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Sections 1-7

Section A

1. Consider the ideals p1 = (x, y), p2 = (x, z) and m = (x, y, z) of K[x, y, z], where K is a

field. Show that p1 ∩ p2 ∩m2 is a minimal primary decomposition of p1 · p2. Determine

the isolated and the embedded prime ideals of p1 · p2.

Solution: For future reference, note that we have

m2 = ((x) + (y) + (z))2 = (x2, y2, z2, xy, xz, yz)

and

p1 · p2 = ((x) + (y))((x) + (z)) = (x2, xz, yx, yz).

We have p1 · p2 ⊆ p1 ∩ p2 and we also clearly have p1 · p2 ⊆ m2 since p1, p2 ⊆ m.

Thus we have p1 · p2 ⊆ p1 ∩ p2 ∩ m2. Note that p1 and p2 are prime since the rings

K[x, y, z]/p1 ≃ K[z] and K[x, y, z]/p2 ≃ K[y] are domains. Note also that m is a

maximal ideal, since K[x, y, z]/m ≃ K is a field. Thus p1, p2 and m2 are primary (see

after Lemma 6.4 for the latter). The radicals of the ideals p1, p2 and m2 are p1, p2

and m (see again Lemma 6.4 for the latter). These three ideals are distinct. Finally,

we have p1 ̸⊇ p2 ∩ m2 (because z2 ̸∈ p1 but z2 ∈ p2 ∩ m2), p2 ̸⊇ p1 ∩ m2 (because

y2 ̸∈ p2 but y2 ∈ p1 ∩m2) and m2 ̸⊇ p1 ∩ p2 (because x ̸∈ m2 but x ∈ p2 ∩ p2). Hence if

p1 · p2 = p1 ∩ p2 ∩m2 then this decomposition is indeed primary and minimal. Thus we

only have to show that p1 · p2 ⊇ p1 ∩ p2 ∩m2.

From the above, we have to show that

(x, y) ∩ (x, z) ∩ (x2, y2, z2, xy, xz, yz) ⊆ (x2, xz, yx, yz).

This is immediate, since all the ideals we are considering have the property that a

polynomial lies in such an ideal if and only if all of the monomial summands of the

polynomial lie in the ideal.
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2. Let I be a radical ideal that is decomposible. Show that I has a minimal primary de-

composition by prime ideals (so that in this case, the associated primes are the elements

of the minimal primary decomposition itself).

Furthermore, show that any two minimal primary decompositions by prime ideals of a

radical ideal coincide.

Solution: Let I =
⋂k

i=1 Ji be a primary decomposition. Consider I ′ = r(Jj) ∩
⋂

i ̸=j Ji.

We clearly have I ⊆ I ′. If the inclusion is strict, then there exists x ∈ I ′ ∖ I. There

exists n > 0 such that xn ∈ Jj, and hence xn ∈ I. But I is radical, so x ∈ I. Thus

I ′ = I. We may therefore replace Jj by the prime ideal r(Jj); we still arrive at a primary

decomposition this way (check this!).
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Section B

3. Let K be a field. Show that the ideal (x2, xy, y2) ⊆ K[x, y] is a primary ideal, which is

not irreducible.

4. (a) If I is a decomposable radical ideal, then all the associated primes of I are isolated.

(b) if I is a decomposable ideal, there are only finitely many prime ideals, which contain

I and are minimal among all the prime ideals containing I. These prime ideals are

also the isolated ideals associated with I.

5. Let R be a ring. Let I ⊆ R be an ideal. Then there are prime ideals that are minimal

among all the prime ideals containing I.

Furthermore, if p ⊇ I is a prime ideal, then p contains such a prime ideal.

6. Let R be a ring. Let S be the set of ideals in R that are not finitely generated; assume

that S ≠ ∅.

(a) Show that S has at least one maximal element.

(b) Let I be maximal element of S (with respect to the relation of inclusion). Show

that I is prime.

(c) Suppose that all the prime ideals of R are finitely generated. Prove that R is

noetherian.

[Hint: exploit the fact that R/I is noetherian.]

7. LetR be a noetherian ring and I ⊆ R an ideal. Then the quotient ringR/I is noetherian.
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Section C

8. Let R be a ring. Let S be the set of non-principal ideals in R; assume that S ≠ ∅.
Prove that S admits maximal elements, and that every such element a prime ideal.

Solution: The existence of maximal elements follows from Zorn’s lemma. Let I be one

such. Let x, y ̸∈ I and suppose for contradiction that xy ∈ I. Let Ix = (x) + I. By

assumption, we have Ix = (gx) for some gx ∈ R. Let ϕ : R → Ix be the surjection of

R-modules given by the formula ϕ(r) = rgx. We then have I ⊆ ϕ−1(I).

Suppose first that I = ϕ−1(I). In other words, for all r ∈ R, we have rgx ∈ I if and

only if r ∈ I. This contradicts the fact that ygx ∈ I. So we conclude that I ⊂ ϕ−1(I).

From the definition of I, we then see that ϕ−1(I) is a principal ideal of R, and hence so

is I = ϕ(ϕ−1(I)). This is a contradiction.
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