B2.2 Commutative Algebra

Sheet 3 — HT26

Sections 1-10

Section A

- 1. Let R be a subring of a ring T. Suppose that T is integral over R. Let \mathfrak{p} be a prime ideal of R and let $\mathfrak{q}_1, \mathfrak{q}_2$ be prime ideals of T such that $\mathfrak{q}_1 \cap R = \mathfrak{q}_2 \cap R = \mathfrak{p}$. Show that if $\mathfrak{q}_1 \subseteq \mathfrak{q}_2$ then $\mathfrak{q}_1 = \mathfrak{q}_2$.
- 2. Let R be a subring of a ring T and suppose that T is integral over R. Let \mathfrak{p} be prime ideal of R and let \mathfrak{q} be a prime ideal of T. Suppose that $\mathfrak{q} \cap R = \mathfrak{p}$. Let $\mathfrak{p}_1 \subseteq \mathfrak{p}_2 \subseteq \cdots \subseteq \mathfrak{p}_k$ be primes ideal of R and suppose that $\mathfrak{p}_1 = \mathfrak{p}$. Show that there are prime ideals $\mathfrak{q}_1 \subseteq \mathfrak{q}_2 \subseteq \cdots \subseteq \mathfrak{q}_k$ of T such that $\mathfrak{q}_1 = \mathfrak{q}$ and such that $\mathfrak{q}_i \cap R = \mathfrak{p}_i$ for all $i \in \{1, \ldots, k\}$.

Mathematical Institute, University of Oxford Dawid Kielak: kielak@maths.ox.ac.uk

Section B

- 3. Show that \mathbb{Z} is integrally closed and that the integral closure of \mathbb{Z} in $\mathbb{Q}(i)$ is $\mathbb{Z}[i]$.
- 4. Let A be a ring and let $U(x) \in A[x]$ be a non zero monic polynomial. Then there exists a ring B containing A, which is integral over A and such that

$$U(x) = \prod_{i=1}^{\deg(U)} (x - b_i)$$

for some $b_i \in B$, where we set $\prod_{i=1}^{\deg(U)} (x - b_i) = 1$ if $\deg(U) = 0$.

- 5. Let S be a ring and let $R \subseteq S$ be a subring of S. Suppose that R is integrally closed in S. Let $P(x) \in R[x]$ and suppose that P(x) = Q(x)J(x), where $Q(x), J(x) \in S[x]$ and Q(x) and J(x) are monic. Show that $Q(x), J(x) \in R[x]$. Use this to give a new proof of the fact that if $T(x) \in \mathbb{Z}[x]$ and $T(x) = T_1(x)T_2(x)$, where $T_1(x), T_2(x) \in \mathbb{Q}[x]$ are monic polynomials, then $T_1(x), T_2(x) \in \mathbb{Z}[x]$.
- 6. Let R be a ring. Show that the two following conditions are equivalent:
 - (a) R is a Jacobson ring.
 - (b) If $\mathfrak{p} \in \operatorname{Spec}(R)$ and R/\mathfrak{p} contains an element b such that $(R/\mathfrak{p})[b^{-1}]$ is a field, then R/\mathfrak{p} is a field.

Here we write $(R/\mathfrak{p})[b^{-1}]$ for the localisation of R/\mathfrak{p} at the multiplicative subset $1, b, b^2, \ldots$

- 7. Let k be field and let R be a finitely generated algebra over k. Show that the two following conditions are equivalent:
 - (a) $\operatorname{Spec}(R)$ is finite.
 - (b) R is finite over k.
- 8. Let k be an algebraically closed field. Let $P_1, \ldots, P_d \in k[x_1, \ldots, x_d]$. Suppose that the set

$$\{(y_1,\ldots,y_d)\in k^d\,|\,P_i(y_1,\ldots,y_d)=0\,\forall i\in\{1,\ldots,d\}\}$$

is finite. Show that

$$\operatorname{Spec}(k[x_1,\ldots,x_d]/(P_1,\ldots,P_d))$$

is finite.

Mathematical Institute, University of Oxford Dawid Kielak: kielak@maths.ox.ac.uk

Section C

- 9. Let R be a noetherian ring and let T be a finitely generated R-algebra. Let G be a finite subgroup of the group of automorphisms of T as a R-algebra. Let T^G be the fixed point set of G (ie the subset of T, which is fixed by all the elements of G).
 - (a) Show that T is integral over T^G .
 - (b) Show that T^G is a subring of T, which contains the image of R and that T^G is finitely generated over R.
- 10. Let k be a field and let \mathfrak{m} be a maximal ideal of $k[x_1, \ldots, x_d]$. Show that there are polynomials $P_1(x_1), P_2(x_1, x_2), P_3(x_1, x_2, x_3), \ldots, P_d(x_1, \ldots, x_d)$ such that $\mathfrak{m} = (P_1, \ldots, P_d)$.
- 11. Let R be a domain. Show that R[x] is integrally closed if R is integrally closed.

Mathematical Institute, University of Oxford Dawid Kielak: kielak@maths.ox.ac.uk