}} \stackrel{d_{i+1,\mathfrak{m}}}{\to} \cdots$$

is exact for all the maximal ideals \mathfrak{m} of R.

Mathematical Institute, University of Oxford Dawid Kielak: kielak@maths.ox.ac.uk